1. In the first part of this homework, we considered the matrix $A - \lambda I$, where A and I are both $n \times n$, and λ is a real or complex variable. We also considered the determinant of this matrix, $\det(A - \lambda I)$; since λ is a variable, $\det(A - \lambda I)$ is a polynomial.

In this homework, we will consider the geometric properties of some closely related quantites. Let A be a (fixed) $n \times n$ matrix with entries in F, and let λ be any (fixed) number in F. Consider the set of all vectors $x \in \mathbb{F}^n$ so that

$$
Ax = \lambda x.
$$

(a) Let

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$

and $\lambda = 3$. Find a vector x in \mathbb{R}^2 so that

$$
Ax = \lambda x.
$$

(b) With A from part (a) and $\lambda = 4$, find the set of all vectors x in \mathbb{R}^2 so that $Ax = \lambda x$. (c) Let

$$
A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
$$

and $\lambda = i$. Find a vector x in \mathbb{C}^3 so that

 $Ax = \lambda x$.

(d) With A and λ from part (c), find the set of all vectors $x \in \mathbb{C}^3$ so that

$$
Ax = \lambda x.
$$

2. Given fixed $A \in \mathcal{M}_n(\mathbb{F})$ and fixed $\lambda \in \mathbb{F}$, show that the set of all vectors $x \in \mathbb{F}^n$ satisfying

$$
Ax = \lambda x
$$

is a subspace of \mathbb{F}^n .

3. Given fixed $A \in \mathcal{M}_n(\mathbb{F})$ and fixed $\lambda \in \mathbb{F}$, show that the set of all vectors $x \in \mathbb{F}^n$ satisfying

$$
Ax = \lambda x
$$

is precisely the set of all solutions to the matrix equation

$$
(A - \lambda I)x = 0.
$$

4. Let L be a line in \mathbb{R}^2 that *does not* pass through the origin, and let U be the set of all points on L. Does U form a subspace of \mathbb{R}^2 under the usual definition of vector addition and scalar multplication? Prove your claim.

5. Let V be a vector space, and let S, T , and U be subspaces of V so that

$$
V = S \oplus U \text{ and } V = T \oplus U;
$$

that is, every vector in V may be decomposed uniquely as a sum of a vector from S and a vector from U , and every vector in V may be decomposed uniquely as a sum of a vector from T and a vector from U. Does it follow that $S = T$? If so, prove it. If not, find a counterexample.

6. Let U be the subspace of \mathbb{R}^4 defined by

$$
U = \left\{ \begin{pmatrix} x \\ x \\ y \\ y \end{pmatrix} | x, y \in \mathbb{R} \right\}.
$$

Find a subspace W of \mathbb{R}^4 so that

$$
\mathbb{R}^4 = U \oplus W.
$$

Be sure to show that every vector in \mathbb{R}^4 can be written as a sum of vectors in U and W.