
Unit 1, Section 8: Systems of Linear Equations

Introduction to Linear Systems

The equations

x + 1
3y = 1,

2x− y + z = 2, and

3w + x + y + 2z = 0

have a common feature: each describes a geometric shape that is “linear”. Upon rewriting the first
equation x + 1

3y = 1 as y = 3 − 3x, it is clear that this equation in two variables describes the
(two-dimensional) line graphed below:

Using similar reasoning, we rewrite the equation 2x−y+ z = 2 as z = 2−2x+y, and recognize
this equation in three variables as the equation of a plane (a sort of three-dimensional analogue of
a line), graphed below:

Unfortunately, the equation 3w + x+ y + 2z = 0 is in four variables, thus describes a geometric
shape in four-dimensional space. However, this equation is similar enough to the previous two that
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we can get some feel for its “shape”: the equation describes a “linear” structure in four-dimensional
space, which we refer to as a hyperplane.

Linear equations are intimately tied to both matrices and vector spaces, thus we we will spend
several sections studying them. We begin by defining exactly what we mean by a linear equation.

Definition. A linear equation in the n variables x1, x2, . . . , xn is an equation which can be written
in the form

a1x1 + a2x2 + . . . + anxn = b,

where b and each of the coefficients a1, a2, . . . , and an are real or complex numbers.
If b = 0, i.e. the equation has form

a1x1 + a2x2 + . . . + anxn = 0;

we say that such a system is homogeneous.

There are a few quick things to note about how we use the definition to test an equation for
linearity:

1. Each variable is “linear” in the sense that it is raised to the first power, and not to any other
power.

2. Each variable must have constant coefficients, and not variable coefficients.

Example. The equation √
2x1 − i = x2

4 + x3

is linear in the variables x1, x2, and x3, since it can be rewritten as

√
2x1 − x2

4 − x3 = i;

note that each variable has a number as its coefficient, and each variable is raised to the first power.

Example. The equations
x1x3 + x2 = 0

and
x2 + y2 = 9

each fail to be linear in their variables. The first equation is non-linear in variables x1, x2, and x3
because the coefficient of x1 is the variable x3. The second equation is non-linear in variables x
and y because each variable appears to the second power.
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An important point to take away from the definition is that a linear equation in n variables has
geometric realization as an n dimensional linear structure.

For example, a linear equation in two variables can be written as a1x1 + a2x2 = b, which is
clearly the equation of a line; a linear equation in three variables has form a1x1 + a2x2 + a3x3 = b,
which is the general form for the equation of a plane in three-dimensional space. Linear equations
with more variables simply describe linear structures in higher dimensional space.

Systems of Linear Equations and Their Solutions

Definition. A system of linear equations is a collection of equations in the same variables.

For example,

3x− y = 5

2x + y = −10

is a system of two equations in the two unknowns x and y.
The general form for a system of m linear equations in n variables x1, x2, . . . , xn is

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
... (1)

am1x1 + am2x2 + . . . + amnxn = bm

Definition. A solution to a system of linear equations in n variables is a list of n numbers that,
when substituted for the variables in the equations, make the equations true simultaneously.

We can check that x = −1, y = −8 is a solution to the system

3x− y = 5

2x + y = −10

by substituting x = −1 and y = −8 in the appropriate positions:

3(−1)− (−8) = −3 + 8 = 5

and
2(−1) + (−8) = −2− 8 = −10,

so clearly x = −1, y = −8 make the equations true simultaneously.
A slightly more succinct way to write the solution above is as the ordered pair (−1,−8). In

general, if s1, s2, . . . , sn are numbers so that

x1 = s1, x2 = s2, . . . , and xn = sn
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is a solution to the system in (1), then we will write this solution as the ordered n-tuple

(s1, s2, . . . , sn),

or in “vector” form as 
s1
s2
...
sn

 .

In order to truly understand what a solution to a system of equations means, it is helpful to
return to the geometric reasoning we introduced earlier. Recall that the equations 3x− y = 5 and
2x+y = −10 each have geometric realization as lines in two-dimensional space. The lines described
by the equations are graphed below:

Recall that we called the list (−1,−8) a solution to the system. Geometrically, this means that
the point (−1,−8) satisfies both equations; so (−1,−8) must lie on the line 3x − y = 5, as well
as on the line 2x + y = −10. In other words, the solution is the point of intersection of the two
equations, which is clear from the graph above.

Key Point. A solution to a system of equations is just a description of the points that the graphs
of the equations have in common.
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Example. The system

x + y = 2

x + 2y − z = 4

3x− z = 0

has solution x = 0, y = 2, z = 0 (or (0, 2, 0)).
The graph of each of the equations above is a plane in three-dimensional space, as indicated

below:

Notice that the solution (0, 2, 0) is the unique point which lies on each of the three planes.

Example. Of course, a solution to a system doesn’t have to be a single point. Consider the system
we get by deleting the first equation in the system from the previous example:

x + 2y − z = 4

3x− z = 0

Let’s attempt to describe the form of a solution to this system using geometric reasoning. The
graphs of the equations above are below:
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Notice that, in this case, the graphs intersect in infinitely many points, in particular on the
line graphed in black above. Indeed, the solution to the system can be written as (t, 2 + t, 3t), a
parametric description of the line.

Example. There is one more interesting type of behavior that we may observe from a system, as
illustrated by the following example. The graphs of the equations in the system

x1 − 2x2 = 4

−1
2x1 + x2 = 5

are both lines, which clearly have the same slope. In other words, the lines are parallel; it is clear
from their graphs below that the lines do not intersect:

Thus it is clear that the system has no solution.

In order to differentiate between systems that can be solved, and systems that can not be solved,
we record the following definition:

Definition. A system is called inconsistent if it has no solution; otherwise, the system is consistent.

Key Point. So far, we have seen three distinct possibilities for the solution to a system of equations:

1. A unique solution (consistent)

2. Infinitely many solutions (also consistent)

3. No solution (inconsistent).

It turns out that these are the only possibilities for the solution set to a system of linear
equations:

Theorem. A system of m linear equations in n unknowns, 0 < m,n <∞, has either no solution,
a unique solution, or infinitely many solutions.

6



Unit 1, Section 8: Systems of Linear Equations

Proof. Consider the system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm.

Without loss of generality, we may assume that, for each i, there is at least one j so that aij 6= 0,
and for each j, there is at least one i so that aij 6= 0. Thus each equation has at least one nonzero
term, and each variable appears at least once with nonzero coefficient.

Suppose that the system has at least two solutions, say

(s1, s2, . . . , sn) and (s′1, s′2, . . . , s′n).

In other words,

bi = ai1s1 + ai2s2 + . . . + ainsn

= ai1s
′
1 + ai2s

′
2 + . . . + ains

′
n

for all i, 1 ≤ i ≤ m.
Thus we have

0 = ai1s1 + ai2s2 + . . . + ainsn − (ai1s
′
1 + ai2s

′
2 + . . . + ains

′
n)

= (s1 − s′1)ai1 + (s2 − s′2)ai2 + . . . + (sn − s′n)ain

for all i; and since the original solutions are different, there is at least one j so that sj − s′j 6= 0.
Now for all i, 1 ≤ i ≤ m, and any parameter t, we see that

0 + bi = t

(
(s1 − s′1)ai1 + (s2 − s′2)ai2 + . . . + (sj − s′j)aij . . . + (sn − s′n)ain

)
+

(
ai1s1 + ai2s2 + . . . + ainsn

)
=

(
t(s1 − s′1) + s1

)
ai1+

(
t(s2 − s′2) + s2

)
ai2 + . . .+

(
t(sn − s′n) + sn

)
ain.

Thus the list (
t(s1 − s′1) + s1, t(s2 − s′2) + s2, . . . , t(sn − s′n) + sn

)
is a solution to the system for all t; since sj − s′j 6= 0, the jth coordinate of the solution is a
nonconstant linear function. Thus each solution is unique, so that the system has infinitely many
solutions.
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Solving Systems of Linear Equations

Now that we know what types of solutions we might encounter when faced with a particular
system of equations, we should discuss methods for actually finding these solutions. There are
ad-hoc techniques for solving systems, but the solution method that will work most reliably stems
from an encoding of the system in matrix form. Thus we introduce the idea of the matrix of a
linear system.

The Matrix of a Linear System

Let us briefly recall the definition of am m× n matrix:

Definition. An m × n matrix is an array of mn numbers arranged in m (horizontal) rows and n
(vertical) columns; such a matrix has form

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 ,

where each aij is a number in the ith row and jth column.

As mentioned above, we will be able to use matrices to solve linear systems; the first step in
doing so is to understand how we can use a linear system to build an appropriate matrix:

Definition. The linear system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm

has augmented matrix 
a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2
...

. . . |
...

am1 am2 . . . amn | bm

 .

For example, the system

x1 + x2 = 2

x1 + 2x2 − x3 = 4

3x1 − x3 = 0

8



Unit 1, Section 8: Systems of Linear Equations

has augmented matrix 1 1 0 | 2
1 2 −1 | 4
3 0 −1 | 0

 .

The augmented matrix we created above has encoded the data from the linear system; let’s
investigate this concept in more detail. First of all, we should notice that the rows of the augmented
matrix correspond to equations in the system. For example, row 1 corresponds to equation 1: 1 1 0 | 2

1 2 −1 | 4
3 0 −1 | 0

→ 1x1 + 1x2 + 0x3 = 2.

Second, it is important to note that columns of the augmented matrix correspond to coefficients
of a particular variable from the system. For example, the second column of the augmented matrix
encodes the coefficients of x2 from the original system:1 1 0 | 2

1 2 −1 | 4
3 0 −1 | 0

→ x1 + 1x2 + 0x3 = 2
x1 + 2x2 − x3 = 4
3x1 + 0x2 − x3 = 0.

If we are told that a matrix is the augmented matrix of a system, it is quite simple to recover
the system. For example, suppose that we know that the matrix1 0 0 4

0 1 0 3
0 0 1 1

2

 (2)

is the augmented matrix for a system. In order to recover the system, we begin by noting that the
system must consist of 3 equations, one corresponding to each row.

Consider the first row of the augmented matrix:(
1 0 0 4

)
.

The first three entries of the row correspond to coefficients of the system’s variables, while the last
entry is the constant on the right-hand side of the equation’s equality. Thus equation corresponding
to the first row of the matrix is

x1 + 0x2 + 0x3 = 4.

Similarly, the second row (
0 1 0 3

)
of the augmented matrix must correspond to the equation

0x1 + x2 + 0x3 = 3;

the last row (
0 0 1 1

2

)
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corresponds to the equation
0x1 + 0x2 + x3 = 1

2 .

So the system of equations corresponding to the augmented matrix in (2) is

x1 + 0x2 + 0x3 = 4

0x1 + x2 + 0x3 = 3 (3)

0x1 + 0x2 + x3 = 1
2 .

As mentioned above, the matrix in (2) is really just a convenient way to encode the data from
the system in (3).

Incidentally, this particular system is already solved: clearly

x1 = 4, x2 = 3, and x3 = 1
2 ;

indeed, we could have simply looked at the system’s augmented matrix to determine this solution!

Elementary Row Operations

In order to use the matrix of a linear system to solve the system, we will need one more tool, known
as the elementary row operations.

Elementary Row Operations:

• Multiply any row by a non-zero constant

• Interchange any pair of rows

• Add or subtract a constant multiple of one row from another.

The following theorem indicates why we should care about elementary row operations when we
are solving linear systems:

Theorem. Suppose that the augmented matrix M of a linear system M is obtained from the
augmented matrix L of the linear system L by a finite sequence of elementary row operations on
L. Then M and L have the same solution set.

Again, it is important to emphasize that these three operations, while apparently changing the
form of a matrix, do not affect the solutions of the corresponding linear system, and thus we can
use these operations to our advantage when we wish to solve a system of equations.

Example. Given the system

x3 = 1
2

x1 + x2 = 7

x1 = 4,
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1. Find the augmented matrix for the system.

2. Apply elementary row operations to the augmented matrix to reduce it to the form of the
matrix in (2), 1 0 0 | 4

0 1 0 | 3
0 0 1 | 1

2

 .

3. Use the reduction to solve the system.

1. The augmented matrix for the system is quite easy to build–recall that each row of the system
corresponds to a row of the matrix, whose entries are the coefficients of the variables. Thus
the system

x3 = 1
2

x1 + x2 = 7

x1 = 4

has augmented equation 0 0 1 | 1
2

1 1 0 | 7
1 0 0 | 4

 .

2. In order to reduce the matrix above to the form1 0 0 | 4
0 1 0 | 3
0 0 1 | 1

2

 ,

let’s begin by noting that the last row of0 0 1 | 1
2

1 1 0 | 7
1 0 0 | 4


looks just like the desired first row; we can use the second elementary row operation, switching
rows, to start the reduction:0 0 1 | 1

2
1 1 0 | 7
1 0 0 | 4

 switch rows 1 and 3−−−−−−−−−→

1 0 0 | 4
1 1 0 | 7
0 0 1 | 1

2

 .

Now we see that the first and third rows have the right form, but row 2 is off. However, if we
use the third elementary row operation and subtract row 1 from row 2, we will move closer
to the desired form:
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1 0 0 | 4
1 1 0 | 7
0 0 1 | 1

2

 row 2-row 1−−−−−→

 1 0 0 | 4
1− 1 1− 0 0− 0 | 7− 4

0 0 1 | 1
2


=

1 0 0 | 4
0 1 0 | 3
0 0 1 | 1

2

 .

Notice that we have now reduced our original matrix to the one desired.

3. Above, I claimed that applying elementary row operations to a matrix does not change the
solutions to the corresponding linear system; we’ve already seen that the matrix1 0 0 | 4

0 1 0 | 3
0 0 1 | 1

2


implies solution

x1 = 4, x2 = 3, and x3 = 1
2 .

Since we got to this matrix from the original one via elementary row operations, their systems
should share solutions:

(4, 3, 12)

must be a solution to the system

x3 = 1
2

x1 + x2 = 7

x1 = 4.

Let’s verify the solution: clearly x1 = 4 and x3 = 1
2 are correct, so we only need to check

the second row of the equation, x1 + x2 = 7. We’ve claimed that x1 = 4 and x2 = 3, so the
second row does indeed check out, and

(4, 3, 12)

is a solution to the system.

The example above should give us some motivation as to how we will go about solving linear
systems; the general procedure is as follows:

1. Write the system’s augmented equation.

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one
whose solutions are easy to find).

3. Since elementary row operations do not alter solutions, the solutions found above are also
solutions to the original system.

The only tricky part about solving a system is the second step–determining a form for the
augmented matrix whose solutions are easy to find. We will focus on this step in the next section.
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