Unit 2, Section 6: Coordinate Systems
Coordinates

As indicated in the previous section, bases are important because they give us a precise way to
describe the geometry of their ambient vector spaces. To make this idea more concrete, and to give
us a way to use matrix arithmetic to encode and understand our vector spaces, we introduce the
idea of coordinate systems:

Definition. If S = (vy, va, ..., v,) is a basis for the vector space V' and the vector v in V' is the
linear combination
V= o1V + 0oV + ... + QpUp,

then the scalars aq, a9, ..., ay, are called the coordinates of v relative to the basis S, and the vector
aq
o2
Qp
in F™ is called the coordinate vector of v relative to the basis S, denoted by
o1
(v)s = “
an

Before we engage in an in-depth discussion of the ideas presented in the definition, let’s apply
it to the example in R? that we have now seen multiple times: we have seen that the lists

B e =((g) (1))

3 2
both form bases for R2.

Let’s pick a vector (or point) p in R? and compare its coordinates in the two different systems:

and
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We’ll start by writing the coordinates of this point in terms of the first basis
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From the origin, we have to move —7e; and 3es to get to p, so we think of p as the linear

combination
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In order to get to p, we need to move from the origin by —5v; and 4vs; so with By as our chosen
basis, p is the linear combination
p = —bvy + 4vs,

and has coordinates given by the vector

(p)B2 = 4

In other words, I have options as to how I describe the location of p: if I like the first basis, 1
can refer to the location of p as (—7,3). If, however, I prefer the second basis, then I can refer to
p’s location as (—5,4). As long as I specify which basis I'm using to mark the location, there is no
ambiguity as to the location of the point.

Key Point. Coordinates in a vector space are just a specific way to refer to the location of vectors
relative to a chosen basis; a vector’s coordinates will look different if we use a different basis to
describe locations, but the coordinates will refer to the same vector.

Example 1

The matrix
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is a vector in the vector space Us(R) of all real upper triangular 2 x 2 matrices. Find the coordinates

of v1 relative to the basis
B =<€11, €12, 622);

where e;; is the 2 x 2 matrix with a 1 in the 7, j entry and Os elsewhere.

To find the coordinates of v, we first need to write v as a linear combination of the basis vectors.
Of course, it is quite easy to see that the correct linear combination is

v = —4eq1 + 2e120 — 3ea9;

so the coordinates of v are given by the vector

Example 2

The vectors fi(z) = 2z — 3, fo(z) = 22+ 1, and f3(x) = 222 — z are linearly independent and span
the vector space Pa(R) of all real-valued polynomials of degree no more than 2, so that the list

B = (f1, f2 f3)
is a basis for P2(R). Find the coordinates for the vector
g(x) = 32° + 4z — 10
relative to this basis.

We need to write g as a linear combination of fi, fo, and f3; in other words, we need scalars a,
b, and ¢ so that

g=afi +bfs+cfs;

these scalars are precisely the coordinates of g relative to this basis.

Let’s make the calculations: we want
322 +4x—10 = afi +bfs+cfs
= a(2x —3) +b(2? +1) + (22 — )
= 2ax —3a+bx® +b+ 2z —cx
= (b+20)z% + (2a — )z + (—3a + b).

So we need to solve the system of equations

3 = b+ 2¢
4 = 2a-—c
—10 = —-3a+b.



Unit 2, Section 6: Coordinate Systems

This corresponds to the augmented matrix

o 1 2 | 3
2 0 -1 | 4 ];
-3 1 0 | -10
we apply elementary row operations to find the solution to the system:
o 1 2 | 3 2 0 -1 | 4
2 0 -1 | 4 — o 1 2 | 3
-3 1 0 | —10 -3 1 0 | -10
1 0 -1 | 2
divide row 1 by 2 — o 1 2 | 3
-3 1 0 | -10
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So we see that
a=3, b=-1, and c =2,

which means that
g=3f1— fo+2fs;

thus the coordinates for g relative to the basis B are give by



