
Unit 1, Section 7: Invertibility and Properties of Determinants

Invertibility and Properties of Determinants

In a previous section, we saw that the trace function, which calculates the sum of the diagonal entries
of a square matrix, interacts nicely with the operations of matrix addition, scalar multiplication,
and matrix multiplication. We would like to know how the determinant function interacts with
these operations as well.

In other words, if we know detA and detB, can we use this information to find quantities such
as

det(kA), det(A + B), and detAB?

It turns out that the answers to the first and third questions are quite easy to find, whereas
(perhaps surprisingly), the answer to the second question is actually quite difficult, and is the topic
of much current research in linear algebra (including some of my own).

In this section, we will also answer the question we raised in section 6:

How can we tell whether or not a particular square matrix A has an inverse?

Determinants and Scalar Multiplication

Let’s think about the first question raised above: If we know the determinant of matrix A, can we
use this information to calculate the determinant of the matrix kA, where k is a constant?

Fortunately, there is an easy answer to this question:

Theorem. If A is an n× n matrix, and k is any constant, then

det kA = kn detA.

We cannot yet prove this theorem; we will investigate it in more detail once we have the right
tools.

Determinants and Matrix Addition

Our next question, about the relationship between det(A + B), detA, and detB, does not have a
satisfactory answer, as indicated by the following example:

Example

Let

A =

(
5 −6
0 −12

)
and B =

(
−3 0
1 9

)
.

Compare detA, detB, and det(A + B).

The determinants of A and B are quite simple to calculate, given that they are triangular
matrices: clearly detA = −60, and detB = −27. Now

A + B =

(
2 −6
1 −3

)
;
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since A+B is not a triangular matrix, we’ll need to revert to the formula for determinants of 2× 2
matrices to calculate det(A + B):

det(A + B) = det

(
2 −6
1 −3

)
= 2 · (−3)− (−6) · 1
= −6 + 6

= 0.

Gathering our data, we see that

detA = −60, detB = −27, and det(A + B) = 0.

Unfortunately, it appears that there is very little connection between detA, detB, and det(A+
B).

Key Point. In general,
detA + detB 6= det(A + B),

and you should be extremely careful not to assume anything about the determinant of a sum.

Nerdy Sidenote

One large vein of current research in linear algebra deals with this question of how detA and detB
relate to det(A + B). One way to handle the question is this: instead of trying to find the value
for det(A + B), find a region in the complex plane that we can be certain contains det(A + B). It
turns out that this is a rich question with many interesting and surprising answers. Some of my
own research relates to this question.

Determinants and Matrix Multiplication

Perhaps surprisingly, determinants of products are quite easy to compute:

Theorem. If A and B are n× n matrices, then

det(AB) = (detA)(detB).

In other words, the determinant of a product of two matrices is just the product of the deter-
minants. We are not yet ready for a proof of the theorem, but will return to it when we have the
proper tools.
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Example

Compute detAB, given

A =

(
5 −6
0 −12

)
and B =

(
−3 0
1 9

)
from the previous example.

According to the theorem above, there are two ways to handle this problem:

1. Multiply A by B, then calculate the determinant of the product.

2. Find determinants of A and B separately, then multiply them together to get the determinant
of AB.

Of course, it is easy to see that

detA = −60 and detB = −27,

so the second option is definitely easier here. By the theorem, we know that

det(AB) = (detA)(detB) = (−60)(−27) = 1620.

You should verify that this is the same answer that you would get if you were to first calculate
the product AB, then find its determinant.

Determinants and Invertibility

Several sections ago, we introduced the concept of invertibility. Recall that a matrix A is invertible
if there is another matrix, which we denote by A−1, so that

AA−1 = I.

For example, it is easy to see that the matrix

A =

−1 0 0
0 1

3
0

0 0 2


has inverse

A−1 =

−1 0 0
0 3 0
0 0 1

2

 .

In a sense, matrix inverses are the matrix analogue of real number multiplicative inverses. Of
course, it is quite easy to determine whether or not a real number has an inverse:

a has inverse
1

a
if and only if a 6= 0.

In other words, every real number other than 0 has an inverse.
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Unfortunately, the question of whether or not a given square matrix has an inverse is not quite
so simple. Certainly the 0 matrix

0n =


0 0 . . . 0
0 0 . . . 0
...

. . .

0 0 . . . 0


has no inverse; however, many nonzero matrices also fail to have inverses, such as(

1 0
0 0

)
.

So how can we determine whether or not a given square matrix does actually have an inverse?
The following theorem tells us that we need merely look at the determinant of the matrix in
question:

Theorem. A square matrix A is invertible if and only if detA 6= 0.

In a sense, the theorem says that matrices with determinant 0 act like the number 0–they don’t
have inverses. On the other hand, matrices with nonzero determinants act like all of the other real
numbers–they do have inverses.

Example

Determine if the following matrices are invertible:

1.

A =

3 0 1
1 1 0
1 0 1


2.

C =

(
2 −6
1 −3

)
1. As indicated by the theorem, we simply need to look at the determinant:

detA = det

3 0 1
1 1 0
1 0 1

 = 2.

By the theorem, we know that A is invertible.

2. The determinant of C is

det

(
2 −6
1 −3

)
= 0.

Again using the theorem, we know that C is not invertible.
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Key Point. Note that, even though the theorem can tell us that the matrix A above has an
inverse, we have no information as to what matrix A−1 actually is. The theorem only tells us that
A−1 exists.

Determinants of Inverses

Now that we have an easy way to determine whether or not A−1 exists by using determinants, we
should demand an easy way to calculate det(A−1), when A−1 exists. Fortunately, there is an easy
way to make the calculation:

Theorem. If A−1 exists, then

det(A−1) =
1

detA
.

Proof. Since
(detA)(detA−1) = det(AA−1),

we have

(detA)(detA−1) = det(AA−1)

= det I

= 1.

Since (detA)(detA−1) = 1 and detA 6= 0, we see that

detA−1 =
1

detA
,

as desired.

5


