1. In the first part of this homework, we considered the matrix $A - \lambda I$, where A and I are both $n \times n$, and λ is a real or complex variable. We also considered the determinant of this matrix, $\det(A - \lambda I)$; since λ is a variable, $\det(A - \lambda I)$ is a polynomial. In this homework, we will consider the geometric properties of some closely related quantites.

Let A be a (fixed) $n \times n$ matrix with entries in F, and let λ be any (fixed) number in F. Consider the set of all vectors $x \in \mathbb{F}^n$ so that

$$
Ax = \lambda x.
$$

(a) Let

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$

and $\lambda = 3$. Find a vector x in \mathbb{R}^2 so that

 $Ax = \lambda x$.

Example: We want to guarantee that

$$
\begin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \end{pmatrix} = 3 \begin{pmatrix} x_1 \ x_2 \end{pmatrix}.
$$

To understand this in more detail, let us consider the equivalent linear system:

$$
2x_1 + x_2 = 3x_1
$$

$$
x_1 + 2x_2 = 3x_2,
$$

or

$$
-x_1 + x_2 = 0
$$

$$
x_1 - x_2 = 0.
$$

Thus we write the augmented matrix for this equation and solve using row operations:

$$
\begin{pmatrix} -1 & 1 & | & 0 \\ 1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}
$$

.

We see that x_2 is free, so we choose, say $x_2 = 1$; then $x_1 = 1$ as well, and

$$
x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

is a vector so that

$$
Ax=3x.
$$

(b) With A from part (a) and $\lambda = 4$, find the set of all vectors x in \mathbb{R}^2 so that $Ax = \lambda x$. Solution: Using similar reasoning as in the above, we see that we can solve by reducing the augmented matrix

$$
\begin{pmatrix} -2 & 1 & | & 0 \\ 1 & -2 & | & 0 \end{pmatrix}.
$$

Let's apply row operations:

$$
\begin{pmatrix}\n-2 & 1 & | & 0 \\
1 & -2 & | & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & -1/2 & | & 0 \\
1 & -2 & | & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & -1/2 & | & 0 \\
0 & -3/2 & | & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & -1/2 & | & 0 \\
0 & 1 & | & 0\n\end{pmatrix}.
$$

In this case, we see that we *must* choose $x_2 = 0$, so that $x_1 = 0$ as well. Thus the set of all vectors $x \in \mathbb{R}^2$ so that $Ax = 4x$ is simply $\{0\}.$

(c) Let

$$
A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
$$

and $\lambda = i$. Find a vector x in \mathbb{C}^3 so that

$$
Ax = \lambda x.
$$

Example: We want to solve the system whose augmented matrix is given by

$$
\begin{pmatrix} -i & -1 & 1 & | & 0 \\ 1 & 1-i & 1 & | & 0 \\ 0 & 1 & 1-i & | & 0 \end{pmatrix}.
$$

Let's apply row operations:

$$
\begin{pmatrix}\n-i & -1 & 1 & | & 0 \\
1 & 1-i & 1 & | & 0 \\
0 & 1 & 1-i & | & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & -i & i & | & 0 \\
1 & 1-i & 1 & | & 0 \\
0 & 1 & 1-i & | & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & -i & i & | & 0 \\
0 & 1 & 1-i & | & 0 \\
0 & 1 & 1-i & | & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & -i & i & | & 0 \\
0 & 1 & 1-i & | & 0 \\
0 & 0 & 0 & | & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & 0 & 2i+1 & | & 0 \\
0 & 1 & 1-i & | & 0 \\
0 & 0 & 0 & | & 0\n\end{pmatrix}
$$

Thus x_3 is free; choosing $x_3 = 1$, we see that

$$
x_1 = -1 - 2i
$$
 and $x_2 = i - 1$,

so that

$$
x = \begin{pmatrix} -1 - 2i \\ i - 1 \\ 1 \end{pmatrix}
$$

is a vector so that $Ax = ix$.

(d) With A and λ from part (c), find the set of all vectors $x \in \mathbb{C}^3$ so that

$$
Ax = \lambda x.
$$

Solution: Working from the example above, we parameterize x_3 as $x_3 = t$ so that

$$
x = \begin{pmatrix} (-1 - 2i)t \\ (i - 1)t \\ t \end{pmatrix};
$$

then $Ax = ix$ if and only if x is of the form above.

2. Given fixed $A \in \mathcal{M}_n(\mathbb{F})$ and fixed $\lambda \in \mathbb{F}$, show that the set of all vectors $x \in \mathbb{F}^n$ satisfying

 $Ax = \lambda x$

is a subspace of \mathbb{F}^n .

Solution: Let U be the set of all vectors $x \in \mathbb{F}^n$ satisfying

$$
Ax = \lambda x.
$$

We must show that:

(a) $0 \in U$: Clearly $A0 = 0 = \lambda 0$.

(b) If $x, y \in U$, then $x + y \in U$: Using properties of matrix arithmetic, we have

$$
A(x + y) = Ax + Ay
$$

= $\lambda x + \lambda y$
= $\lambda (x + y)$,

so that $x + y \in U$.

(c) If $x \in U$, $\alpha \in \mathbb{F}$, then $\alpha x \in U$: Similar to the previous part, we see that

$$
A(\alpha x) = \alpha(Ax)
$$

= $\alpha(\lambda x)$
= $\lambda(\alpha x)$,

again using properties of matrix arithmetic, and the fact that multiplication in $\mathbb F$ commutes. Thus $\alpha x \in U$, and U is a subspace of \mathbb{F}^n .

3. Given fixed $A \in \mathcal{M}_n(\mathbb{F})$ and fixed $\lambda \in \mathbb{F}$, show that the set of all vectors $x \in \mathbb{F}^n$ satisfying

$$
Ax = \lambda x
$$

is precisely the set of all solutions to the matrix equation

$$
(A - \lambda I)x = 0.
$$

Solution: Using properties of matrix arithmetic, we see that

$$
Ax = \lambda x \iff Ax - \lambda x = \mathbf{0}
$$

$$
\iff Ax - \lambda Ix = \mathbf{0}
$$

$$
\iff (A - \lambda I)x = \mathbf{0},
$$

which is true if and only if x is a solution to the matrix equation.

4. Let L be a line in \mathbb{R}^2 that *does not* pass through the origin, and let U be the set of all points on L. Does U form a subspace of \mathbb{R}^2 under the usual definition of vector addition and scalar multplication? Prove your claim.

Solution: The set U never forms a subspace, because it can never contain the **0** vector. For example, if

$$
U = \left\{ \begin{pmatrix} x \\ 3x + 5 \end{pmatrix} | x \in \mathbb{R} \right\},\
$$

then $\mathbf{0} \notin U$; of course, U is not closed under vector addition or scalar multiplication either. For example,

$$
\begin{pmatrix} 2 \\ 11 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 13 \end{pmatrix} \notin U.
$$

5. Let V be a vector space, and let S, T , and U be subspaces of V so that

$$
V = S \oplus U \text{ and } V = T \oplus U;
$$

that is, every vector in V may be decomposed uniquely as a sum of a vector from S and a vector from U , and every vector in V may be decomposed uniquely as a sum of a vector from T and a vector from U. Does it follow that $S = T$? If so, prove it. If not, find a counterexample.

Counterexample: Consider \mathbb{R}^3 with its usual operations, and subspaces

$$
U = \left\{ \begin{pmatrix} u \\ w \\ 0 \end{pmatrix} | u, w \in \mathbb{R} \right\},\
$$

$$
S = \left\{ \begin{pmatrix} s \\ 0 \\ s \end{pmatrix} | s \in \mathbb{R} \right\},\
$$
and
$$
T = \left\{ \begin{pmatrix} 0 \\ 0 \\ t \end{pmatrix} | t \in \mathbb{R} \right\}.
$$

Now it is clear that:

- (a) $S \neq T$, and
- (b) $S \cap U = \{0\} = T \cap U$, so that the sums are direct, and
- (c) $\mathbb{R}^3 = S \oplus U$, $\mathbb{R}^3 = T \oplus U$.
- 6. Let U be the subspace of \mathbb{R}^4 defined by

$$
U = \left\{ \begin{pmatrix} x \\ x \\ y \\ y \end{pmatrix} | x, y \in \mathbb{R} \right\}.
$$

Find a subspace W of \mathbb{R}^4 so that

$$
\mathbb{R}^4 = U \oplus W.
$$

Be sure to show that every vector in \mathbb{R}^4 can be written as a sum of vectors in U and W. Example: Set

$$
W = \left\{ \begin{pmatrix} t \\ 0 \\ s \\ 0 \end{pmatrix} | t, s \in \mathbb{R} \right\}.
$$

Now it is clear that $U \cap W = \{0\}$, since if

$$
\begin{pmatrix} x \\ x \\ y \\ y \end{pmatrix} = \begin{pmatrix} t \\ 0 \\ s \\ 0 \end{pmatrix},
$$

then we must have $x = 0$ and $y = 0$, so that $t = s = 0$ as well. Thus

$$
U+W=U\oplus W
$$

is a direct sum; it remains to show that the sum is all of \mathbb{R}^4 . Let $\sqrt{ }$ a \setminus

 $\overline{}$ b c d $\Big\}$

be any vector in \mathbb{R}^4 . Choose $x = b$, $y = d$, $t = -b + a$, and $s = -d + c$. Then

$$
\begin{pmatrix} b \\ b \\ d \\ d \end{pmatrix} \in U \text{ and } \begin{pmatrix} -b+a \\ 0 \\ -d+c \\ 0 \end{pmatrix} \in W,
$$

and

$$
\begin{pmatrix} b \\ b \\ d \\ d \end{pmatrix} + \begin{pmatrix} -b+a \\ 0 \\ -d+c \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix},
$$

as desired. Thus

$$
\mathbb{R}^4 = U \oplus W.
$$