Inverses of Matrices

We have seen that many ideas from the world of numbers, such as addition and multiplication, have analogues in matrix theory. The tables below summarizes these ideas:

Real numbers			Matrices		
Operation		Outcome	Ope	Operation	
Real number addition		Real number	Matrix addition		Matrix
Real number multiplication		Real number	Matrix m	Matrix multiplication	
Real numbers			Matrices		
Object	Importance		Object	Importance	
0 (as a number)	Additive identity		0 (matrix)	Additive identity	
1	Multiplicative identity		Ι	Multiplicative identity	

It turns out that there are more analogues between the real numbers and matrices. For example, we know that *most* real numbers have a multiplicative inverse: for example, the multiplicative inverse of 5 is 1/5 since

$$5 \times \frac{1}{5} = 1.$$

The numbers 5 and 1/5 are multiplicative inverses since their product is the multiplicative identity 1. (Question: which number(s) have no multiplicative inverse?)

It turns out that there is an analogous idea for square matrices, as indicated by the following definition:

Definition. An $n \times n$ matrix A has a multiplicative inverse B if

$$AB = BA = I_n.$$

For example, the matrix

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

has inverse

$$B = \begin{pmatrix} 0 & 1 & -\frac{1}{2} \\ 1 & -3 & \frac{3}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

You should verify via multiplication that

$$AB = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} = I.$$

Remark. A few quick notes here:

- If B is the multiplicative inverse of the $n \times n$ matrix A, so that $AB = I_n$, then necessarily B must be $n \times n$.
- If AB = I, then it automatically follows that BA = I.
- Inverses are unique. That is, if B and C are both inverses of A, then B = C. We prove this fact below.

Theorem. Suppose that A is an $n \times n$ matrix, and that B and C are both multiplicative inverses of A. Then B = C.

Proof. Since B is an inverse of A, we know that

$$AB = BA = I.$$

Similarly,

Clearly

$$AB = AC;$$

AC = CA = I.

multiplying both sides of this equation on the left by B, we see that

$$B(AB) = B(AC)$$

$$(BA)B = (BA)C$$

$$IB = IC$$

$$B = C.$$

Remark. The theorem above is actually a cancellation law: if

$$AB = AC$$

and A is invertible, then

$$B = C.$$

Note that this cancellation law is *only* guaranteed if A has an inverse. We saw an example earlier where the cancellation law *did not* work: with

$$A = \begin{pmatrix} 0 & 0 \\ -4 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 5 & 3 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 1 & 1 \\ 2 & 7 \end{pmatrix},$$

it is easy to see that

$$AB = AC,$$

but of course $B \neq C$. The reason that cancellation fails is that A is not invertible: the first row of A, which consists entirely of 0s, will force the first row of any product AB to consist entirely of 0s as well; so AB can never equal I.

A matrix A that has an inverse is called *invertible* or *nonsingular*, and we refer to its inverse using the notation A^{-1} . Using the example above, we write

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} \text{ and } A^{-1} = \begin{pmatrix} 0 & 1 & -\frac{1}{2} \\ 1 & -3 & \frac{3}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

(Note: the notation A^{-1} does *not* refer to division in any way. Indeed, we do not even have a definition for matrix division, nor will we see one!)

Just as the *number* 0 has no multiplicative inverse, there are many matrices which do not have multiplicative inverses; for example, we saw above that

$$A = \begin{pmatrix} 0 & 0 \\ -4 & 0 \end{pmatrix}$$

has no inverse. A matrix which does not have inverse is called *singular*.

One important question that we will need to answer is this: how can we determine whether a specific matrix A is singular or nonsingular? The question has a surprising answer, which we will study in this and several later sections.

Finding Inverses of 2×2 Matrices

As indicated earlier, we would like to have a reliable method for

- 1. determining whether or not a specific matrix has an inverse, and
- 2. *finding* inverses when they exist.

In general, it is quite simple to tell if a matrix is invertible or not, but much more difficult to *find* that inverse. However, for the special case of 2×2 matrices, calculating inverses is actually quite easy. Thus we will focus on the 2×2 case for now, and leave larger matrices for a later discussion.

Theorem. (a) The matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

has an inverse if and only if

 $ad - bc \neq 0.$

(b) If $ad - bc \neq 0$, then the inverse of A is the matrix

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Proof. Let's prove part (b) of the theorem: we would like to show that, if $ad - bc \neq 0$, then

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

To do so, we need to calculate AA^{-1} ; if the theorem is true, then

$$AA^{-1} = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Let's check the theorem by multiplying:

$$AA^{-1} = \frac{1}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$= \frac{1}{ad - bc} \begin{pmatrix} ad - bc & -ab + ab \\ cd - cd & -bc + ad \end{pmatrix}$$
$$= \frac{1}{ad - bc} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}$$
$$= \frac{1}{ad - bc} (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= I_2.$$

Thus our claim is correct-since $AA^{-1} = I_2$, the theorem does indeed give the correct formula for A^{-1} .

Example. Determine if the following matrices are invertible, and find their inverses if possible:

1. $A = \begin{pmatrix} -4 & 10\\ 2 & -3 \end{pmatrix}$
2. $B = \begin{pmatrix} 6 & 4\\ -4 & -\frac{8}{3} \end{pmatrix}$

1. To determine if

$$A = \begin{pmatrix} -4 & 10\\ 2 & -3 \end{pmatrix}$$

is invertible, we need to calculate the number ad - bc: with

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -4 & 10 \\ 2 & -3 \end{pmatrix}$$
, we have $ad - bc = 12 - 20 = -8$.

Since $ad - bc = -8 \neq 0$, this matrix is invertible; the formula from the theorem tells us that

$$A^{-1} = -\frac{1}{8} \begin{pmatrix} -3 & -10 \\ -2 & -4 \end{pmatrix}.$$

2. Unlike the previous matrix, it is clear that

$$B = \begin{pmatrix} 6 & 4\\ -4 & -\frac{8}{3} \end{pmatrix}$$

is not invertible: in this case,

$$ad - bc = -16 + 16 = 0.$$

Properties of Inverses

We have yet to answer several important questions about the way that matrix inverses work. We might wish to know

- the inverse of a product AB;
- the inverse of a power A^r ;
- or the inverse of a transpose A^{\top} .

We will answer these and several more related questions about inverses in the remainder of this section.

Inverses of Products

If we know that A and B are invertible $n \times n$ matrices with inverses A^{-1} and B^{-1} , respectively, it seems reasonable to guess that the product AB also has an inverse. Let's try to find a formula for the inverse $(AB)^{-1}$ of AB: we want a matrix X so that

$$(AB)X = I$$
, or $A(BX) = I$.

Since we are trying to determine a value for X, let's just leave it as a blank:

$$A(B__) = I. \tag{1}$$

It seems reasonable to guess that A^{-1} and B^{-1} should play a roll in the desired formula. In fact, we can quickly eliminate the factor of B in (1) using B^{-1} :

$$A(BB^{-1}_) = A(I_) = A_.$$

Of course, we still want

$$A(BB^{-1}_) = A_= I.$$

We've certainly moved a bit closer to our goal–all we need to do now is fill in the blank in a way that eliminates the factor of A. Of course, we can do this easily: since

$$AA^{-1} = I,$$

we know that A^{-1} is the missing factor.

Let's look at what we've done: we filled in the blank in

$$A(B__) = I$$

with $B^{-1}A^{-1}$. Indeed,

$$AB(B^{-1}A^{-1}) = A(B(B^{-1}A^{-1}))$$

= $A((BB^{-1})A^{-1})$
= $A(IA^{-1})$
= AA^{-1}
= I ,

so it is clear that

Theorem. If A and B are both invertible matrices, then

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Remark. We can actually generalize the theorem a bit: if each of A_1, A_2, \ldots, A_n is invertible, then so is the product

 $A_1 A_2 \ldots A_n$,

and

$$(A_1A_2...A_n)^{-1} = A_n^{-1}...A_2^{-1}A_1^{-1}.$$

In other words, the inverse of a product is the product of the inverses in reverse order.

Inverses of Powers of Matrices

We can define integer powers of a square matrix in a natural way, analogous to the way that powers of real numbers are defined:

Definition. If r is an integer, r > 0, and A is an $n \times n$ matrix, then

$$A^r = \underbrace{A \cdot A \cdot \ldots \cdot A}_{r \text{ factors}}.$$

We define A^0 to be

$$A^0 = I_n.$$

It is quite easy to see that the usual rules for combining powers of real numbers also work for combining powers of matrices:

Theorem. If r and s are nonnegative real numbers, and A is square, then

- $A^r A^s = A^{r+s}$
- $(A^r)^s = A^{rs}$.

Of course, if A is invertible, with inverse A^{-1} , then we might wish to know the inverse of some power of A. As an example, let's find a formula for the inverse of A^3 : we want

 A^3 _____ = *I*;

of course, if we replace the blank with three copies of A^{-1} , we should get the desired result. Let's check:

$$\begin{aligned} A^{3}(A^{-1})^{3} &= (A \cdot A \cdot A)(A^{-1} \cdot A^{-1} \cdot A^{-1}) \\ &= (A \cdot A) \cdot (A \cdot A^{-1}) \cdot (A^{-1} \cdot A^{-1}) \\ &= (A \cdot A) \cdot I \cdot (A^{-1} \cdot A^{-1}) \\ &= (A \cdot A) \cdot (A^{-1} \cdot A^{-1}) \\ &= A \cdot (A \cdot A^{-1}) \cdot A^{-1} \\ &= A \cdot I \cdot A^{-1} \\ &= A \cdot A^{-1} \\ &= I. \end{aligned}$$

Thus we have verified that

$$(A^3)^{-1} = (A^{-1})^3;$$

in general,

Theorem. If A is an invertible $n \times n$ matrix, r is a nonnegative integer, and k is a nonzero scalar, then

- $(A^r)^{-1} = (A^{-1})^r$,
- $(A^{-1})^{-1} = A$, and
- $(kA)^{-1} = k^{-1}A^{-1}$.

Instead of using the clumsy notation $(A^{-1})^r$, we use A^{-r} .

Key Point. The notation A^{-r} indicates the matrix that is the inverse of A^r .

Inverses of Transposes

Recall that the transpose of a matrix A is the matrix A^{\top} that we build by switching the rows and columns of A. For example, if

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}, \text{ then } A^{\top} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 0 & 5 \end{pmatrix}.$$

If A is a square invertible matrix, then we should be able to find a formula for the inverse $(A^{\top})^{-1}$ of A^{\top} ; the following theorem provides us with that formula:

Theorem. If the $n \times n$ matrix A is invertible, then so is A^{\top} , and

$$(A^{\top})^{-1} = (A^{-1})^{\top}.$$

In other words, to find the inverse of the transpose of A, just calculate the inverse of A and take *its* transpose!

Proof. Since A is invertible, A^{-1} exists, and $AA^{-1} = I$. Taking transposes of both sides, we see that

$$(AA^{-1})^{\top} = I^{\top} (AA^{-1})^{\top} = I (A^{-1})^{\top}A^{\top} = I;$$

the last line guarantees that $(A^{-1})^{\top}$ is the unique inverse of A^{\top} , and we have

$$(A^{-1})^{\top} = (A^{\top})^{-1}.$$