Challenge Problem 3

Recall that the *exponential of a matrix* is defined using the Taylor series expansion of e^x : in particular, for any $n \times n$ matrix A,

$$\exp(A) = \sum_{i=0}^{\infty} \frac{A^n}{n!} = I + A + \frac{A^2}{2!} + \dots,$$

where $A^0 = I$. The exponential $\exp(A)$ converges to an $n \times n$ matrix a.

In this challenge problem, we will consider two different sets of matrices, and their interconnections via the exponential. We are interested in:

$$\mathfrak{o}(2,\mathbb{R}) = \left\{ Y \in \mathcal{M}_2(\mathbb{R}) | Y^\top = -Y \right\} \text{ and}$$

SO(2, \mathbb{R}) = $\left\{ y \in \mathcal{M}_2(\mathbb{R}) \middle| y^\top = y^{-1}, \ \det y = 1 \right\}.$

In particular, $\mathfrak{o}(2,\mathbb{R})$ is the set real of 2×2 skew-symmetric matrices, and SO $(2,\mathbb{R})$ is the set of real 2×2 determinant 1 orthogonal matrices.

In this challenge problem, we will prove that the image of $\mathfrak{o}(2,\mathbb{R})$ under exp is precisely SO $(2,\mathbb{R})$.

- 1. Find the form of any 2×2 matrix Y in $\mathfrak{o}(2,\mathbb{R})$; you should write your matrix as $Y = \theta X$, where θ is a real variable and X is a *specific* matrix in $\mathfrak{o}(2,\mathbb{R})$.
- 2. Calculate $\exp(\theta X)$. (*Hint*: you have already made this calculation in a previous challenge problem!)
- 3. Show that *every* matrix in $SO(2, \mathbb{R})$ is of the form $exp(\theta X)$ for your choice of X. (*Hint*: this problem showed up on Homework 3!)