
Homework 2, Due 2/12

1. Find a pair of 2× 2 invertible matrices A and B so that (AB)−1 6= A−1B−1.

Example: Setting

A =

(
2 1
1 4

)
and B =

(
0 2
2 1

)
,

we see that

AB =

(
2 5
8 6

)
,

A−1 =
1

7

(
4 −1
−1 2

)
, B−1 =

−1

4

(
1 −2
−2 0

)
, and (AB)−1 =

−1

28

(
6 −5
−8 2

)
.

However,

A−1B−1 =
−1

28

(
6 −8
−5 2

)
which, comparing entries, we see is clearly not (AB)−1.

2. Let A, B be n × n. Prove that (AB)> = B>A> (I am only asking you to prove for square
matrices, but the theorem is true as long as the product AB is defined).

Solution: Let aij , bij , pij , and qij be the entries of A, B, (AB)>, and B>A> respectively.
Now pij is the j, i entry of AB, so

pij =
n∑

k=1

ajkbki.

On the other hand, the i, j entry of B>A> is the scalar product of row i of B> (that is,
column i of B) and column j of A> (that is, row j of A). Thus

qij =
n∑

k=1

bkiajk

=
n∑

k=1

ajkbki

= pij .

Thus (AB)> = B>A>.

3. Find a pair of 2× 2 symmetric matrices A and B so that AB is not symmetric.

Example: Using

A =

(
2 1
1 4

)
and B =

(
0 2
2 1

)
from the previous example, we see that

AB =

(
2 5
8 6

)
6= (AB)>

is not symmetric.
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4. Let A and B be symmetric matrices. Find a condition on A and B that is equivalent to
the statement “AB is symmetric”, and prove it. Your result should say “If A and B are
symmetric, then AB is symmetric if and only if...”.

Solution: If A and B are symmetric, then AB is symmetric if and only if A and B commute.

Proof: If AB is symmetric, then AB = (AB)>. However, using the identity proved above,
we also know that (AB)> = B>A>. Combining AB = B>A> with the fact that A and B
are also symmetric, we see that AB = BA, that is A and B commute.

On the other hand, if A and B commute, we have

(AB)> = B>A>

= BA

= AB.

Thus AB is symmetric.

5. An n × n matrix A is called skew hermitian if A∗ = −A. Find an example of a 3 × 3 skew
hermitian matrix, none of whose entries is strictly real.

Example: Set

A =

 3i 1 + i 2− i
−1 + i i 3 + 2i
−2− i −3 + 2i 5i

 .

Then

A∗ = (A)>

=

 −3i 1− i 2 + i
−1− i −i 3− 2i
−2 + i −3− 2i −5i

>

=

−3i −1− i −2 + i
1− i −i −3− 2i
2 + i 3− 2i −5i


= −A.

6. Every n× n matrix A can be written in the form

A = AS + AH ,

where AS is skew hermitian and AH is hermitian. Find formulas for AS and AH . (Note: just
as (A>)> = A, it is easy to see that (A∗)∗ = A).

Solution: Set

AS =
1

2
(A−A∗) and AH =

1

2
(A + A∗).

2



Homework 2, Due 2/12

Now it is easy to see that
(A + B)∗ = A∗ + B∗;

applying this fact to AS and AH , we see that

A∗S =
1

2
(A−A∗)∗

=
1

2
(A∗ − (A∗)∗)

=
1

2
(A∗ −A)

= −1

2
(A−A∗)

= −AS ,

and

A∗H =
1

2
(A + A∗)∗

=
1

2
(A∗ + (A∗)∗)

=
1

2
(A∗ + A)

= AH .

Thus AS is skew hermitian, AH is hermitian, and

AS + AH =
1

2
(A−A∗) +

1

2
(A + A∗)

=
1

2
A− 1

2
A∗ +

1

2
A +

1

2
A∗

=
1

2
A +

1

2
A− 1

2
A∗ +

1

2
A∗

= A.

7. Let A be an n× n matrix with strictly real entries. If A is also skew hermitian, what can we
say about the diagonal entries of A?

Solution: A∗ = −A implies that aii = −aii. However, since aii is a real number, we also have
aii = aii. Thus aii = −aii implies that all of the diagonal entries of A are 0s.

8. Let A be an n× n matrix, and r a positive integer. We define powers of A in a natural way:

A1 = A, A2 = A ·A, . . . , Ar = A ·A · . . . ·A︸ ︷︷ ︸
r factors

.

Then it is clear that the usual exponential rules hold, i.e.

ArAs = Ar+s and (Ar)s = Ars.

3



Homework 2, Due 2/12

Use induction to prove that, if A is invertible, r a positive integer, then Ar is invertible as
well, and

(Ar)−1 = (A−1)r.

Solution: If r = 1, A1 = A, then

(A1)−1 = A−1 = (A−1)1.

Assume the statement holds for r = n, that is

(An)−1 = (A−1)n,

and consider the product

(An+1)(A−1)n+1 = (AAn)((A−1)nA−1)

= A(An(A−1)n)A−1

= AA−1

= I,

so (A−1)n+1 is the inverse of An+1.

9. Prove that if A = [aij ] is an n × n upper triangular matrix, r a positive integer, then the
diagonal entries of Ar have form arii.

Solution: We proceed by induction: the statement is clearly true for r = 1, that is the
diagonal entries of A1 = A have form a1ii = aii.

Assume the statement is true for r = n. Since the product of a pair of upper triangular
matrices is also upper triangular, the ith row of An has form(

0 0 . . . 0 anii ui,i+1 . . . uin
)
.

Now the i, i entry of An+1 is the scalar product of row i of An and column i of A; column i
has form 

a1i
a2i
...
aii
0
...
0


.

Now the first i−1 entries of the ith row of An are all 0s, as are the last n− i entries of column
i; that is, the scalar product of row i of An and column i of A has form

0 · a1i + 0 · a2i + . . . + 0 · ai−1,i + anii · aii + 0 · ui,i+1 + . . . + 0 · uin = an+1
ii .

Thus the diagonal entries have the desired form.
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