1. Find a pair of 2×2 invertible matrices A and B so that $(AB)^{-1} \neq A^{-1}B^{-1}$. Example: Setting

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix},
$$

we see that

$$
AB = \begin{pmatrix} 2 & 5 \\ 8 & 6 \end{pmatrix}
$$

,

$$
A^{-1} = \frac{1}{7} \begin{pmatrix} 4 & -1 \\ -1 & 2 \end{pmatrix}, B^{-1} = \frac{-1}{4} \begin{pmatrix} 1 & -2 \\ -2 & 0 \end{pmatrix}, \text{ and } (AB)^{-1} = \frac{-1}{28} \begin{pmatrix} 6 & -5 \\ -8 & 2 \end{pmatrix}.
$$

However,

$$
A^{-1}B^{-1} = \frac{-1}{28} \begin{pmatrix} 6 & -8 \\ -5 & 2 \end{pmatrix}
$$

which, comparing entries, we see is clearly not $(AB)^{-1}$.

2. Let A, B be $n \times n$. Prove that $(AB)^{\top} = B^{\top}A^{\top}$ (I am only asking you to prove for square matrices, but the theorem is true as long as the product AB is defined).

Solution: Let a_{ij} , b_{ij} , p_{ij} , and q_{ij} be the entries of A, B, $(AB)^{\top}$, and $B^{\top}A^{\top}$ respectively. Now p_{ij} is the j, i entry of AB, so

$$
p_{ij} = \sum_{k=1}^{n} a_{jk} b_{ki}.
$$

On the other hand, the i, j entry of $B^{\top}A^{\top}$ is the scalar product of row i of B^{\top} (that is, column i of B) and column j of A^{\top} (that is, row j of A). Thus

$$
q_{ij} = \sum_{k=1}^{n} b_{ki} a_{jk}
$$

=
$$
\sum_{k=1}^{n} a_{jk} b_{ki}
$$

=
$$
p_{ij}.
$$

Thus $(AB)^{\top} = B^{\top}A^{\top}$.

3. Find a pair of 2×2 symmetric matrices A and B so that AB is not symmetric. Example: Using

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}
$$

from the previous example, we see that

$$
AB = \begin{pmatrix} 2 & 5 \\ 8 & 6 \end{pmatrix} \neq (AB)^{\top}
$$

is not symmetric.

4. Let A and B be symmetric matrices. Find a condition on A and B that is equivalent to the statement " AB is symmetric", and prove it. Your result should say "If A and B are symmetric, then AB is symmetric if and only if...".

Solution: If A and B are symmetric, then AB is symmetric if and only if A and B commute. *Proof:* If AB is symmetric, then $AB = (AB)^T$. However, using the identity proved above, we also know that $(AB)^{\top} = B^{\top}A^{\top}$. Combining $AB = B^{\top}A^{\top}$ with the fact that A and B are also symmetric, we see that $AB = BA$, that is A and B commute.

On the other hand, if A and B commute, we have

$$
(AB)^{\top} = B^{\top}A^{\top}
$$

$$
= BA
$$

$$
= AB.
$$

Thus AB is symmetric.

5. An $n \times n$ matrix A is called *skew hermitian* if $A^* = -A$. Find an example of a 3 × 3 skew hermitian matrix, *none* of whose entries is strictly real.

Example: Set

$$
A = \begin{pmatrix} 3i & 1+i & 2-i \\ -1+i & i & 3+2i \\ -2-i & -3+2i & 5i \end{pmatrix}.
$$

Then

$$
A^* = (\overline{A})^{\top}
$$

=
$$
\begin{pmatrix} -3i & 1-i & 2+i \\ -1-i & -i & 3-2i \\ -2+i & -3-2i & -5i \end{pmatrix}^{\top}
$$

=
$$
\begin{pmatrix} -3i & -1-i & -2+i \\ 1-i & -i & -3-2i \\ 2+i & 3-2i & -5i \end{pmatrix}
$$

= $-A$.

6. Every $n \times n$ matrix A can be written in the form

$$
A = A_S + A_H,
$$

where A_S is skew hermitian and A_H is hermitian. Find formulas for A_S and A_H . (Note: just as $(A^{\top})^{\top} = A$, it is easy to see that $(A^*)^* = A$.

Solution: Set

$$
A_S = \frac{1}{2}(A - A^*)
$$
 and $A_H = \frac{1}{2}(A + A^*).$

Now it is easy to see that

$$
(A + B)^* = A^* + B^*;
$$

applying this fact to A_S and A_H , we see that

$$
A_S^* = \frac{1}{2}(A - A^*)^*
$$

= $\frac{1}{2}(A^* - (A^*)^*)$
= $\frac{1}{2}(A^* - A)$
= $-\frac{1}{2}(A - A^*)$
= $-A_S$,

and

$$
A_H^* = \frac{1}{2}(A + A^*)^*
$$

= $\frac{1}{2}(A^* + (A^*)^*)$
= $\frac{1}{2}(A^* + A)$
= A_H .

Thus A_S is skew hermitian, A_H is hermitian, and

$$
A_S + A_H = \frac{1}{2}(A - A^*) + \frac{1}{2}(A + A^*)
$$

= $\frac{1}{2}A - \frac{1}{2}A^* + \frac{1}{2}A + \frac{1}{2}A^*$
= $\frac{1}{2}A + \frac{1}{2}A - \frac{1}{2}A^* + \frac{1}{2}A^*$
= A.

7. Let A be an $n \times n$ matrix with strictly real entries. If A is also skew hermitian, what can we say about the diagonal entries of A?

Solution: $A^* = -A$ implies that $\overline{a}_{ii} = -a_{ii}$. However, since a_{ii} is a real number, we also have $\overline{a}_{ii} = a_{ii}$. Thus $a_{ii} = -a_{ii}$ implies that all of the diagonal entries of A are 0s.

8. Let A be an $n \times n$ matrix, and r a positive integer. We define powers of A in a natural way:

$$
A1 = A, A2 = A \cdot A, ..., Ar = \underbrace{A \cdot A \cdot ... \cdot A}_{r \text{ factors}}
$$

.

Then it is clear that the usual exponential rules hold, i.e.

$$
A^r A^s = A^{r+s} \text{ and } (A^r)^s = A^{rs}.
$$

Use induction to prove that, if A is invertible, r a positive integer, then A^r is invertible as well, and

$$
(A^r)^{-1} = (A^{-1})^r.
$$

Solution: If $r = 1$, $A^1 = A$, then

$$
(A1)-1 = A-1 = (A-1)1.
$$

Assume the statement holds for $r = n$, that is

$$
(A^n)^{-1} = (A^{-1})^n,
$$

and consider the product

$$
(A^{n+1})(A^{-1})^{n+1} = (AA^n)((A^{-1})^n A^{-1})
$$

= $A(A^n (A^{-1})^n) A^{-1}$
= AA^{-1}
= I,

so $(A^{-1})^{n+1}$ is the inverse of A^{n+1} .

9. Prove that if $A = [a_{ij}]$ is an $n \times n$ upper triangular matrix, r a positive integer, then the diagonal entries of A^r have form a_{ii}^r .

Solution: We proceed by induction: the statement is clearly true for $r = 1$, that is the diagonal entries of $A^1 = A$ have form $a_{ii}^1 = a_{ii}$.

Assume the statement is true for $r = n$. Since the product of a pair of upper triangular matrices is also upper triangular, the *i*th row of $Aⁿ$ has form

$$
\begin{pmatrix} 0 & 0 & \ldots & 0 & a_{ii}^n & u_{i,i+1} & \ldots & u_{in} \end{pmatrix}.
$$

Now the *i*, *i* entry of A^{n+1} is the scalar product of row *i* of A^n and column *i* of A; column *i* has form

$$
\begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ii} \\ 0 \\ \vdots \\ 0 \end{pmatrix}.
$$

Now the first $i-1$ entries of the *i*th row of A^n are all 0s, as are the last $n-i$ entries of column i; that is, the scalar product of row i of $Aⁿ$ and column i of A has form

$$
0 \cdot a_{1i} + 0 \cdot a_{2i} + \ldots + 0 \cdot a_{i-1,i} + a_{ii}^n \cdot a_{ii} + 0 \cdot u_{i,i+1} + \ldots + 0 \cdot u_{in} = a_{ii}^{n+1}.
$$

Thus the diagonal entries have the desired form.