Solutions:

1. Since $A = \mathbf{0}$ and $\mathbf{0}^k = \mathbf{0}$ for all integers k > 0, we have

$$\exp(A) = I + \mathbf{0} + \mathbf{0} + \ldots = I.$$

2. Let's compute powers of $A(\theta)$:

$$A(\theta) = \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}$$
$$A(\theta)^2 = \begin{pmatrix} -\theta^2 & 0 \\ 0 & -\theta^2 \end{pmatrix}$$
$$A(\theta)^3 = \begin{pmatrix} 0 & -\theta^3 \\ \theta^3 & 0 \end{pmatrix}$$
$$A(\theta)^4 = \begin{pmatrix} \theta^4 & 0 \\ 0 & \theta^4 \end{pmatrix}$$
$$A(\theta)^5 = \begin{pmatrix} 0 & \theta^5 \\ -\theta^5 & 0 \end{pmatrix}$$

You can see at this point that the pattern repeats; thus we are ready to compute the entries of

$$a(\theta) = \exp(A(\theta)) = \sum_{i=0}^{\infty} \frac{A(\theta)^n}{n!} = I + A(\theta) + \frac{A(\theta)^2}{2!} + \dots$$

Let a_{ij} denote the entries of $a(\theta)$. We see from above that

$$a_{11} = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots$$

= $\cos \theta;$

$$a_{12} = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$$
$$= \sin \theta;$$

$$a_{21} = -a_{12}$$
$$= -\sin\theta;$$

and

$$a_{22} = a_{11}$$
$$= \cos \theta.$$

Thus the matrix $a(\theta) = \exp(A(\theta))$ has form

$$a(\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}.$$

- 3. It is easy to see that $\operatorname{tr}(A) = 0$, and $\operatorname{tr}(A(\theta)) = 0$ for all θ . On the other hand, $\operatorname{det}(\exp(A)) = 1$ and $\operatorname{det}(\exp(A(\theta))) = 1$ for all θ .
- 4. The behavior observed above is no fluke–for any trace 0 matrix A, its exponential $\exp(A)$ is a determinant 1 matrix. More generally, it is known that

$$\det(\exp(A)) = e^{\operatorname{tr}(A)}.$$