
Unit 2, Section 1: Introduction to Vector Spaces

Vector Spaces

In your Calculus courses, you discussed many of the special properties that are shared by the
different versions of Euclidean space, such as the plane (R2), three dimensional space (R3), etc. We
saw that, across the different varieties of Euclidean space, vectors, the objects which make up the
spaces, behave virtually the same way. For example, we know that vector addition is commutative,
that is

u+ v = v + u,

regardless of whether u and v are vectors in R2, R5, or even R100.
Euclidean space is our motivation for the definition of a vector space. In this section, we will

introduce the idea of vector spaces and see that such spaces share a great deal of algebraic and
geometric structure with Euclidean space.

Definitions 1.18-1.19. A vector space V over a field F is a set V of objects call vectors, along
with two operations defined on V :

1. Closure of V under addition: the operation “+” assigns a vector u+ v in V to every pair
u, v of vectors in V .

2. Closure of V under scalar multiplication: the operation of scalar multiplication assigns
a vector λu to every pair λ, u, where λ is an element of F and u is a vector in V .

The operations of vector addition and scalar multiplication must satisfy the following rules:

3. Commutativity: u+ v = v + u ∀ u, v ∈ V

4. Associativity: (u+ v) + w = u+ (v + w) ∀ u, v, w ∈ V

5. Additive Identity: There is an element 0 in V , called the zero vector, so that

u+ 0 = 0 + u = u

for every u ∈ V .

6. Additive Inverse: For each elemnt u in V , there is another element w in V , called an
additive inverse of u, so that u+ w = 0.

7. Multiplicative Identity: The number 1 ∈ F has the property that 1u = u for all u ∈ V .

8. Distribution of Scalar Multiplication over Vector Addition: α(u+ v) = αu+ αv for
all u, v ∈ V , all α ∈ F.

9. Distribution of Scalar Multiplication over Scalar Addition: (α + γ)u = αu+ γu for
all u ∈ V , all α, γ ∈ F.

Remark 1. In this class, our scalars will always be elements of C or of R, that is either complex
or real numbers. When we need to distinguish between the two, we will refer to a particular vector
space as a vector space over C or as a vector space over R. We will write F to indicate either C or
R when it is not necessary to draw a distinction.
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Remark 2. We will not have time in this course to discuss the precise definition of a field (although
you would certainly encounter the definition in a second course in abstract algebra). For our
purposes, it is enough to know that R and C are fields; both have an addition operation as well as
a multiplication operation, and these operations obey a number of useful rules.

Remark 3. You should be careful to note that the definition above of a vector space does not
specify the way in which “addition” works, and when we discuss a particular space, we will need
to note exactly what we mean by “+”.

Examples of Vector Spaces

Throughout the rest of this class, you will need to become comfortable with determining whether or
not a set forms a vector space under the given operations of addition and scalar multiplication. To
be technically correct, you must check that the set satisfies all of the conditions from the definition
before you can be certain that the set is indeed a vector space.

In practice, however, we will often check just a few of the properties, as checking all of them
will take an abundance of time that could be better spent on other topics.

Example 1: Rn

Let Rn be the set of all n-tuples of the form 
x1
x2
...
xn

 ,

where each xi is a real number. Define addition using usual vector addition, that is
x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 ,

and scalar multiplication by

λ


x1
x2
...
xn

 =


λx1
λx2

...
λxn

 .

It is quite easy to check that Rn is a field over R. Let’s briefly discuss the required properties:
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1. Closure under addition: Rn is clearly closed under addition: the sum of two vectors is
another vector in Rn.

2. Closure under scalar multiplication: again, Rn is clearly closed under the operation: the
product of a real number and a vector is another vector in Rn.

3. Commutativity: Since addition of real numbers is commutative, we see that Rn has the
commutative property as well:

x+ y =


x1
x2
...
xn

+


y1
y2
...
yn



=


x1 + y1
x2 + y2

...
xn + yn



=


y1 + x1
y2 + x2

...
yn + xn



=


y1
y2
...
yn

+


x1
x2
...
xn


= y + x.

4. Associativity: The reasoning for associativity is similar to that for commutativity–real
number addition is associative.

5. Additive Identity: The 0 vector in Rn is

0 =


0
0
...
0

 ;

it is easy to check that x+ 0 = x for every vector x ∈ Rn.

6. Additive Inverse: Given

x =


x1
x2
...
xn

 ∈ Rn,
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I claim that

−x :=


−x1
−x2

...
−xn


is an additive inverse. We can check the claim by showing that x+ (−x) = 0:

x+ (−x) =


x1
x2
...
xn

+


−x1
−x2

...
−xn



=


x1 − x1
x2 − x2

...
x1 − xn



=


0
0
...
0


= 0.

7. Multiplicative Identity: We need to check that 1x = x for every vector x ∈ Rn (where 1
indicates the number 1 in R):

1


x1
x2
...
xn

 =


1 · x1
1 · x2

...
1 · xn



=


x1
x2
...
xn


= x.

8. Distribution of Scalar Multiplication over Vector Addition: Easy to check.

9. Distribution of Scalar Multiplication over Scalar Addition: Also easy to check.

Since Rn satisfies all of the properties from the definition, it is a vector space over R.
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Remark 4. Having seen our first example of a vector space, it is a good time to point out that we
generally need to specify the field over which we are working. In particular, Rn is a vector space
over R, but it is not a vector space over the field C.

To understand why not, think for a moment about scalar multiplication; given a vector x in
Rn, the scalar product of i ∈ C with x is a vector ix whose entries are complex numbers; that is,
ix 6∈ Rn.

Example 2: Cn

The set Cn of all n-tuples of complex numbers, with the standard vector addition and scalar
multiplication as defined above, is also a field. It is interesting to note that Cn is a field over R, as
well as over C.

Example 3: Mmn(F)

The set Mmn of all m × n matrices with entries from F is a vector space over F, with the usual
operations of matrix addition and scalar multiplication. We write Mn(F) to refer to the vector
space of all n× n matrices.

Example 4: The set of all polynomials of at most degree n with coefficients in F

Recall that an nth degree polynomial is a function of the form

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

where each of the constants ai is a number in F, and an 6= 0.
The set Pn(F) of all polynomials of at most degree n is a vector space over F, with the usual

polynomial addition and scalar multiplication as its operations. So objects like

p1(x) = ix5 − 12x, p2(x) = 4x2 − ix+ 1, and p3(x) = 0

are all vectors in, say, P5(C), and we can easily add them:

p1(x) + p2(x) = ix5 − 12x+ 4x2 − ix+ 1 = ix5 + 4x2 − (12 + i)x+ 1.

Multiplication of p1(x) by the scalar −i looks like

−ip1(x) = −i(ix5 − 12x) = x5 + 12ix.
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Example 5: The set of all real-valued functions

Let R(−∞,∞) denote the set of all functions f(x) defined on the interval (−∞,∞) whose outputs
are real numbers.

Given a pair f and g of functions in R(−∞,∞), we define the addition operation by setting
f + g equal to the function that evaluates to f(x) + g(x), that is

(f + g)(x) = f(x) + g(x).

The scalar multiple kf is the function defined by its evaluation at x by the rule

(kf)(x) = kf(x).

R(−∞,∞) is a vector space over R.

Example 6: The set of 2× 2 upper triangular matrices

Let U2 be the set of all upper triangular 2× 2 matrices with entries in F, i.e. the set of all matrices
of the form (

u11 u12
0 u22

)
.

It is not too hard to verify that this set, together with the usual operations of matrix addition and
scalar multiplication, is a vector space over F.

Let’s quickly verify axioms 1 and 2:

1. Closure under addition: if u and v are in U2, they must be 2×2 upper triangular matrices,
of the form

u =

(
u11 u12
0 u22

)
and v =

(
v11 v12
0 v22

)
.

We should check to see if their sum is also a 2× 2 upper triangular matrix:

u+ v =

(
u11 u12
0 u22

)
+

(
v11 v12
0 v22

)

=

(
u11 + v11 u12 + v12

0 u22 + v22

)
,

which is clearly an upper triangular 2× 2 matrix; thus U2 is closed under addition.

2. Closure under scalar multiplication: Given a matrix

u =

(
u11 u12
0 u22

)
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from U2 and any scalar k, we need to make sure that ku is also in U2:

λu = λ

(
u11 u12
0 u22

)

=

(
λu11 λu12
0 · λ λu22

)

=

(
λu11 λu12

0 ku22

)
,

another upper triangular 2 × 2 matrix with entries in F. Thus U2 is closed under scalar
multiplication.

In order to be certain that U2 is a vector space, we should check the remaining vector space
properties; however, the process is tedious and we will skip it in the notes. U2 does indeed pass all
of them, thus is a vector space.

Examples of Sets That are Not Vector Spaces

Example 1: Integers with the usual addition and scalar multiplication

The set Z of all real integers, equipped with the normal notions of addition and scalar multiplication,
is not a vector space over the real numbers. The main problem here is axiom 2, closure under scalar
multiplication.

For example, the number 4 is an element of Z, but not all of its scalar multiples are; choosing
scalar λ = 1/5, we see that

λ · 4 =
4

5
,

which is not an element of the set Z of all real integers.

Example 2: The set of all degree 5 polynomials

Earlier in this section, we saw that of the set Pn(F) of all polynomials of degree at most n is a
vector space over F; we considered P5 in particular. I claim that the set of all polynomials with
degree exactly 5 with the usual polynomial addition and scalar multiplication is not a vector space.

To be clear, this set consists of all polynomials of the form

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0,
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where a5 6= 0 and each of the other ai can be any number in F. So elements of this set look like

2.5x5 − 3x, x5 + x4 + 1, and − x5;

but the following polynomials are not in the set, since they do not include a degree 5 term:

x3 − 1, 5x4, and 0.

You may have already guessed why this set is not a vector space–it fails to be closed under
addition.

To see why this is the case, consider the elements p = x5 − x4 and r = −x5. Both are degree 5
polynomials, thus in our set, but their sum

p+ r = x5 − x4 − x5 = −x4

is most definitely not a degree 5 polynomial, thus not in the set. Thus the set of all degree 5
polynomials is not a vector space with the given operations.

Uniqueness of Identity and Inverses

We should take a moment to investigate the ideas of identity and additive inverse a bit more closely.
Specifically, the definition above for a vector space does not decree that there is a single identity
element; indeed, there could potentially be several vectors in a given vector space that act like the
identity.

Fortunately, it turns out that this is not the case: the additive identity is unique, as indicated
by the following theorem:

Theorem 1.25. The additive identity 0 in V is unique.

Proof. Suppose that there are two elements 0 and 0’ of V which act as additive identity, that is

v + 0 = v and v + 0’ = v ∀ v ∈ V.

In particular,
0 + 0’ = 0

since 0’ is an additive identity; but
0 + 0’ = 0’

using the same reasoning. Thus
0 = 0 + 0’ = 0’,

so that the additive identity is unique.

Along similar lines of reasoning, we might be concerned about the uniqueness of additive in-
verses. That is, is it possible that two different elements v and w of vector space V can “cancel”
the same vector u:

u+ v = 0 and u+ w = 0?
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Again, the vector space axioms prevent this ambiguity from becoming an issue, as indicated by
the following theorem:

Theorem 1.26. Every element u of a vector space V has a unique additive inverse.

Proof. Suppose that v and w are both additive inverses of u, that is

u+ v = 0 and u+ w = 0.

Then

u+ v = u+ w

v + (u+ v) = v + (u+ w)

(v + u) + v = (v + u) + w

0 + v = 0 + w

v = w.

Thus the additive inverse of an element u of V is unique.

Since additive inverses are unique, we will use special notation to indicate the additive inverse
of a particular element:

u has additive inverse − u.

We may now use notation such as
v − u

to indicate
v − u = v + (−u).

Properties of the Vector 0 and Scalars 0 and 1

Given our knowledge of number arithmetic and the properties of R and C, we tend to take several
properties of the 0 vector and scalars 0 and 1 for granted. However, since we are working with
new, abstract mathematical objects–vector spaces–we should confirm that these objects actually
do behave the way that we expect them to.

We know that the number 0 is the “annihilator”: it zeros out every other number under the
multiplication operation. It turns out that 0 behaves in a similar fashion when combined with
vectors under scalar multiplication:

Theorem 1.29. Given any vector u ∈ V , 0u = 0.
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Proof. Using properties of number arithmetic, we know that

0u = (0 + 0)u

= 0u+ 0u.

Now the vector 0u has a unique additive inverse, −0u; adding this vector to both sides of the
equation, we see that

0u− 0u = (0u+ 0u)− 0u

= 0u+ (0u− 0u)

= 0u+ 0

= 0u.

We see that
0 = 0u− 0u = 0u,

proving the theorem.

In keeping with the ideas above, it turns out that the vector 0 has a similar property to the
number 0 under scalar multiplication:

Theorem 1.30. Given any scalar λ in F,

λ0 = 0.

Proof. Given λ in F and u ∈ V , we know that

λu = λ(u+ 0)

= λu+ λ0;

but using the unique additive inverse −λu of λu, we see that

λu = λu+ λ0

implies that

λu− λu = λu+ λ0− λu
0 = λu− λu+ λ0

0 = 0 + λ0

0 = λ0,

proving the claim.
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Finally, we make concrete the relationship between the additive inverse −u of vector u, and the
element (−1)u:

Theorem 1.31. Given any vector u ∈ V , (−1)u = −u.

Proof. Additive inverses are unique, so we merely need to prove that (−1)u is the additive inverse
of u. Clearly

u+ (−1)u = (1− 1)u

= 0u

= 0.

Thus (−1)u is the additive inverse of u, that is

(−1)u = −u.

Again, we note that Theorem 1.31 expands the role of the number −1 to apply to vector spaces:
in the world of numbers, of course, we know that (−1)a is the additive inverse of a. The same
reasoning applies to vectors in a vector space.
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