
Unit 1, Section 6: Determinants

Determinants

In section 4, we discussed inverses of matrices, and in particular asked an important question:

How can we tell whether or not a particular square matrix A has an inverse?

We will be able to answer this question soon–but first, we must take a few moments to discuss
a property of square matrices called the determinant.

You are probably already familiar with calculating determinants for 2×2 and 3×3 matrices; un-
fortunately, there is no simple formula for calculating determinants of larger matrices. Accordingly,
we will in this section develop a method for finding the determinant of any square matrix.

Determinants of 2× 2 Matrices

The determinant function is quite simple to use if the matrix in question is 2× 2:

Definition. The determinant of a 2× 2 matrix(
a b
c d

)
,

denoted by ∣∣∣∣ a b
c d

∣∣∣∣ or det

(
a b
c d

)
,

is the number ∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

As a quick example, let’s calculate the determinant of the matrix

A =

(
3 −2
9 −6

)
.

det(A) =

∣∣∣∣ 3 −2
9 −6

∣∣∣∣
= 3 · (−6)− (−2) · 9
= −18 + 18

= 0.

Notice that the determinant function sent the matrix A to the number 0.

Key Point. The determinant function is a function that sends square matrices to numbers; if we
let Mn be the set of all n× n matrices with real entries, we can write

det :Mn → C

to indicate the correspondence. If all of the entries of the matrix A are real, then detA will be a
purely real number; otherwise, detA might have an imaginary component.
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Of course, we want to be able to calculate the determinant of any square matrix, not just the
2 × 2 variety; there are actually many alternate methods for doing so (in fact, you are probably
quite familiar with the “diagonal” method for 3 × 3 matrices). All of the methods will produce
equivalent results, but the method that we will learn in this section requires us to use the definition
of the determinant for 2× 2 matrices.

Minors and Cofactors

The method that we are going to learn for calculating determinants is called cofactor expansion.
Accordingly, we need to define cofactors, and the closely related concept of minors.

To fully understand minors and cofactors, we need to be comfortable with the idea of a subma-
trix, which is simply any matrix living inside a larger one. As an example, let’s think about the
matrix

A =

 1 3 1
−2 0 4
2 1 1

 .

We can create a submatrix of A by, say deleting its first row and first column:

A =

 1 3 1
−2 0 4
2 1 1

→ A11 =

(
0 4
1 1

)
.

We use the notation A11 to indicate that it is the submatrix of A that results from deleting row
1 and column 1 of A.

Similarly, we can get another submatrix A12 of A by deleting, say, the first row and second
column:

A =

 1 3 1
−2 0 4
2 1 1

→ A12 =

(
−2 4
2 1

)
.

We are now ready for the relevant definitions:

Definition. Let A be a square matrix with entries aij . The minor Mij of entry aij is the determi-
nant of the submatrix Aij of A that results from deleting row i and column j.

The cofactor Cij of entry aij is the quantity

Cij = (−1)i+jMij ,

that is

Cij =

{
Mij i + j is even

−Mij i + j is odd.
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Example

Calculate the minors and cofactors of entries a11 and a12 of the matrix

A =

 1 3 1
−2 0 4
2 1 1

 .

In order to calculate the minor M11 of entry a11, we need to find the submatrix A11 that results
from A by deleting row 1 and column 1; fortunately, we already calculated above that

A11 =

(
0 4
1 1

)
.

According to the definition, M11 is the determinant of this submatrix, i.e.

M11 = detA11

= det

(
0 4
1 1

)

= 0 · 1− 4 · 1
= −4.

So M11 = −4, and since
C11 = (−1)1+1M11 = 1 · −4,

we know that C11 = −4 as well.
Let’s calculate M12: again, we need to start with the submatrix A12 that results from A by

deleting row 1 and column 2:

A12 =

(
−2 4
2 1

)
.

Since M12 = detA12, we calculate

M12 = detA12

= det

(
−2 4
2 1

)

= −2 · 1− 4 · 2
= −10.

Finally, to get the cofactor of a12, we calculate

C12 = (−1)1+2M12 = −1(−10) = 10.
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Key Point. As mentioned in the definition, Cij is always equal either to Mij (if i + j is even),
or to −Mij (if i + j is odd). While you can certainly use this formula to determine which sign is
correct, it’s often easier to make that choice by use a simple observation: the cofactor C11 of a11 is
always positive, and the cofactor switches signs along any checkerboard pattern.

For example, if we wished to determine if the cofactor C43 of entry a43 in the matrix
0 1 1 −5 −1
−2 3 2 1 0
10 8 3 0 1
−3 4 4 1 0
1 0 2 7 1


is equal to Mij or to −Mij , we can start by picking any checkerboard pattern (right, left, up, or
down) from entry a11 to entry a43, say as follows:

0 1 1 −5 −1
−2 3 2 1 0
10 8 3 0 1
−3 4 4 1 0
1 0 2 7 1

 .

Now we know that C11 keeps the sign of M11; to determine what happens with C43, follow the
checkerboard pattern from a11 to a43, switching signs at each step:

+ 1 1 −5 −1
− + − + 0
10 8 3 − 1
−3 4 − + 0
1 0 2 7 1

 .

Since we ended at a − sign, we know that C43 = −M43.

Calculating Determinants Using Cofactor Expansion

We are almost ready to record a method for calculating the determinant of any square matrix. We
need a bit more data to be able to do so, starting with the definition of cofactor expansion:

Definition. The cofactor expansion of an n× n matrix A along row i is the sum of the products
of the entries aik of the ith row with their cofactors Cik, that is

cofactor expansion of A along row i =

n∑
k=1

aikCik = ai1Ci1 + ai2 + Ci2 + . . . + ainCin.

The cofactor expansion of A along row j is the sum of the products of the entries akj of the jth
column with their cofactors Ckj , that is

cofactor expansion of A along column j =

n∑
k=1

akjCkj = a1jC1j + a2j + C2j + . . . + anjCnj .
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Example

Calculate the cofactor expansion of

A =

 1 3 1
−2 0 4
2 1 1


along

1. the first row, and

2. the second column.

1. The formula for the cofactor expansion of A along the first row is

a11C11 + a12C12 + a13C13;

fortunately, we already have most of the data we need to make this calculation. We have
already determined that

C11 = −4 C12 = 10

a11 = 1 a12 = 3 a13 = 1.

To make the calculation, we simply need to find C13. Let’s start with the minor M13, the
determinant of the matrix obtained from A by deleting its first row and third column:

A13 =

(
−2 0
2 1

)
.

Now

M13 = detA13

= det

(
−2 0
2 1

)

= −2 · 1− 0 · 2
= −2,

and
C13 = (−1)1+3M13 = 1 · −2 = −2,

so our chart is completed:

C11 = −4 C12 = 10 C13 = −2

a11 = 1 a12 = 3 a13 = 1.
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Using the formula above for the cofactor expansion along row 1 of A, we have

a11C11 + a12C12 + a13C13 = 1 · −4 + 3 · 10 + 1 · −2

= −4 + 30− 2

= 24.

2. Next, let’s find the cofactor expansion of A along the second column. The formula for the
expansion is

a12C12 + a22C22 + a32C32;

we already have much of the necessary data:

We know that

C12 = 10 C22 =? C32 =?

a12 = 3 a22 = 0 a32 = 1.

Thus we simply need to calculate the cofactors C22 and C32. However, upon closer inspection,
it’s clear that we don’t even need to find C22! When we calculate the cofactor expansion along
column 2, C22 shows up only once, as a factor in the product a22C22. Since a22 = 0, we already
know that a22C22 = 0 as well.

So we simply need to calculate C32, again starting with the submatrix A32 obtained from A
by deleting row 3 and column 2:

A32 =

(
1 1
−2 4

)
.

Now

M32 = detA32

= det

(
1 1
−2 4

)

= 1 · 4− 1 · (−2)

= 6,

and
C32 = (−1)3+2M32 = −1 · 6 = −6,

and we have:

C12 = 10 C22 =? C32 = 6

a12 = 3 a22 = 0 a32 = 1.
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Using the formula above for the cofactor expansion along column 2 of A, we have

a12C12 + a22C22 + a32C32 = 3 · 10 + 0 + 1 · −6

= 30− 6

= 24.

Determinants

You may have noticed something quite interesting about the last example–the cofactor expansion
of A along row 1 was exactly the same number as the cofactor expansion of A along column 2.
If you think that this is too remarkable to be a fluke, you’re absolutely right, as indicated by the
following theorem:

Theorem. Given an n × n matrix A, its cofactor expansion along any row or any column is the
same.

The proof of this theorem is beyond the scope of this course; however, its consequences are
quite practical. In terms of the example above, we could have calculated the expansion of A along
row 2, row 3, column 1, or column 3; regardless, we would have gotten 24 as our answer each time.

We are finally ready to define the determinant function for any square matrix:

Definition. Let A be an n × n matrix. The determinant of A, denoted detA, is the cofactor
expansion of A along any row or column.

With this definition in mind, we should note that we have already calculated the determinant
of the matrix

A =

 1 3 1
−2 0 4
2 1 1

 ;

since its cofactor expansion is 24, we have

detA = 24.

As you may have guessed, cofactor expansion can be a rather tedious algorithm. However, there
are occasions in which the method is quite easy to use–the key is to make smart choices about which
rows or columns to choose in the expansion.

As indicated by the theorem, any time that we need to calculate a cofactor expansion, we are
free to choose whichever column or row we would like to use in the expansion (the answer will
always be the same!). This is a fact that we can exploit in our computation.
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We have actually already seen an example of the way in which the expansion becomes easier:
when we discussed the cofactor expansion of

A =

 1 3 1
−2 0 4
2 1 1


along its second column, we found that the expansion was fairly simple, since the second entry of
the column is 0. Because of this, we didn’t have to go to the trouble of calculating C22, which saved
us a good bit of time.

The following example illustrates the way in which expanding wisely (i.e., expanding rows or
columns with lots of 0s) can save us a great deal of time in making the determinant calculation.

Example

Given

A =


3 0 −2 0
1 1 5 1
2i 0 0 0
−1 3 2 7

 ,

find detA.
Since A is a 4×4 matrix, we have a good bit of calculation to do in order to find its determinant.

Since the determinant is just the cofactor expansion of A along any row or column, we should try
to calculate the expansion in a way that will minimize arithmetic.

Upon inspecting the matrix, you may have noticed that the third row of A has three 0s–more
than any of the other columns or rows. Because of this, we should choose this row for the expansion.
Thus our formula is

detA = a31C31 + a32C32 + a33C33 + a34C34.

However, since each of a32, a33, and a34 is 0, the formula reduces to

detA = a31C31.

Our next step is to calculate C31, so we need the submatrix A13 of A obtained by deleting row
3 and column 1:

A =


3 0 −2 0
1 1 5 1
2i 0 0 0
−1 3 2 7

→ A31 =

 0 −2 0
1 5 1
3 2 7

 .

The minor M31 is the determinant of A31, i.e.

M31 = det

 0 −2 0
1 5 1
3 2 7

 .

Of course, to calculate detA31, we will need to go through another iteration of cofactor expan-
sion. Again, we should try to choose a row or column for the expansion that will minimize the

8



Unit 1, Section 6: Determinants

amount of work we have to do. Inspecting A31, it is clear that the first row should be our choice
for the expansion; it contains two 0s, more than any other row or column.

Using bijs to indicate entries of A31 and Dijs to indicate the corresponding cofactors, the formula
for the determinant of A31 reduces from

detA31 = b11D11 + b12D12 + b13D13

to
detA31 = b12D12.

To get the cofactor D12 of A31, we again start by finding the determinant of the submatrix(
1 1
3 7

)
.

Since

det

(
1 1
3 7

)
= 1 · 7− 1 · 3

= 4,

the desired cofactor D12 is
D12 = (−1)1+2 · 4 = −4.

Thus the determinant of A31 is

detA31 = b12D12

= −2 · −4

= 8.

Of course, we calculated detA31 to get the minor M31; so

M31 = detA31 = 8,

and the corresponding cofactor is

C31 = (−1)3+1M31 = 8.

Since our formula for the determinant of A was

detA = a31C31,

and we know that a31 = 2i and C31 = 8, we have

detA = 16i.
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Determinants of Triangular and Diagonal Matrices

The idea presented above for choosing rows and columns wisely in the cofactor expansion leads to
a simple yet powerful observation about determinants of triangular and diagonal matrices:

Theorem. The determinant of a diagonal, upper triangular, or lower triangular matrix is the
product of its diagonal entries.

Let’s quickly think about why the theorem works, using the upper triangular matrix

A =


3 1 −1 2
0 2 −3 5
0 0 −1 1
0 0 0 4

 .

In order to find the determinant of A, it is clear that we should expand along the first column,
since it contains mostly 0s. Thus

detA = 3 · det

 2 −3 5
0 −1 1
0 0 4

 .

To find the determinant in the line above, we again need a cofactor expansion, and once again
it is clear that we should use the first column for the calculation: so

detA = 3 · det

 2 −3 5
0 −1 1
0 0 4



= 3 · 2 · det

(
−1 1
0 4

)
.

Of course, this last determinant is easy to calculate, particularly so since its 2, 1 entry is 0; we
have

detA = 3 · det

 2 −3 5
0 −1 1
0 0 4



= 3 · 2 · det

(
−1 1
0 4

)

= 3 · 2 · (−1 · 4− 0 · 1)

= 3 · 2 · (−1) · 4
= −24,

which is just the product of the diagonal entries.
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