Inverses of Matrices

We have seen that many ideas from the world of numbers, such as addition and multiplication, have analogues in matrix theory. The tables below summarizes these ideas:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Outcome</th>
<th>Operation</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real number addition</td>
<td>Real number</td>
<td>Matrix addition</td>
<td>Matrix</td>
</tr>
<tr>
<td>Real number multiplication</td>
<td>Real number</td>
<td>Matrix multiplication</td>
<td>Matrix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object</th>
<th>Importance</th>
<th>Object</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (as a number)</td>
<td>Additive identity</td>
<td>0 (matrix)</td>
<td>Additive identity</td>
</tr>
<tr>
<td>1</td>
<td>Multiplicative identity</td>
<td>I</td>
<td>Multiplicative identity</td>
</tr>
</tbody>
</table>

It turns out that there are more analogues between the real numbers and matrices. For example, we know that most real numbers have a multiplicative inverse: for example, the multiplicative inverse of 5 is $1/5$ since

$$5 \times \frac{1}{5} = 1.$$

The numbers 5 and $1/5$ are multiplicative inverses since their product is the multiplicative identity 1. (Question: which number(s) have no multiplicative inverse?)

It turns out that there is an analogous idea for square matrices, as indicated by the following definition:

Definition. An $n \times n$ matrix A has a multiplicative inverse B if

$$AB = BA = I_n.$$

For example, the matrix

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

has inverse

$$B = \begin{pmatrix} 0 & 1 & -\frac{1}{2} \\ 1 & -3 & \frac{3}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

You should verify via multiplication that

$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I.$$
Remark. A few quick notes here:

- If B is the multiplicative inverse of the $n \times n$ matrix A, so that $AB = I_n$, then necessarily B must be $n \times n$.
- If $AB = I$, then it automatically follows that $BA = I$.
- Inverses are unique. That is, if B and C are both inverses of A, then $B = C$. We prove this fact below.

Theorem. Suppose that A is an $n \times n$ matrix, and that B and C are both multiplicative inverses of A. Then $B = C$.

Proof. Since B is an inverse of A, we know that

$$AB = BA = I.$$

Similarly,

$$AC = CA = I.$$

Clearly

$$AB = AC;$$

multiplying both sides of this equation on the left by B, we see that

$$B(AB) = B(AC)$$
$$= (BA)B = (BA)C$$
$$IB = IC$$
$$B = C.$$

Remark. The theorem above is actually a cancellation law: if

$$AB = AC$$

and A is invertible, then

$$B = C.$$

Note that this cancellation law is only guaranteed if A has an inverse. We saw an example earlier where the cancellation law did not work: with

$$A = \begin{pmatrix} 0 & 0 \\ -4 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 5 & 3 \end{pmatrix}, \quad \text{and} \quad C = \begin{pmatrix} 1 & 1 \\ 2 & 7 \end{pmatrix},$$
it is easy to see that

\[AB = AC, \]

but of course \(B \neq C \). The reason that cancellation fails is that \(A \) is not invertible: the first row of \(A \), which consists entirely of 0s, will force the first row of any product \(AB \) to consist entirely of 0s as well; so \(AB \) can never equal \(I \).

A matrix \(A \) that has an inverse is called \textit{invertible} or \textit{nonsingular}, and we refer to its inverse using the notation \(A^{-1} \). Using the example above, we write

\[
A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{and} \quad A^{-1} = \begin{pmatrix} 0 & 1 & -\frac{1}{2} \\ 1 & -3 & \frac{3}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}.
\]

(Note: the notation \(A^{-1} \) does not refer to division in any way. Indeed, we do not even have a definition for matrix division, nor will we see one!)

Just as the number 0 has no multiplicative inverse, there are many matrices which do not have multiplicative inverses; for example, we saw above that

\[
A = \begin{pmatrix} 0 & 0 \\ -4 & 0 \end{pmatrix}
\]

has no inverse. A matrix which does not have inverse is called \textit{singular}.

One important question that we will need to answer is this: how can we determine whether a specific matrix \(A \) is singular or nonsingular? The question has a surprising answer, which we will study in this and several later sections.

Finding Inverses of 2 × 2 Matrices

As indicated earlier, we would like to have a reliable method for

1. determining whether or not a specific matrix has an inverse, and
2. finding inverses when they exist.

In general, it is quite simple to tell if a matrix is invertible or not, but much more difficult to find that inverse. However, for the special case of 2 × 2 matrices, calculating inverses is actually quite easy. Thus we will focus on the 2 × 2 case for now, and leave larger matrices for a later discussion.

Theorem. (a) The matrix

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]
has an inverse if and only if \(ad - bc \neq 0 \).

(b) If \(ad - bc \neq 0 \), then the inverse of \(A \) is the matrix

\[
A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.
\]

Proof. Let’s prove part (b) of the theorem: we would like to show that, if \(ad - bc \neq 0 \), then

\[
A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.
\]

To do so, we need to calculate \(AA^{-1} \); if the theorem is true, then

\[
AA^{-1} = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Let’s check the theorem by multiplying:

\[
AA^{-1} = \frac{1}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
\]

\[
= \frac{1}{ad - bc} \begin{pmatrix} ad - bc & -ab + ab \\ cd - cd & -bc + ad \end{pmatrix}
\]

\[
= \frac{1}{ad - bc} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}
\]

\[
= \frac{1}{ad - bc} (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
= I_2.
\]

Thus our claim is correct—since \(AA^{-1} = I_2 \), the theorem does indeed give the correct formula for \(A^{-1} \).

Example. Determine if the following matrices are invertible, and find their inverses if possible:

1. \(A = \begin{pmatrix} -4 & 10 \\ 2 & -3 \end{pmatrix} \)

2. \(B = \begin{pmatrix} 6 & 4 \\ -4 & -\frac{2}{3} \end{pmatrix} \)
1. To determine if

\[A = \begin{pmatrix} -4 & 10 \\ 2 & -3 \end{pmatrix} \]

is invertible, we need to calculate the number \(ad - bc \): with

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -4 & 10 \\ 2 & -3 \end{pmatrix},
\]
we have \(ad - bc = 12 - 20 = -8 \).

Since \(ad - bc = -8 \neq 0 \), this matrix is invertible; the formula from the theorem tells us that

\[A^{-1} = \frac{-1}{8} \begin{pmatrix} -3 & -10 \\ -2 & -4 \end{pmatrix}. \]

2. Unlike the previous matrix, it is clear that

\[B = \begin{pmatrix} 6 & 4 \\ -4 & -\frac{8}{3} \end{pmatrix} \]

is not invertible: in this case,

\[ad - bc = -16 + 16 = 0. \]

Properties of Inverses

We have yet to answer several important questions about the way that matrix inverses work. We might wish to know

- the inverse of a product \(AB \);
- the inverse of a power \(A^r \);
- or the inverse of a transpose \(A^\top \).

We will answer these and several more related questions about inverses in the remainder of this section.

Inverses of Products

If we know that \(A \) and \(B \) are invertible \(n \times n \) matrices with inverses \(A^{-1} \) and \(B^{-1} \), respectively, it seems reasonable to guess that the product \(AB \) also has an inverse. Let’s try to find a formula for the inverse \((AB)^{-1}\) of \(AB \): we want a matrix \(X \) so that

\[(AB)X = I, \text{ or } A(BX) = I. \]

Since we are trying to determine a value for \(X \), let’s just leave it as a blank:

\[A(B\underline{\text{_____}}) = I. \] (1)
It seems reasonable to guess that A^{-1} and B^{-1} should play a roll in the desired formula. In fact, we can quickly eliminate the factor of B in (1) using B^{-1}:

$$A(BB^{-1}) = A(I) = A.$$

Of course, we still want

$$A(BB^{-1}) = A = I.$$

We’ve certainly moved a bit closer to our goal—all we need to do now is fill in the blank in a way that eliminates the factor of A. Of course, we can do this easily: since

$$AA^{-1} = I,$$

we know that A^{-1} is the missing factor.

Let’s look at what we’ve done: we filled in the blank in

$$A(B__) = I$$

with $B^{-1}A^{-1}$. Indeed,

$$AB(B^{-1}A^{-1}) = A(B(B^{-1}A^{-1}))$$
$$= A((BB^{-1})A^{-1})$$
$$= A(IA^{-1})$$
$$= AA^{-1}$$
$$= I,$$

so it is clear that

Theorem. If A and B are both invertible matrices, then

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Remark. We can actually generalize the theorem a bit: if each of A_1, A_2, \ldots, A_n is invertible, then so is the product

$$A_1A_2\ldots A_n,$$

and

$$(A_1A_2\ldots A_n)^{-1} = A_n^{-1}\ldots A_2^{-1}A_1^{-1}.$$

In other words, the inverse of a product is the product of the inverses in reverse order.
Inverses of Matrices

We can define integer powers of a square matrix in a natural way, analogous to the way that powers of real numbers are defined:

Definition. If \(r \) is an integer, \(r > 0 \), and \(A \) is an \(n \times n \) matrix, then

\[
A^r = A \cdot A \cdot \ldots \cdot A.
\]

We define \(A^0 \) to be

\[
A^0 = I_n.
\]

It is quite easy to see that the usual rules for combining powers of real numbers also work for combining powers of matrices:

Theorem. If \(r \) and \(s \) are nonnegative real numbers, and \(A \) is square, then

- \(A^r A^s = A^{r+s} \)
- \((A^r)^s = A^{rs} \).

Of course, if \(A \) is invertible, with inverse \(A^{-1} \), then we might wish to know the inverse of some power of \(A \). As an example, let’s find a formula for the inverse of \(A^3 \): we want

\[
A^3 = I;
\]

of course, if we replace the blank with three copies of \(A^{-1} \), we should get the desired result. Let’s check:

\[
A^3 (A^{-1})^3 = (A \cdot A \cdot A)(A^{-1} \cdot A^{-1} \cdot A^{-1})
\]

\[
= (A \cdot A) \cdot (A^{-1} \cdot A^{-1}) \cdot (A^{-1} \cdot A^{-1})
\]

\[
= (A \cdot A) \cdot I \cdot (A^{-1} \cdot A^{-1})
\]

\[
= (A \cdot A) \cdot (A^{-1} \cdot A^{-1})
\]

\[
= A \cdot (A^{-1} \cdot A^{-1})
\]

\[
= A \cdot I \cdot A^{-1}
\]

\[
= A \cdot A^{-1}
\]

\[
= I.
\]

Thus we have verified that

\[
(A^3)^{-1} = (A^{-1})^3;
\]

in general,

Theorem. If \(A \) is an invertible \(n \times n \) matrix, \(r \) is a nonnegative integer, and \(k \) is a nonzero scalar, then
Inverses of Matrices

- \((A^r)^{-1} = (A^{-1})^r\),
- \((A^{-1})^{-1} = A\), and
- \((kA)^{-1} = k^{-1}A^{-1}\).

Instead of using the clumsy notation \((A^{-1})^r\), we use \(A^{-r}\).

Key Point. The notation \(A^{-r}\) indicates the matrix that is the inverse of \(A^r\).

Inverses of Transposes

Recall that the transpose of a matrix \(A\) is the matrix \(A^\top\) that we build by switching the rows and columns of \(A\). For example, if

\[
A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}, \text{ then } A^\top = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 0 & 5 \end{pmatrix}.
\]

If \(A\) is a square invertible matrix, then we should be able to find a formula for the inverse \((A^\top)^{-1}\) of \(A^\top\); the following theorem provides us with that formula:

Theorem. If the \(n \times n\) matrix \(A\) is invertible, then so is \(A^\top\), and

\[
(A^\top)^{-1} = (A^{-1})^\top.
\]

In other words, to find the inverse of the transpose of \(A\), just calculate the inverse of \(A\) and take its transpose!

Proof. Since \(A\) is invertible, \(A^{-1}\) exists, and \(AA^{-1} = I\). Taking transposes of both sides, we see that

\[
(AA^{-1})^\top = I^\top
\]

\[
(AA^{-1})^\top = I
\]

\[
(A^{-1})^\top A^\top = I;
\]

the last line guarantees that \((A^{-1})^\top\) is the unique inverse of \(A^\top\), and we have

\[
(A^{-1})^\top = (A^\top)^{-1}.
\]