Homework 2, Due 2/12
1. Find a pair of 2 x 2 invertible matrices A and B so that (AB)™! # A~'B~1.

FEzxample: Setting
2 1 0 2
A_<1 4> andB—(2 1),
2 5
AB_<8 6),
1 /4 -1 -1/1 =2 -1/6 -5
-1 _ 1+ -1_ —+ -1_ —t
A _7(—1 2>’B 4<—2 0)’and(AB) 28(—8 2)‘

However,
-1/6 -8
—1p-1_ —+
ATBT =R <—5 2>

which, comparing entries, we see is clearly not (AB)~!.

we see that

2. Let A, B be n x n. Prove that (AB)T = BT AT (I am only asking you to prove for square
matrices, but the theorem is true as long as the product AB is defined).

Solution: Let a;;, bij, pij, and g;; be the entries of A, B, (AB)T, and BT AT respectively.
Now p;; is the j,i entry of AB, so

n
Pij =Y kb
k=1

On the other hand, the i,j entry of BT AT is the scalar product of row i of BT (that is,
column i of B) and column j of AT (that is, row j of A). Thus

n
G = Y briajk
k=1

n

= E ajkbri
k=1

= Pi-

Thus (AB)T = BTAT.

3. Find a pair of 2 x 2 symmetric matrices A and B so that AB is not symmetric.

2 1 0 2
A_<1 4> andB—<2 1)

from the previous example, we see that

AB = (g 2) +(AB)T

Example: Using

is not symmetric.
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4. Let A and B be symmetric matrices. Find a condition on A and B that is equivalent to
the statement “AB is symmetric”, and prove it. Your result should say “If A and B are
symmetric, then AB is symmetric if and only if...”.

Solution: If A and B are symmetric, then AB is symmetric if and only if A and B commute.

Proof: If AB is symmetric, then AB = (AB)T. However, using the identity proved above,
we also know that (AB)" = BTAT. Combining AB = BT AT with the fact that A and B
are also symmetric, we see that AB = BA, that is A and B commute.

On the other hand, if A and B commute, we have

(AB)" = BTAT

= BA
= AB.
Thus AB is symmetric.
5. An n x n matrix A is called skew hermitian if A* = —A. Find an example of a 3 x 3 skew

hermitian matrix, none of whose entries is strictly real.

Ezxample: Set
3i 141 2—14
A= -1+ i 3+2¢
—2—1 =342 b

Then

A* = (A)T
-3 1—2 241
= —1—q —1 3—2i
2441 —3—2t —H
-3 —-1—17 —-2+43
= 1—1 —1 —3—-2
24+1 3—2 —51
- _A

T

6. Every n x n matrix A can be written in the form
A= Ag+ Apy,

where Ag is skew hermitian and Ay is hermitian. Find formulas for Ag and Apy. (Note: just
as (AT)T = A, it is easy to see that (A4*)* = A).
Solution: Set ) )

Ag = §(A — A%) and Ay = §(A + A*).
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Now it is easy to see that

(A+ B)" = A"+ BY;
applying this fact to Ag and Ay, we see that

a5 = L(A- Ay
1 * %k sk
= Ay
1 *
= (A -4
1 *
= -
- _AS7
and
* 1 %\ %

= AT
%(A*JFA)
= Ap.

Thus Ag is skew hermitian, Ay is hermitian, and

1 1
As+ Ay = 5(A—A*)Jr§(A+A*)
1 1., 1 1.,
= 5A—§A +§A+§A
1 1 1 1
= A4+ -A— A+ A
2 Jr2 2 Jr2
= A

7. Let A be an n x n matrix with strictly real entries. If A is also skew hermitian, what can we
say about the diagonal entries of A7

Solution: A* = — A implies that a;; = —ay;. However, since ay; is a real number, we also have
;i = ai. Thus a;; = —a;; implies that all of the diagonal entries of A are Os.

8. Let A be an n x n matrix, and r a positive integer. We define powers of A in a natural way:

A1:A, A2:A.A, L, AT=AA . A,
_———
r factors

Then it is clear that the usual exponential rules hold, i.e.

ATAS = AT and (AT)F = A5
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Use induction to prove that, if A is invertible, r a positive integer, then A" is invertible as
well, and

(Ar)—l — (A_l)r.
Solution: If r = 1, A' = A, then
(Al)—l — A—l — (A_l)l.

Assume the statement holds for » = n, that is
(An)—l — (A—l)n’
and consider the product

(AT (AT (AAM)((ATH" AT
A(AM(AHM AT
AT

= 1,

so (A~H"*1 is the inverse of A™t!.

9. Prove that if A = [a;;] is an n x n upper triangular matrix, r a positive integer, then the
diagonal entries of A™ have form aj;.

Solution: We proceed by induction: the statement is clearly true for » = 1, that is the
diagonal entries of A' = A have form azli = a;.

Assume the statement is true for r = n. Since the product of a pair of upper triangular
matrices is also upper triangular, the ith row of A™ has form

(0 0O ... 0 a% Uii+1 - um)

(2

Now the i, entry of A"t is the scalar product of row i of A” and column i of A; column i
has form

a1;
a2;

(7]

0

0

Now the first ¢ — 1 entries of the ith row of A™ are all 0s, as are the last n — i entries of column

1; that is, the scalar product of row ¢ of A™ and column 4 of A has form
O-a1;+0-agi+...+0-ai—15+aj;-ay+0-uit1+...+0 u, :a?;rl.

Thus the diagonal entries have the desired form.



