1. Find a pair of 2×2 invertible matrices A and B so that $(AB)^{-1} \neq A^{-1}B^{-1}$.

Example: Setting

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix},$$

we see that

$$AB = \begin{pmatrix} 2 & 5 \\ 8 & 6 \end{pmatrix},$$

$$A^{-1} = \frac{1}{7} \begin{pmatrix} 4 & -1 \\ -1 & 2 \end{pmatrix}, \quad B^{-1} = \frac{-1}{4} \begin{pmatrix} 1 & -2 \\ -2 & 0 \end{pmatrix}, \quad \text{and} \quad (AB)^{-1} = \frac{-1}{28} \begin{pmatrix} 6 & -5 \\ -8 & 2 \end{pmatrix}.$$

However,

$$A^{-1}B^{-1} = \frac{-1}{28} \begin{pmatrix} 6 & -8 \\ -5 & 2 \end{pmatrix}$$

which, comparing entries, we see is clearly not $(AB)^{-1}$.

2. Let A, B be $n \times n$. Prove that $(AB)^\top = B^\top A^\top$ (I am only asking you to prove for square matrices, but the theorem is true as long as the product AB is defined).

Solution: Let $a_{ij}, b_{ij}, p_{ij},$ and q_{ij} be the entries of A, B, $(AB)^\top$, and $B^\top A^\top$ respectively. Now p_{ij} is the j, i entry of AB, so

$$p_{ij} = \sum_{k=1}^{n} a_{jk}b_{ki}.$$

On the other hand, the i, j entry of $B^\top A^\top$ is the scalar product of row i of B^\top (that is, column i of B) and column j of A^\top (that is, row j of A). Thus

$$q_{ij} = \sum_{k=1}^{n} b_{ki}a_{jk}$$

$$= \sum_{k=1}^{n} a_{jk}b_{ki}$$

$$= p_{ij}.$$

Thus $(AB)^\top = B^\top A^\top$.

3. Find a pair of 2×2 symmetric matrices A and B so that AB is not symmetric.

Example: Using

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}$$

from the previous example, we see that

$$AB = \begin{pmatrix} 2 & 5 \\ 8 & 6 \end{pmatrix} \neq (AB)^\top$$

is not symmetric.
4. Let \(A \) and \(B \) be symmetric matrices. Find a condition on \(A \) and \(B \) that is equivalent to the statement “\(AB \) is symmetric”, and prove it. Your result should say “If \(A \) and \(B \) are symmetric, then \(AB \) is symmetric if and only if...”.

Solution: If \(A \) and \(B \) are symmetric, then \(AB \) is symmetric if and only if \(A \) and \(B \) commute.

Proof: If \(AB \) is symmetric, then \(AB = (AB)^\top \). However, using the identity proved above, we also know that \((AB)^\top = B^\top A^\top \). Combining \(AB = B^\top A^\top \) with the fact that \(A \) and \(B \) are also symmetric, we see that \(AB = BA \), that is \(A \) and \(B \) commute.

On the other hand, if \(A \) and \(B \) commute, we have
\[
(AB)^\top = B^\top A^\top = BA = AB.
\]
Thus \(AB \) is symmetric.

5. An \(n \times n \) matrix \(A \) is called *skew hermitian* if \(A^* = -A \). Find an example of a \(3 \times 3 \) skew hermitian matrix, *none* of whose entries is strictly real.

Example: Set
\[
A = \begin{pmatrix}
3i & 1+i & 2-i \\
-1+i & i & 3+2i \\
-2-i & -3+2i & 5i
\end{pmatrix}.
\]

Then
\[
A^* = (\overline{A})^\top = \begin{pmatrix}
-3i & 1-i & 2+i \\
-1-i & -i & 3-2i \\
-2+i & -3-2i & -5i
\end{pmatrix}^\top
= \begin{pmatrix}
-3i & -1-i & -2+i \\
1-i & -i & -3-2i \\
2+i & 3-2i & -5i
\end{pmatrix}
= -A.
\]

6. Every \(n \times n \) matrix \(A \) can be written in the form
\[
A = A_S + A_H,
\]
where \(A_S \) is skew hermitian and \(A_H \) is hermitian. Find formulas for \(A_S \) and \(A_H \). (Note: just as \((A^\top)^\top = A \), it is easy to see that \((A^*)^* = A \)).

Solution: Set
\[
A_S = \frac{1}{2}(A - A^*) \quad \text{and} \quad A_H = \frac{1}{2}(A + A^*).
\]
Now it is easy to see that
\[(A + B)^* = A^* + B^*;\]
applying this fact to \(A_S\) and \(A_H\), we see that
\[
A_S^* = \frac{1}{2}(A - A^*)^*
= \frac{1}{2}(A^* - (A^*)^*)
= \frac{1}{2}(A^* - A)
= -\frac{1}{2}(A - A^*)
= -A_S,
\]
and
\[
A_H^* = \frac{1}{2}(A + A^*)^*
= \frac{1}{2}(A^* + (A^*)^*)
= \frac{1}{2}(A^* + A)
= A_H.
\]

Thus \(A_S\) is skew hermitian, \(A_H\) is hermitian, and
\[
A_S + A_H = \frac{1}{2}(A - A^*) + \frac{1}{2}(A + A^*)
= \frac{1}{2}A - \frac{1}{2}A^* + \frac{1}{2}A + \frac{1}{2}A^*
= \frac{1}{2}A \leq \frac{1}{2}A^* + \frac{1}{2}A^*
= A.
\]

7. Let \(A\) be an \(n \times n\) matrix with strictly real entries. If \(A\) is also skew hermitian, what can we say about the diagonal entries of \(A\)?

Solution: \(A^* = -A\) implies that \(\overline{a_{ii}} = -a_{ii}\). However, since \(a_{ii}\) is a real number, we also have \(a_{ii} = a_{ii}\). Thus \(a_{ii} = -a_{ii}\) implies that all of the diagonal entries of \(A\) are 0s.

8. Let \(A\) be an \(n \times n\) matrix, and \(r\) a positive integer. We define powers of \(A\) in a natural way:
\[
A^1 = A, \ A^2 = A \cdot A, \ldots, \ A^r = A \cdot A \cdot \ldots \cdot A.
\]

Then it is clear that the usual exponential rules hold, i.e.
\[
A^r A^s = A^{r+s} \text{ and } (A^r)^s = A^{rs}.
\]
Use induction to prove that, if A is invertible, r a positive integer, then A^r is invertible as well, and

$$(A^r)^{-1} = (A^{-1})^r.$$

Solution: If $r = 1$, $A^1 = A$, then

$$(A^1)^{-1} = A^{-1} = (A^{-1})^1.$$

Assume the statement holds for $r = n$, that is

$$(A^n)^{-1} = (A^{-1})^n,$$

and consider the product

$$(A^{n+1})(A^{-1})^{n+1} = (AA^n)((A^{-1})^nA^{-1})$$

$$= A(A^n(A^{-1})^nA^{-1}$$

$$= AA^{-1}$$

$$= I,$$

so $(A^{-1})^{n+1}$ is the inverse of A^{n+1}.

9. Prove that if $A = [a_{ij}]$ is an $n \times n$ upper triangular matrix, r a positive integer, then the diagonal entries of A^r have form a_{rr}^r.

Solution: We proceed by induction: the statement is clearly true for $r = 1$, that is the diagonal entries of $A^1 = A$ have form $a_{ii}^1 = a_{ii}$.

Assume the statement is true for $r = n$. Since the product of a pair of upper triangular matrices is also upper triangular, the ith row of A^n has form

$$
\begin{pmatrix}
0 & 0 & \ldots & 0 & a_{ii}^n & u_{i,i+1} & \ldots & u_{in}
\end{pmatrix}.
$$

Now the i, i entry of A^{n+1} is the scalar product of row i of A^n and column i of A; column i has form

$$
\begin{pmatrix}
a_{1i} \\
a_{2i} \\
\vdots \\
a_{ii} \\
0 \\
\vdots \\
0
\end{pmatrix}.
$$

Now the first $i - 1$ entries of the ith row of A^n are all 0s, as are the last $n - i$ entries of column i; that is, the scalar product of row i of A^n and column i of A has form

$$0 \cdot a_{1i} + 0 \cdot a_{2i} + \ldots + 0 \cdot a_{i-1,i} + a_{ii}^n \cdot a_{ii} + 0 \cdot u_{i,i+1} + \ldots + 0 \cdot u_{in} = a_{ii}^{n+1}.$$

Thus the diagonal entries have the desired form.