
Unit 2, Section 2: Subspaces

Subspaces

In the previous section, we saw that the set U2(R) of all real upper triangular 2 × 2 matrices, i.e.
the set of all matrices of the form (

u11 u12
0 u22

)
,

together with the usual operations of matrix addition and scalar multiplication, is a vector space.
You may have noticed that U2(R) looks a good bit like another vector space we have already

studied, specificallyM2(R), the space of all 2×2 real matrices. In fact, every vector in U2(R) is also
a vector inM2(R) (although the reverse is not true–many 2×2 matrices are not upper triangular!),
and the two vector spaces have the same operations of addition and scalar multiplication.

There is a sense in which the vector space U2(R) is “living inside” the vector spaceM2(R); this
phenomenon is common enough that we will give it a name:

Definition 1.32. A subset U of a vector space V is called a subspace of V if it is a vector space in
its own right, with the same addition and scalar multiplication defined in V .

Using our earlier example, we can now say that U2(R) is a subspace of M2(R).

Determining if Subsets are Subspaces

When we are attempting to determine if a set U is a vector space, there is a particular advantage
to recognizing that U is a subset of another set V that is already known to be a vector space.

For example, let’s go back to the set U2(R) of all upper triangular 2×2 matrices, and the vector
space M2(R) of all 2 × 2 matrices. When we checked to see if U2(R) itself is a vector space, we
skipped several necessary steps, ignoring most of the vector space axioms. As a result, you may be
a bit concerned that U2(R) is not actually a vector space in its own right; perhaps it fails, say, the
association axiom:

u+ (v + w) = (u+ v) + w.

Fortunately for us, we don’t have to worry about this axiom: since U2(R) is a subset ofM2(R),
every vector in U2(R) is also in M2(R). Of course, we know that M2(R) is a vector space, so the
rule

u+ (v + w) = (u+ v) + w

works for all vectors in M2(R)–including all of the vectors in U2(R). Thus we don’t have to check
axiom 4–since U2(R) is a subset of M2(R), its vectors “inherit” the behavior of the vectors in
M2(R).

Key Point. If we wish to determine if the set U forms a vector space with the operations of
addition and scalar multiplication, and recognize that all of the vectors in U are also vectors in a
(perhaps larger) set V known to be a vector space, then the vectors in U will automatically obey
many of the vector space axioms. Thus we will not have to check every single axiom to determine
whether or not U is a vector space.
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The point above leads to a question: if we do recognize the set U as a subset of a known vector
space V , what axioms do we need to check to determine whether or not U is a vector space? The
following theorem answers this question:

Theorem 1.34. A subset U of the vectors of a vector space V is a subspace of V (and thus a
vector space in its own right) if and only if the following conditions are satisfied:

1. Additive Identity: 0 ∈ U

2. Closure under Addition: u, v ∈ U =⇒ u+ v ∈ U

3. Closure under Scalar Multiplication: λ ∈ F, u ∈ U =⇒ λu ∈ U

Again, the theorem says that, if a subset U of a vector space V is nonempty and closed under
the operations of addition and scalar multiplication, then we are guaranteed that U is a subspace
of V , and thus a vector space itself.

Proof. =⇒ If U is a subspace of V , then U is a vector space itself and clearly satisfies all of the
properties.
⇐= On the other hand, we must show that, if U satisfies the conditions, then it satisfies all

of the vector space axioms. We discuss each one below:

1. Closure under Addition: Follows by assumption.

2. Closure under Scalar Multiplication: Follows by assumption.

3. Commutativity: Inherited from V , since every vector in U is also in V , and the operations
are identical.

4. Associativity: Inherited from V .

5. Additive Identity: Follows by assumption.

6. Additive Inverse: If u ∈ U , we must guarantee that −u is as well. Since (−1)u ∈ U by
assumption and (−1)u = −u, additive inverses are always in U .

7. Multiplicative Identity: Inherited from V .

8. Distribution of Scalar Multiplication over Vector Addition: Inherited from V .

9. Distribution of Scalar Multiplication over Scalar Addition: Inherited from V .

Thus U satisfies all of the properties, and is a vector space in its own right; it is therefore a
subspace of V .

Returning to the example above of the set U2(R) of all real upper triangular 2 × 2 matrices,
and the vector space M2(R) of all real 2 × 2 matrices, it is now clear that U2(R) is subspace of
M2(R)–we know that:
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1. The 2× 2 zero matrix is upper triangular;

2. The sum of two upper triangular matrices is upper triangular, and that

3. The scalar product of an upper triangular matrix with a real number is upper triangular.

The theorem says that, since we know that U2(R) is a subset of M2(R), and that M2(R) is
itself a vector space, these are the only three conditions we need to check to be certain that U2(R)
is a vector space, as well.

Examples of Subsets that are Subspaces

Example 1

Let W be the set of all vectors in R3 of the form

〈x, x+ z, z〉.

For example,
〈1, 4, 3〉

is a vector in W . Three such vectors are graphed below in R3:

All of the vectors from W “cover” the orange plane included in the graph below:
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You can think of W as the yellow plane; clearly every vector in W is also in R3, but not every
vector in R3 is in W–for example, the vector 〈5,−5, 1〉 graphed in blue below:

Since W is clearly a subset of the vector space R3, we would like to know if W , equipped with
the usual addition and scalar multiplication, is a subspace of R3. According to the theorem, we
simply need to check that:

1. 0 ∈W

2. If u and v are vectors in W , then u+ v is a vector in W .

3. If λ is a scalar and u is a vector in W , then λu is a vector in W .

Let’s check:

1. 0 ∈W : Clearly

0 =

0
0
0


has the right form and is in W .
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2. If u and v are vectors in W , then u+ v is a vector in W : Let

u = 〈x1, x1 + z1, z1〉 and v = 〈x2, x2 + z2, z2〉.

We need to check and see if the vector u+ v is also in W , so let’s add the vectors:

u+ v = 〈x1, x1 + z1, z1〉+ 〈x2, x2 + z2, z2〉
= 〈x1 + x2, x1 + z1 + x2 + z2, z1 + z2〉
= 〈x1 + x2, (x1 + x2) + (z1 + z2), z1 + z2〉.

Notice that the second coordinate of the vector u + v is the sum of the first and third
coordinates; so u+ v obeys the rule for W , and is indeed a vector in W .

3. If λ is a scalar and u is a vector in W , then λu is a vector in W : With

u = 〈x1, x1 + z1, z1〉,

we need to calculate λu:

λu = λ〈x1, x1 + z1, z1〉
= 〈λx1, λ(x1 + z1), λz1〉
= 〈λx1, λx1 + kz1, λz1〉.

Again, we see that the second coordinate of the vector λu is the sum of the first and third
coordinates, and is thus a vector in W .

Since W passes all of the tests of the theorem, it is a subspace of R3.

Example 2

In the previous section, we saw that the set R(−∞,∞), whose vectors are real-valued functions
defined on (−∞,∞), is a vector space. I claim that the subset C(−∞,∞) of continuous real-valued
functions is a subspace of R(−∞,∞).

Of course, this claim is quite easy to check: we know from calculus that the sum f(x) + g(x)
of two continuous functions is also a continuous function, as is the product λf(x) of a scalar and
a continuous function. In addition, the function 0 is continuous; thus C(−∞,∞) is a subspace of
R(−∞,∞).
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Example 3

Recall that the transpose of a 2× 2 matrix

X =

(
x11 x12
x21 x22

)
is X> =

(
x11 x21
x12 x22

)
.

Let X be a 2× 2 matrix that equals its transpose, i.e. X = X>; recall that such matrices are
referred to as symmetric. In terms of a formula, we see that

X =

(
x11 x12
x21 x22

)
=

(
x11 x21
x12 x22

)
= X>,

so that we must have x12 = x21.
For example, given the matrix

X =

(
3 −2
−2 7

)
,

we see that

X> =

(
3 −2
−2 7

)
= X,

so that X is symmetric.

Let S2(F) be the set of all 2× 2 matrices with entries in F that equal their transposes, i.e. all
of the matrices of the form

X =

(
x11 x12
x12 x22

)
.

Clearly this is a subset of the vector space M2(F) of all 2 × 2 matrices, and I claim that S2 is
actually a subspace of M2(F).

To verify that S2 is a subspace, we once again check the three conditions of the theorem:

1. 0 ∈ S2: Clearly 0 is symmetric: (
0 0
0 0

)>
=

(
0 0
0 0

)
.

2. Closure under addition: Let

X =

(
x11 x12
x12 x22

)
and Y =

(
y11 y12
y12 y22

)
.

We need to be certain that the vector X + Y is also in S2; in other words, that (X + Y )> =
X +Y . Fortunately, there is a quick way to do this: we learned earlier in the course that, for
any pair of matrices whose sizes are amenable for addition,

(X + Y )> = X> + Y >.

Now since our X and Y are in S2, so that

X = X> and Y = Y >,
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we see that

(X + Y )> = X> + Y >

= X + Y.

So we see that
(X + Y )> = X + Y,

so that X + Y is a vector in S2, as required.

3. Closure under scalar multiplication: Again, the calculation here is quite easy to make. We
wish to be certain that λX is a vector in S2, i.e. that

(λX)> = λX.

Of course, we know that scalars are unaffected by taking transposes, so that

(λX)> = λX>.

Together with the fact that X itself is in S2, X = X>, we have

(λX)> = λX>

= λX,

so that λX is a vector in S2.

Since the elements of S2 satisfy the requirements of the theorem, S2 is a subspace of M2, and
a vector space in its own right.

Example 4

Recall that the trace of a square matrix is the sum of its diagonal entries.
Let sl(2,R) be the set of all matrices in M2(R) with trace 0. For example,(

0 1
4 0

)
,

(
5 7
−3 −5

)
, and

(
−1 1
−1 1

)
are all vectors in sl(2,R).

I claim that sl(2,R) is a subspace of M2(R). Again, we check the conditions of the theorem:

1. 0 ∈ sl(2,R): Clearly tr 0 = 0.

2. Closure under addition: Since X, Y ∈ sl(2,R), say

X =

(
x11 x12
x21 x22

)
, Y =

(
y11 y12
y21 y22

)
,
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we know that
x11 + x22 = 0 and y11 + y22 = 0.

Since the diagonal entries of X + Y are

x11 + y11 and x22 + y22,

we see that

tr (X + Y ) = x11 + y11 + x22 + y22

= x11 + x22 + y11 + y22

= 0,

so that X + Y ∈ sl(2,R).

3. Closure under scalar multiplication: Similarly,

tr (kX) = kx11 + kx22

= k(x11 + x22)

= k · 0
= 0,

so kX ∈ sl(2,R) as required.

Remark. The last example actually illustrates some important properties of the trace function
that we will not discuss in detail–namely, that tr (A+B) = trA+ trB, and that tr (kA) = k · trA.

Examples of Subsets that are Not Subspaces

Example 1

Let W be the set of all vectors in R2 of the form

〈x, 1〉.

W is clearly a subset of R2 (in fact, it is the horizontal line at y=1); however, it is not not a subspace
of R2, since the sum

〈x, 1〉+ 〈y, 1〉 = 〈x+ y, 2〉

of any pair of vectors in W will have a 2 as its second coordinate, thus will not be an element of
W .
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Example 2

Let W be the set of all 3 × 3 matrices with determinant 1. Even though this set is a subset of
M3(C), it is definitely not a subspace, as it fails the second condition of the theorem: If λ is a
scalar and u is a vector in W , then λu is a vector in W .

As an example, consider the determinant 1 matrix

I =

1 0 0
0 1 0
0 0 1

 ∈W.
Clearly iI is not a determinant 1 matrix–indeed, you should check that det(iI) = −i. Thus W fails
the third condition of the theorem.

Sums of Subspaces

We can use subspaces of a vector space to build more subspaces; one way to do so is by creating a
sum of subspaces.

Definition 1.36. Let U1, U2, . . . , Un be subspaces of a vector space V . The sum of U1, U2, . . . ,
Un is the set of all possible sums of elements of the subspaces U1, U2, . . . , Un; we write

U1 + U2 + . . .+ Un = {u1 + u2 + . . .+ un | u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un}.

Remark. As we begin to think about sums of subspaces, it is important to note exactly what
types of objects live in the sum: note that U1 +U2 + . . .+Un is a set of vectors; every vector in this
set is made up of sums of vectors from the component subspaces. So at the very least, we know
that the set U1 + U2 + . . .+ Un is a subset of some of the vectors of the ambient vector space V .

Example. Let V = R3, the vector space of all triplets of real numbers, which we think of ge-
ometrically as three-dimensional space, with the usual operations of vector addition and scalar
multiplication.

It is easy to check that

U1 =

{r0
r

∣∣∣∣r ∈ R
}

and

U2 =

{0
t
t
2

∣∣∣∣t ∈ R
}

are both subspaces of V (indeed, you should check using the theorem).
We plot the two subspaces below, U1 in red and U2 in blue:
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We are going to build the sum U1 + U2 of the two vector spaces; before investigating it in
general, let’s think about a few examples of vectors in the set U1 + U2.

First of all, we know that 0 ∈ U2, so for any vector u ∈ U1,

u+ 0 = u ∈ U1 + U2.

In other words,
U1 ⊂ U1 + U2.

Similarly,
U2 ⊂ U1 + U2.

However, the set U1 +U2 will contain many vectors that are in neither U1 nor U2. For example,
we know that 1

0
1

 ∈ U1 and

0
2
1

 ∈ U2;

these two vectors are graphed below in red and blue respectively:
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Their sum 1
0
1

+

0
2
1

 =

1
2
2


must also be a vector in U1 + U2; the vector is graphed below in green:

At this point, you may have already guessed the punch line: U1 +U2 is the plane in R3 passing
through the two lines, since U1 + U2 consists of all vectors of the form r

t
r + t

2

 ,
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a parametric equation for a plane. The plane U1 + U2 is graphed below:

You may have made another important observation about this example: U1 +U2 is not merely
a subset of vectors from R3–it is a subspace of R3.

It turns out that the observation we made in the previous example is true in general, as indicated
by the next theorem:

Theorem 1.39. If U1, U2, . . . , Un are subspaces of a vector space V , then their sum U1+U2+. . .+Un

is also a subspace of V , and is the smallest subspace of V containing all of U1, U2, . . . , Un.

Proof. Exercise.

Example. Let U1 be the subspace of all diagonal matrices in M2(F), and U2 be the subspace of
all upper triangular matrices in M2(F). Describe the vector space U1 + U2.

Let’s begin by describing the subspaces U1 and U2 in detail:

U1 =

{(
d11 0
0 d22

)∣∣∣∣d11, d22 ∈ C
}
,
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and

U2 =

{(
u11 u12
0 u22

)∣∣∣∣u11, u12, u22 ∈ C
}
.

Thus the vector space U1 + U2 consists of all matrices of the form(
u11 + d11 u12

0 u22 + d22

)
;

but u11, d11, etc., were arbitrary in the first place, so U1+U2 merely consists of all upper triangular
2× 2 matrices. That is,

U1 + U2 = U2.

The last example is rather interesting: the sum of a pair of subspaces turned out to be the
larger subspace. This happened because U1 itself was actually already a subspace of U2, so we
didn’t create any “new” vectors by adding U1 to U2.

Looking ahead, we will eventually want to avoid such sums, as they introduce unpleasant
ambiguities. For example, the vector (

i 1 + i
0 2− i

)
can be written in multiple ways as a sum of vectors in U1 and U2: we could write(

i 1 + i
0 2− i

)
=

(
i 0
0 2− i

)
+

(
0 1 + i
0 0

)
or (

i 1 + i
0 2− i

)
=

(
−i 0
0 −i

)
+

(
2i 1 + i
0 2

)
;

in both examples, the first summand is in U1 and the second is in U2. There is no unique way to
decompose elements of the sum using the summands.

With this idea in mind, we define a special type of sum, the direct sum:

Definition 1.40. Let U1, U2, . . . , Un be subspaces of a vector space V .

• The sum U1 +U2 + . . .+Un is called a direct sum if each vector u in the sum can be written
uniquely as

u = u1 + u2 + . . .+ un,

u1 ∈ U1, . . . , un ∈ Un.

• If the sum U1 + U2 + . . .+ Un is a direct sum, we write

U1 ⊕ U2 ⊕ . . .⊕ Un,

where ⊕ indicates that the sum is direct.
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Example. We have actually already seen an example of a direct sum; let V = R3,

U1 =

{r0
r

∣∣∣∣r ∈ R
}
,

and

U2 =

{0
t
t
2

∣∣∣∣t ∈ R
}
.

Earlier, we saw that the vector space U1 + U2 can be described by

U1 + U2 =

{ r
t

r + t
2

∣∣∣∣r, s ∈ R
}
.

Every vector in U1 + U2 thus has form r
t

r + t
2

 =

r0
r

+

0
t
t
2

 ;

clearly there is only one way to choose r and t. Thus the decomposition is unique; we may now
write

U1 ⊕ U2

to indicate that the sum is direct.

It would be helpful to have further criteria for testing whether or not a sum is direct; the next
theorem provides this to us:

Theorem 1.44. Let U1, U2, . . . , Un be subspaces of a vector space V . Then the sum U1 + U2 +
. . .+Un is direct if and only if the only way to write 0 as a sum of elements u1, . . . , un of U1, . . . ,
Un respectively, is to choose ui = 0 for all i.

Proof. =⇒ : If the sum is direct, then by definition the decomposition

0 = u1 + u2 + . . .+ un,

where ui ∈ Ui, is unique. Since 0 ∈ Ui for all i, we must have ui = 0, all i.
⇐= : On the other hand, let u ∈ U1 + . . .+ Un, and suppose that

u = u1 + . . .+ un and u = u′1 + . . .+ u′n

are two decompositions of u, with u1, u
′
1 ∈ U1, . . . , un, u

′
n ∈ Un. Consider the quantity

0 = u− u
= u1 + . . .+ un − (u′1 + . . .+ u′n)

= (u1 − u′1) + . . .+ (un − un)′.
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Clearly ui − u′i ∈ Ui; thus the equation

0 = (u1 − u′1) + . . .+ (un − un)′

is a decomposition of 0 into a sum of elements of U1, . . . , Un. By assumption, the only way to write
0 as a sum of elements of U1, . . . , Un is to choose ui−u′i = 0. Thus ui = u′i, and the decomposition
of u is unique.

In certain cases, there is an even simpler way to determine whether or not a sum is direct.

Theorem 1.45. If U and W are subspaces of V , then U + V is a direct sum if and only if
U ∩ V = {0}.

Proof. Exercise.

We can illustrate the theorem graphically with the example we have inspected multiple times
in this section:

The red and blue lines above form subspaces of R3, and since their intersection is identically
{0}, their sum is direct (as we verified earlier).

It is tempting to think that the theorem could be generalized–namely, we might hope that
U1 + . . . + Un is a direct sum if and only if Ui ∩ Uj = {0} whenever i 6= j. Unfortunately, this
condition is not enough to guarantee that the sum is direct, as indicated by the following example.
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Example. The vector space U2(R) of all 2 × 2 upper triangular matrices with real entries has
subspaces

U1 =

{(
x x
0 x

)∣∣∣∣x ∈ R
}
,

U2 =

{(
y y
0 0

)∣∣∣∣y ∈ R
}
,

and

U3 =

{(
0 0
0 z

)∣∣∣∣z ∈ R
}
.

Now the intersection of any pair of of subspaces is {0}; for example, if u ∈ U1 ∩ U2, say

u =

(
u11 u12
0 u22

)
,

then u22 = 0 since u ∈ U2; then since u22 = 0, we must have u11 = u12 = u22 = 0 since u ∈ U1.
However, the sum U1 + U2 + U3 is not direct; in particular, it is easy to decompose 0 as a sum

of nonzero elements of U1, U2, and U3, say as(
0 0
0 0

)
=

(
1 1
0 1

)
+

(
−1 −1
0 0

)
+

(
0 0
0 −1

)
.
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