Unit 2, Section 2: Subspaces
Subspaces

In the previous section, we saw that the set Us(R) of all real upper triangular 2 x 2 matrices, i.e.
the set of all matrices of the form
Ul U2
0 u22 ’

together with the usual operations of matrix addition and scalar multiplication, is a vector space.
You may have noticed that Us(R) looks a good bit like another vector space we have already
studied, specifically My (R), the space of all 2 x 2 real matrices. In fact, every vector in Us(R) is also
a vector in Mo (R) (although the reverse is not true-many 2 x 2 matrices are not upper triangular!),
and the two vector spaces have the same operations of addition and scalar multiplication.
There is a sense in which the vector space Us(R) is “living inside” the vector space Ma(R); this
phenomenon is common enough that we will give it a name:

Definition 1.32. A subset U of a vector space V is called a subspace of V' if it is a vector space in
its own right, with the same addition and scalar multiplication defined in V.

Using our earlier example, we can now say that Us(RR) is a subspace of Ms(R).

Determining if Subsets are Subspaces

When we are attempting to determine if a set U is a vector space, there is a particular advantage
to recognizing that U is a subset of another set V' that is already known to be a vector space.

For example, let’s go back to the set Ua(R) of all upper triangular 2 x 2 matrices, and the vector
space M2(R) of all 2 x 2 matrices. When we checked to see if Us(R) itself is a vector space, we
skipped several necessary steps, ignoring most of the vector space axioms. As a result, you may be
a bit concerned that Us(R) is not actually a vector space in its own right; perhaps it fails, say, the
association axiom:

u+ (v+w) = (u+v)+w.

Fortunately for us, we don’t have to worry about this axiom: since Us(R) is a subset of Ms(R),
every vector in Up(R) is also in M3(R). Of course, we know that M2 (R) is a vector space, so the
rule

u+(v+w)=(u+tov)+w

works for all vectors in Mo (R)-including all of the vectors in Us(R). Thus we don’t have to check
axiom 4-since Us(R) is a subset of Mj(R), its vectors “inherit” the behavior of the vectors in

Ms(R).

Key Point. If we wish to determine if the set U forms a vector space with the operations of
addition and scalar multiplication, and recognize that all of the vectors in U are also vectors in a
(perhaps larger) set V' known to be a vector space, then the vectors in U will automatically obey
many of the vector space axioms. Thus we will not have to check every single axiom to determine
whether or not U is a vector space.
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The point above leads to a question: if we do recognize the set U as a subset of a known vector
space V', what axioms do we need to check to determine whether or not U is a vector space? The
following theorem answers this question:

Theorem 1.34. A subset U of the vectors of a vector space V is a subspace of V' (and thus a
vector space in its own right) if and only if the following conditions are satisfied:

1. Additive Identity: 0 € U

2. Closure under Addition: u,v e U = u+veU

3. Closure under Scalar Multiplication: Ae F,ue U — e U

Again, the theorem says that, if a subset U of a vector space V' is nonempty and closed under

the operations of addition and scalar multiplication, then we are guaranteed that U is a subspace
of V', and thus a vector space itself.

Proof. — If U is a subspace of V, then U is a vector space itself and clearly satisfies all of the
properties.

<= On the other hand, we must show that, if U satisfies the conditions, then it satisfies all
of the vector space axioms. We discuss each one below:

1. Closure under Addition: Follows by assumption.
2. Closure under Scalar Multiplication: Follows by assumption.

3. Commutativity: Inherited from V', since every vector in U is also in V', and the operations
are identical.

4. Associativity: Inherited from V.
5. Additive Identity: Follows by assumption.

6. Additive Inverse: If u € U, we must guarantee that —u is as well. Since (—1)u € U by
assumption and (—1)u = —u, additive inverses are always in U.

7. Multiplicative Identity: Inherited from V.
8. Distribution of Scalar Multiplication over Vector Addition: Inherited from V.
9. Distribution of Scalar Multiplication over Scalar Addition: Inherited from V.

Thus U satisfies all of the properties, and is a vector space in its own right; it is therefore a
subspace of V.

Returning to the example above of the set Us(R) of all real upper triangular 2 x 2 matrices,
and the vector space Ma(R) of all real 2 x 2 matrices, it is now clear that U2(R) is subspace of
My (R)-we know that:
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1. The 2 X 2 zero matrix is upper triangular;
2. The sum of two upper triangular matrices is upper triangular, and that
3. The scalar product of an upper triangular matrix with a real number is upper triangular.

The theorem says that, since we know that Us(R) is a subset of M2(R), and that Msy(R) is
itself a vector space, these are the only three conditions we need to check to be certain that Us(R)
is a vector space, as well.

Examples of Subsets that are Subspaces

Example 1

Let W be the set of all vectors in R? of the form
(x,z+ z,2).

For example,
(1,4,3)

is a vector in WW. Three such vectors are graphed below in R3:

All of the vectors from W “cover” the orange plane included in the graph below:
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You can think of W as the yellow plane; clearly every vector in W is also in R3, but not every
vector in R3 is in W-for example, the vector (5, —5,1) graphed in blue below:

Since W is clearly a subset of the vector space R3, we would like to know if W, equipped with
the usual addition and scalar multiplication, is a subspace of R®. According to the theorem, we
simply need to check that:

1.0ew
2. If u and v are vectors in W, then u + v is a vector in W.

3. If X is a scalar and u is a vector in W, then Au is a vector in W.
Let’s check:

1. 0 € W: Clearly

has the right form and is in W.
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2. If u and v are vectors in W, then u + v is a vector in W: Let
u=(x1,21 + 21,21) and v = (x2, T2 + 22, 22).
We need to check and see if the vector u + v is also in W, so let’s add the vectors:

u+v = <x1,$1+21,21>+<x2,xg+22,22>
= <$1+x2,$1+21—|—$2+22,21+22>
= (z1 + x9, (r1 + x2) + (21 + 22), 21 + 22).

Notice that the second coordinate of the vector w + v is the sum of the first and third
coordinates; so u 4+ v obeys the rule for W, and is indeed a vector in W.

3. If X is a scalar and u is a vector in W, then Au is a vector in W: With
u = (1,21 + 21, 21),
we need to calculate Au:

A = Mz, + 21, 21)
= </\ﬂ§1,)\($1 + 21),)\2’1>
= </\a:1,)\x1 + kzl,)\21>.

Again, we see that the second coordinate of the vector Au is the sum of the first and third
coordinates, and is thus a vector in W.

Since W passes all of the tests of the theorem, it is a subspace of R3.

Example 2

In the previous section, we saw that the set R(—o00,00), whose vectors are real-valued functions
defined on (—o0, ), is a vector space. I claim that the subset C'(—o0, 00) of continuous real-valued
functions is a subspace of R(—o00, 00).

Of course, this claim is quite easy to check: we know from calculus that the sum f(z) + g(z)
of two continuous functions is also a continuous function, as is the product Af(z) of a scalar and

a continuous function. In addition, the function 0 is continuous; thus C(—o00,00) is a subspace of
R(—00, 00).
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Example 3

Recall that the transpose of a 2 x 2 matrix

X — (3011 3312) is XT = <$11 3621) ‘
T21 T22 Ti2 22
Let X be a 2 x 2 matrix that equals its transpose, i.e. X = X ; recall that such matrices are
referred to as symmetric. In terms of a formula, we see that

T T T T
x = (T T2 _ (T P2 _ XT,
T21 T22 T12 T22
so that we must have 19 = x97.
For example, given the matrix

we see that

so that X is symmetric.

Let S2(F) be the set of all 2 x 2 matrices with entries in F that equal their transposes, i.e. all

of the matrices of the form
X — Tl T12 '
Ti2 T22

Clearly this is a subset of the vector space My(F) of all 2 x 2 matrices, and I claim that Ss is
actually a subspace of Mo (TF).
To verify that S5 is a subspace, we once again check the three conditions of the theorem:

0 0\ [0 0
00 —\0 0/
2. Closure under addition: Let

X — <9511 9012) and Y = <y11 y12> _
T12 X22 Y12 Y22
We need to be certain that the vector X + Y is also in Sp; in other words, that (X +Y)" =

X 4+Y. Fortunately, there is a quick way to do this: we learned earlier in the course that, for
any pair of matrices whose sizes are amenable for addition,

1. 0 € Ss: Clearly 0 is symmetric:

X4+)T=xT+vT.
Now since our X and Y are in Ss, so that

X=X"andY=Y"T,
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we see that

xXT+y"
= X4V

(X+Y)T

So we see that
(X+Y)T =X+Y,

so that X +Y is a vector in Ss, as required.

3. Closure under scalar multiplication: Again, the calculation here is quite easy to make. We
wish to be certain that AX is a vector in Ss, i.e. that

(AX)" =X,

Of course, we know that scalars are unaffected by taking transposes, so that
AX)T =X,

Together with the fact that X itself is in Sp, X = X T, we have

Ax)" = axT
= \X,

so that AX is a vector in Ss.

Since the elements of Sy satisfy the requirements of the theorem, Ss is a subspace of My, and
a vector space in its own right.

Example 4

Recall that the trace of a square matrix is the sum of its diagonal entries.
Let s[(2,R) be the set of all matrices in Ms(R) with trace 0. For example,

01 5 7 q -1 1
4 0) \=3 —5) " \-1 1
are all vectors in s[(2,R).

I claim that s[(2,R) is a subspace of M3(R). Again, we check the conditions of the theorem:
1. 0€sl(2,R): Clearly tr0 = 0.

2. Closure under addition: Since X, Y € sl(2,R), say
X — (1711 $12> Y = <y11 y12) :
T21 T22 Y21 Y22

7
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we know that
211 + 299 = 0 and y11 + yoo = 0.

Since the diagonal entries of X + Y are
711 + y11 and T2 + Y22,
we see that

tr(X+Y) = x4y + 222 + y2
T11 + X22 + Y11 + Y22

so that X +Y € sl(2,R).
3. Closure under scalar multiplication: Similarly,

tr (kX) = kxi + kxoe
= k(z11 + z22)
- k-0
= 07

so kX € sl(2,R) as required.

Remark. The last example actually illustrates some important properties of the trace function
that we will not discuss in detail-namely, that tr (A + B) = tr A+ tr B, and that tr (kA) = k- tr A.

Examples of Subsets that are Not Subspaces

Example 1
Let W be the set of all vectors in R2 of the form

(x,1).

W is clearly a subset of R? (in fact, it is the horizontal line at y=1); however, it is not not a subspace
of R?, since the sum
(z,1) + (y,1) = (x +y,2)

of any pair of vectors in W will have a 2 as its second coordinate, thus will not be an element of
w.
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Example 2

Let W be the set of all 3 x 3 matrices with determinant 1. Even though this set is a subset of
M3(C), it is definitely not a subspace, as it fails the second condition of the theorem: If A\ is a
scalar and u is a vector in W, then \u is a vector in W.

As an example, consider the determinant 1 matrix

1
I=10
0

o = O

0
0| ew.
1

Clearly iI is not a determinant 1 matrix-indeed, you should check that det(il) = —i. Thus W fails
the third condition of the theorem.

Sums of Subspaces

We can use subspaces of a vector space to build more subspaces; one way to do so is by creating a
sum of subspaces.

Definition 1.36. Let U, U, ..., U, be subspaces of a vector space V. The sum of Uy, Us, ...,
U, is the set of all possible sums of elements of the subspaces Uy, Us, ..., U,; we write
U1—|—U2+...+Un:{u1+uQ+...+un ‘ up € Ur, ug € Uy, ..., unGUn}.

Remark. As we begin to think about sums of subspaces, it is important to note exactly what
types of objects live in the sum: note that Uy +Us+ ...+ U, is a set of vectors; every vector in this
set is made up of sums of vectors from the component subspaces. So at the very least, we know
that the set Uy + Us 4 ... + U, is a subset of some of the vectors of the ambient vector space V.

Example. Let V = R3, the vector space of all triplets of real numbers, which we think of ge-
ometrically as three-dimensional space, with the usual operations of vector addition and scalar
multiplication.
It is easy to check that
U, re R}
U, :{ ‘t € R}

are both subspaces of V' (indeed, you should check using the theorem).
We plot the two subspaces below, U; in red and U; in blue:

Il
—
O 3

<

and

N+ +~ O
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We are going to build the sum U; + Us of the two vector spaces; before investigating it in
general, let’s think about a few examples of vectors in the set Uy + Us.
First of all, we know that 0 € Us, so for any vector u € Uy,

u+0=uecU +Us.

In other words,
Uy c Uy + Us.

Similarly,
Uy C Uy + Us.

However, the set U; + Us will contain many vectors that are in neither U; nor Uy. For example,
we know that

1 0
0l €eUyand | 2] € Uy
1 1

these two vectors are graphed below in red and blue respectively:

10
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Their sum

1 0
O)+12] =12
1 1 2

must also be a vector in U; + Us; the vector is graphed below in green:

At this point, you may have already guessed the punch line: U; 4 Us is the plane in R3 passing
through the two lines, since Uy + Us consists of all vectors of the form
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a parametric equation for a plane. The plane U; 4+ Us is graphed below:

You may have made another important observation about this example: U; + Uy is not merely
a subset of vectors from R3-it is a subspace of R3.

It turns out that the observation we made in the previous example is true in general, as indicated
by the next theorem:

Theorem 1.39. If Uy, Us, ..., U, are subspaces of a vector space V, then their sum U;+Us+. . .+U,
is also a subspace of V', and is the smallest subspace of V' containing all of Uy, Us, ..., U,.

Proof. Ezxercise.

Example. Let U; be the subspace of all diagonal matrices in M2(F), and U, be the subspace of
all upper triangular matrices in My (F). Describe the vector space U; + Us.
Let’s begin by describing the subspaces U; and Us in detail:

o di1 0
{5 )

12

dq1,d22 € C},
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and
. U1l U2
= ()

Thus the vector space Uy + Us consists of all matrices of the form

ui1 + din Uu12 ,
0 ugy +daa )’

but w11, di1, etc., were arbitrary in the first place, so Uy + Us merely consists of all upper triangular
2 x 2 matrices. That is,

U11, U2, U22 € (C}-

Uy + Uy = Us.

The last example is rather interesting: the sum of a pair of subspaces turned out to be the
larger subspace. This happened because U itself was actually already a subspace of Us, so we
didn’t create any “new” vectors by adding U; to Us.

Looking ahead, we will eventually want to avoid such sums, as they introduce unpleasant
ambiguities. For example, the vector

i 1414
<0 2 — z)

can be written in multiple ways as a sum of vectors in U; and Us: we could write

i l4d\ _ (i 00 (0 1+
0 2—i) \0 2—i 0 0
L) _ (=i 0 (2 140
0 2—-i) \0 —i 0o 2 )’

in both examples, the first summand is in U; and the second is in Us. There is no unique way to
decompose elements of the sum using the summands.

With this idea in mind, we define a special type of sum, the direct sum:
Definition 1.40. Let Uy, U, ..., U, be subspaces of a vector space V.

e The sum Uy +Us + ...+ U, is called a direct sum if each vector u in the sum can be written
uniquely as
U=U] +U2+ ...+ Up,

uy € Uy, ..., up € Uy,
o If the sum Uy + Us + ...+ U, is a direct sum, we write
UoUs & ...0U,,

where @ indicates that the sum is direct.

13
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Example. We have actually already seen an example of a direct sum; let V = R3,

r
Uy :{ 0 TER},
r
and
0
U2:{ t ‘tER}.
t
2

Earlier, we saw that the vector space U; + Uy can be described by

r,sER}.

r
U1—|—U2:{ t
7“+%

Every vector in Uy + Uy thus has form

r r 0
t =|0)+11t];
7“—1—% T %

clearly there is only one way to choose r and t. Thus the decomposition is unique; we may now
write

Uy e Us

to indicate that the sum is direct.

It would be helpful to have further criteria for testing whether or not a sum is direct; the next
theorem provides this to us:

Theorem 1.44. Let Uy, Us, ..., U, be subspaces of a vector space V. Then the sum Uy + Us +
...+ U, is direct if and only if the only way to write 0 as a sum of elements uy, ..., u, of Uy, ...,
U, respectively, is to choose u; = 0 for all .

Proof. = : If the sum is direct, then by definition the decomposition
O0=ui +us+ ...+ uy,

where u; € U;, is unique. Since 0 € U; for all ¢, we must have u; = 0, all 4.
<= On the other hand, let w € Uy + ... + Uy, and suppose that

u=up+...+u, and u =uj + ... +u,
are two decompositions of u, with uy,u} € Uy, ..., up,u), € U,. Consider the quantity

0 = u—u
= u ... tu, — W+ )
= (ug —ul)+ ...+ (uy —uy).

14
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Clearly u; — u} € U;; thus the equation
0= (u; —uy)+...4 (up —uyp)

is a decomposition of 0 into a sum of elements of Uy, ..., U,. By assumption, the only way to write
0 as a sum of elements of Uy, ..., U, is to choose u; — u; = 0. Thus u; = u’i, and the decomposition
of u is unique.

In certain cases, there is an even simpler way to determine whether or not a sum is direct.

Theorem 1.45. If U and W are subspaces of V, then U 4+ V is a direct sum if and only if
UnV ={0}.

Proof. Exercise.

We can illustrate the theorem graphically with the example we have inspected multiple times
in this section:

The red and blue lines above form subspaces of R3, and since their intersection is identically
{0}, their sum is direct (as we verified earlier).

It is tempting to think that the theorem could be generalized—namely, we might hope that
Ui + ...+ Uy, is a direct sum if and only if U; N U; = {0} whenever i # j. Unfortunately, this
condition is not enough to guarantee that the sum is direct, as indicated by the following example.

15
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Example. The vector space Us(R) of all 2 x 2 upper triangular matrices with real entries has

subspaces
ae{ s Jrer)
0 z
_J (Y ¥
ae{ ¢ )
and
00
w={ (¢ - en)

Now the intersection of any pair of of subspaces is {0}; for example, if u € U; N Uy, say

w— (M1 U2
0 u29 ’
then uge = 0 since u € Us; then since uge = 0, we must have u1; = w13 = u9g = 0 since u € Uj.

However, the sum U; + Us + Us is not direct; in particular, it is easy to decompose 0 as a sum
of nonzero elements of Uy, Us, and Us, say as

b o) =l )+ (0 )6 )

16



