
Homework 4, Part 2 Key

1. In the first part of this homework, we considered the matrix A− λI, where A and I are both
n×n, and λ is a real or complex variable. We also considered the determinant of this matrix,
det(A− λI); since λ is a variable, det(A− λI) is a polynomial.

In this homework, we will consider the geometric properties of some closely related quantites.
Let A be a (fixed) n × n matrix with entries in F, and let λ be any (fixed) number in F.
Consider the set of all vectors x ∈ Fn so that

Ax = λx.

(a) Let

A =

(
2 1
1 2

)
and λ = 3. Find a vector x in R2 so that

Ax = λx.

Example: We want to guarantee that

(
2 1
1 2

)(
x1
x2

)
= 3

(
x1
x2

)
.

To understand this in more detail, let us consider the equivalent linear system:

2x1 + x2 = 3x1

x1 + 2x2 = 3x2,

or

−x1 + x2 = 0

x1 − x2 = 0.

Thus we write the augmented matrix for this equation and solve using row operations:(
−1 1 | 0
1 −1 | 0

)
→

(
1 −1 | 0
1 −1 | 0

)

→
(

1 −1 | 0
0 0 | 0

)
.

We see that x2 is free, so we choose, say x2 = 1; then x1 = 1 as well, and

x =

(
1
1

)
is a vector so that

Ax = 3x.
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(b) With A from part (a) and λ = 4, find the set of all vectors x in R2 so that Ax = λx.

Solution: Using similar reasoning as in the above, we see that we can solve by reducing
the augmented matrix (

−2 1 | 0
1 −2 | 0

)
.

Let’s apply row operations:

(
−2 1 | 0
1 −2 | 0

)
→

(
1 −1/2 | 0
1 −2 | 0

)

→
(

1 −1/2 | 0
0 −3/2 | 0

)

→
(

1 −1/2 | 0
0 1 | 0

)
.

In this case, we see that we must choose x2 = 0, so that x1 = 0 as well. Thus the set of
all vectors x ∈ R2 so that Ax = 4x is simply {0}.

(c) Let

A =

0 −1 1
1 1 1
0 1 1


and λ = i. Find a vector x in C3 so that

Ax = λx.

Example: We want to solve the system whose augmented matrix is given by−i −1 1 | 0
1 1− i 1 | 0
0 1 1− i | 0

 .

Let’s apply row operations:
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−i −1 1 | 0
1 1− i 1 | 0
0 1 1− i | 0

 →

1 −i i | 0
1 1− i 1 | 0
0 1 1− i | 0



→

1 −i i | 0
0 1 1− i | 0
0 1 1− i | 0



→

1 −i i | 0
0 1 1− i | 0
0 0 0 | 0



→

1 0 2i+ 1 | 0
0 1 1− i | 0
0 0 0 | 0


Thus x3 is free; choosing x3 = 1, we see that

x1 = −1− 2i and x2 = i− 1,

so that

x =

−1− 2i
i− 1

1


is a vector so that Ax = ix.

(d) With A and λ from part (c), find the set of all vectors x ∈ C3 so that

Ax = λx.

Solution: Working from the example above, we parameterize x3 as x3 = t so that

x =

(−1− 2i)t
(i− 1)t

t

 ;

then Ax = ix if and only if x is of the form above.

2. Given fixed A ∈Mn(F) and fixed λ ∈ F, show that the set of all vectors x ∈ Fn satisfying

Ax = λx

is a subspace of Fn.

Solution: Let U be the set of all vectors x ∈ Fn satisfying

Ax = λx.

We must show that:
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(a) 0 ∈ U : Clearly A0 = 0 = λ0.

(b) If x, y ∈ U , then x+ y ∈ U : Using properties of matrix arithmetic, we have

A(x+ y) = Ax+Ay

= λx+ λy

= λ(x+ y),

so that x+ y ∈ U .

(c) If x ∈ U , α ∈ F, then αx ∈ U : Similar to the previous part, we see that

A(αx) = α(Ax)

= α(λx)

= λ(αx),

again using properties of matrix arithmetic, and the fact that multiplication in F com-
mutes. Thus αx ∈ U , and U is a subspace of Fn.

3. Given fixed A ∈Mn(F) and fixed λ ∈ F, show that the set of all vectors x ∈ Fn satisfying

Ax = λx

is precisely the set of all solutions to the matrix equation

(A− λI)x = 0.

Solution: Using properties of matrix arithmetic, we see that

Ax = λx ⇐⇒ Ax− λx = 0

⇐⇒ Ax− λIx = 0

⇐⇒ (A− λI)x = 0,

which is true if and only if x is a solution to the matrix equation.

4. Let L be a line in R2 that does not pass through the origin, and let U be the set of all points
on L. Does U form a subspace of R2 under the usual definition of vector addition and scalar
multplication? Prove your claim.

Solution: The set U never forms a subspace, because it can never contain the 0 vector. For
example, if

U =

{(
x

3x+ 5

)
|x ∈ R

}
,

then 0 6∈ U ; of course, U is not closed under vector addition or scalar multiplication either.
For example, (

2
11

)
+

(
−1
2

)
=

(
1
13

)
6∈ U.
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5. Let V be a vector space, and let S, T , and U be subspaces of V so that

V = S ⊕ U and V = T ⊕ U ;

that is, every vector in V may be decomposed uniquely as a sum of a vector from S and
a vector from U , and every vector in V may be decomposed uniquely as a sum of a vector
from T and a vector from U . Does it follow that S = T? If so, prove it. If not, find a
counterexample.

Counterexample: Consider R3 with its usual operations, and subspaces

U =

{uw
0

 |u,w ∈ R
}
,

S =

{s0
s

 |s ∈ R
}
, and

T =

{0
0
t

 |t ∈ R
}
.

Now it is clear that:

(a) S 6= T , and

(b) S ∩ U = {0} = T ∩ U , so that the sums are direct, and

(c) R3 = S ⊕ U , R3 = T ⊕ U .

6. Let U be the subspace of R4 defined by

U =

{
x
x
y
y

 |x, y ∈ R
}
.

Find a subspace W of R4 so that
R4 = U ⊕W.

Be sure to show that every vector in R4 can be written as a sum of vectors in U and W .

Example: Set

W =

{
t
0
s
0

 |t, s ∈ R
}
.
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Now it is clear that U ∩W = {0}, since if
x
x
y
y

 =


t
0
s
0

 ,

then we must have x = 0 and y = 0, so that t = s = 0 as well.

Thus
U +W = U ⊕W

is a direct sum; it remains to show that the sum is all of R4.

Let 
a
b
c
d


be any vector in R4. Choose x = b, y = d, t = −b+ a, and s = −d+ c. Then

b
b
d
d

 ∈ U and


−b+ a

0
−d+ c

0

 ∈W,
and 

b
b
d
d

+


−b+ a

0
−d+ c

0

 =


a
b
c
d

 ,

as desired. Thus
R4 = U ⊕W.
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