1. Find a pair of 2×2 invertible matrices A and B so that $(AB)^{-1} \neq A^{-1}B^{-1}$. Example: Setting

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}$,

we see that

$$AB = \begin{pmatrix} 2 & 5\\ 8 & 6 \end{pmatrix}$$

$$A^{-1} = \frac{1}{7} \begin{pmatrix} 4 & -1 \\ -1 & 2 \end{pmatrix}, \ B^{-1} = \frac{-1}{4} \begin{pmatrix} 1 & -2 \\ -2 & 0 \end{pmatrix}, \text{ and } (AB)^{-1} = \frac{-1}{28} \begin{pmatrix} 6 & -5 \\ -8 & 2 \end{pmatrix}.$$

However,

$$A^{-1}B^{-1} = \frac{-1}{28} \begin{pmatrix} 6 & -8\\ -5 & 2 \end{pmatrix}$$

which, comparing entries, we see is clearly not $(AB)^{-1}$.

2. Let A, B be $n \times n$. Prove that $(AB)^{\top} = B^{\top}A^{\top}$ (I am only asking you to prove for square matrices, but the theorem is true as long as the product AB is defined).

Solution: Let a_{ij} , b_{ij} , p_{ij} , and q_{ij} be the entries of A, B, $(AB)^{\top}$, and $B^{\top}A^{\top}$ respectively. Now p_{ij} is the j, i entry of AB, so

$$p_{ij} = \sum_{k=1}^{n} a_{jk} b_{ki}$$

On the other hand, the i, j entry of $B^{\top}A^{\top}$ is the scalar product of row i of B^{\top} (that is, column i of B) and column j of A^{\top} (that is, row j of A). Thus

$$q_{ij} = \sum_{k=1}^{n} b_{ki} a_{jk}$$
$$= \sum_{k=1}^{n} a_{jk} b_{ki}$$
$$= p_{ij}.$$

Thus $(AB)^{\top} = B^{\top}A^{\top}$.

3. Find a pair of 2×2 symmetric matrices A and B so that AB is not symmetric. Example: Using

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}$$

from the previous example, we see that

$$AB = \begin{pmatrix} 2 & 5\\ 8 & 6 \end{pmatrix} \neq (AB)^{\top}$$

is not symmetric.

4. Let A and B be symmetric matrices. Find a condition on A and B that is equivalent to the statement "AB is symmetric", and prove it. Your result should say "If A and B are symmetric, then AB is symmetric if and only if...".
Solution: If A and B are symmetric, then AB is symmetric if and only if A and B commute.

Proof: If AB is symmetric, then $AB = (AB)^{\top}$. However, using the identity proved above, we also know that $(AB)^{\top} = B^{\top}A^{\top}$. Combining $AB = B^{\top}A^{\top}$ with the fact that A and B are also symmetric, we see that AB = BA, that is A and B commute.

On the other hand, if A and B commute, we have

$$(AB)^{\top} = B^{\top}A^{\top}$$
$$= BA$$
$$= AB.$$

Thus AB is symmetric.

5. An $n \times n$ matrix A is called *skew hermitian* if $A^* = -A$. Find an example of a 3×3 skew hermitian matrix, *none* of whose entries is strictly real.

Example: Set

$$A = \begin{pmatrix} 3i & 1+i & 2-i \\ -1+i & i & 3+2i \\ -2-i & -3+2i & 5i \end{pmatrix}.$$

Then

$$A^* = (\overline{A})^{\top}$$

= $\begin{pmatrix} -3i & 1-i & 2+i \\ -1-i & -i & 3-2i \\ -2+i & -3-2i & -5i \end{pmatrix}^{\top}$
= $\begin{pmatrix} -3i & -1-i & -2+i \\ 1-i & -i & -3-2i \\ 2+i & 3-2i & -5i \end{pmatrix}$
= $-A$.

6. Every $n \times n$ matrix A can be written in the form

$$A = A_S + A_H,$$

where A_S is skew hermitian and A_H is hermitian. Find formulas for A_S and A_H . (Note: just as $(A^{\top})^{\top} = A$, it is easy to see that $(A^*)^* = A$).

Solution: Set

$$A_S = \frac{1}{2}(A - A^*)$$
 and $A_H = \frac{1}{2}(A + A^*)$.

Now it is easy to see that

$$(A+B)^* = A^* + B^*;$$

applying this fact to A_S and A_H , we see that

$$A_{S}^{*} = \frac{1}{2}(A - A^{*})^{*}$$

= $\frac{1}{2}(A^{*} - (A^{*})^{*})$
= $\frac{1}{2}(A^{*} - A)$
= $-\frac{1}{2}(A - A^{*})$
= $-A_{S}$,

and

$$A_{H}^{*} = \frac{1}{2}(A + A^{*})^{*}$$

= $\frac{1}{2}(A^{*} + (A^{*})^{*})$
= $\frac{1}{2}(A^{*} + A)$
= A_{H} .

Thus A_S is skew hermitian, A_H is hermitian, and

$$A_{S} + A_{H} = \frac{1}{2}(A - A^{*}) + \frac{1}{2}(A + A^{*})$$

$$= \frac{1}{2}A - \frac{1}{2}A^{*} + \frac{1}{2}A + \frac{1}{2}A^{*}$$

$$= \frac{1}{2}A + \frac{1}{2}A - \frac{1}{2}A^{*} + \frac{1}{2}A^{*}$$

$$= A.$$

7. Let A be an $n \times n$ matrix with strictly real entries. If A is also skew hermitian, what can we say about the diagonal entries of A?

Solution: $A^* = -A$ implies that $\overline{a}_{ii} = -a_{ii}$. However, since a_{ii} is a real number, we also have $\overline{a}_{ii} = a_{ii}$. Thus $a_{ii} = -a_{ii}$ implies that all of the diagonal entries of A are 0s.

8. Let A be an $n \times n$ matrix, and r a positive integer. We define powers of A in a natural way:

$$A^1 = A, \ A^2 = A \cdot A, \ \dots, \ A^r = \underbrace{A \cdot A \cdot \dots \cdot A}_{r \text{ factors}}.$$

Then it is clear that the usual exponential rules hold, i.e.

4

$$A^r A^s = A^{r+s}$$
 and $(A^r)^s = A^{rs}$.

Use induction to prove that, if A is invertible, r a positive integer, then A^r is invertible as well, and

$$(A^r)^{-1} = (A^{-1})^r.$$

Solution: If r = 1, $A^1 = A$, then

$$(A^1)^{-1} = A^{-1} = (A^{-1})^1.$$

Assume the statement holds for r = n, that is

$$(A^n)^{-1} = (A^{-1})^n,$$

and consider the product

$$(A^{n+1})(A^{-1})^{n+1} = (AA^n)((A^{-1})^n A^{-1})$$

= $A(A^n(A^{-1})^n)A^{-1}$
= AA^{-1}
= I ,

so $(A^{-1})^{n+1}$ is the inverse of A^{n+1} .

9. Prove that if $A = [a_{ij}]$ is an $n \times n$ upper triangular matrix, r a positive integer, then the diagonal entries of A^r have form a_{ii}^r .

Solution: We proceed by induction: the statement is clearly true for r = 1, that is the diagonal entries of $A^1 = A$ have form $a_{ii}^1 = a_{ii}$.

Assume the statement is true for r = n. Since the product of a pair of upper triangular matrices is also upper triangular, the *i*th row of A^n has form

$$(0 \ 0 \ \dots \ 0 \ a_{ii}^n \ u_{i,i+1} \ \dots \ u_{in})$$
.

Now the i, i entry of A^{n+1} is the scalar product of row i of A^n and column i of A; column i has form

$$\begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ii} \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Now the first i-1 entries of the *i*th row of A^n are all 0s, as are the last n-i entries of column i; that is, the scalar product of row i of A^n and column i of A has form

$$0 \cdot a_{1i} + 0 \cdot a_{2i} + \ldots + 0 \cdot a_{i-1,i} + a_{ii}^n \cdot a_{ii} + 0 \cdot u_{i,i+1} + \ldots + 0 \cdot u_{in} = a_{ii}^{n+1}.$$

Thus the diagonal entries have the desired form.