
Unit 1, Section 10: Interconnections Between Matrices and Linear Systems

Matrices and Linear Systems, and an Inversion Algorithm

There are some particularly deep interconnections between linear systems and their corresponding
matrices. To understand the connections in more detail, let’s recall how to build the matrix of a
linear system:

A linear system of m equations in n unknowns, such as

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
... (1)

am1x1 + am2x2 + . . . + amnxn = bm

has m× n augmented matrix 
a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2
...

. . . |
am1 am2 . . . amn | bm

 .

We will begin by verifying that this encoding makes sense. Starting with the system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm

we’re going to create 3 related matrices:

• the m× n coefficient matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .

am1 am2 . . . amn

 ;

• the n× 1 matrix of unknowns

x =


x1
x2
...
xn

 ;

• and the n× 1 constant matrix

b =


b1
b2
...
bm

 .
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Let’s calculate the product Ax:

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .

am1 am2 . . . amn



x1
x2
...
xn



=


a11x1 + a12x2 + . . . + a1nxn
a21x1 + a22x2 + . . . + a2nxn

...
am1x1 + am2x2 + . . . + amnxn



=


b1
b2
...
bm


= b.

In other words, we can rewrite the system in (1) as the matrix equation

Ax = b.

Notice that the augmented matrix
a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2
...

. . . |
am1 am2 . . . amn | bm


is calculated by suppressing x and adjoining A and b,(

A | b
)
.

The solution technique we learned in the previous section effectively determines the values of the
unknowns x1, x2, etc., using matrix operations on the augmented matrix.

The following theorem indicates a few of the many ways in which the coefficient matrix for a
linear system of n equations in n unknowns provides us with information about the system itself:

Theorem. Let A be an n× n matrix. Then the following are equivalent:

• A is invertible.

• Ax = 0 has only the trivial solution.
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• The reduced row echelon form of A is In.

• Ax = b is consistent for every n× 1 matrix b.

• Ax = b has exactly one solution for every n× 1 matrix b.

• detA 6= 0.

Recall that the phrase “the following are equivalent” means that either all the statements are
true about a particular matrix, or all of them are false.

For example, if A is the coefficient matrix for a linear system, and we calculate that detA = 0,
then we automatically know that:

• A is not invertible.

• Ax = 0 has infinitely many solutions.

• The reduced row echelon form of A has at least 1 row of 0s.

• Ax = b is inconsistent for some n× 1 matrix b.

Thus the theorem gives us a great deal of information about a system and its coefficient matrix
if we happen to know just one bit of information about the matrix itself.

We do not yet have the tools to prove the entire theorem, but certain parts are easy to ascertain.
For example, suppose that we know that the reduced row echelon form of A is In, that is, there is
some sequence of row operations that reduces the n× n matrix A to

1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1


Clearly the system Ix = b, 

1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1



x1
x2
...
xn

 =


b1
b2
...
bn

 ,

has precisely one solution x for each n × 1 matrix b: just choose x = b. The matrix equations
Ax = b and Ix = b share solution sets, so the system Ax = b also has precisely one solution x for
each n× 1 matrix b.

Key Point. We noted earlier in the course that the only number that does not have an inverse
is 0. Now we have an matrix analogue for this fact: the only square matrices without inverses are
those with determinant 0.
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An Inversion Algorithm

Now that we know an easy way to determine whether or not an n× n matrix A is invertible (just
check detA!) we are ready to see an algorithm that will produce the inverse of A, when it exists.

Theorem. Let A be an n× n matrix. The following algorithm will produce the matrix A−1:

1. Create the matrix
(
A | I

)
by adjoining the n× n identity matrix to A.

2. Apply elementary row operations to the entire matrix, reducing A to the identity.

3. The matrix now has form
(
I | A−1

)
, where A−1 is obtained by applying the same sequence

of elementary row operations from step 2 to I.

The proof of this theorem is beyond the scope of this course.

Example. Find the inverse of

A =


2 0 0 −2
1 3 1 0
0 0 −3 0
1 2 0 0

 .

We begin by augmenting A with I4; as we apply elementary row operations to A, we will apply
them to I as well: 

2 0 0 −2 1 0 0 0
1 3 1 0 0 1 0 0
0 0 −3 0 0 0 1 0
1 2 0 0 0 0 0 1

 .

Let’s start by creating a leading 1 in the first row:
2 0 0 −2 1 0 0 0
1 3 1 0 0 1 0 0
0 0 −3 0 0 0 1 0
1 2 0 0 0 0 0 1

→


1 0 0 −1 1
2

0 0 0
1 3 1 0 0 1 0 0
0 0 −3 0 0 0 1 0
1 2 0 0 0 0 0 1

 .
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Next, we should create 0s below this leading 1:
1 0 0 −1 1

2
0 0 0

1 3 1 0 0 1 0 0
0 0 −3 0 0 0 1 0
1 2 0 0 0 0 0 1

 →


1 0 0 −1 1

2
0 0 0

1− 1 3 1 0 + 1 0− 1
2

1 0 0
0 0 −3 0 0 0 1 0
1 2 0 0 0 0 0 1



=


1 0 0 −1 1

2
0 0 0

0 3 1 1 − 1
2

1 0 0
0 0 −3 0 0 0 1 0
1 2 0 0 0 0 0 1



→


1 0 0 −1 1

2
0 0 0

0 3 1 1 − 1
2

1 0 0
0 0 −3 0 0 0 1 0

1− 1 2 0 0 + 1 0− 1
2

0 0 1



=


1 0 0 −1 1

2
0 0 0

0 3 1 1 − 1
2

1 0 0
0 0 −3 0 0 0 1 0
0 2 0 1 − 1

2
0 0 1

 .

Next, we want a leading 1 in row 2:
1 0 0 −1 1

2
0 0 0

0 3 1 1 − 1
2

1 0 0
0 0 −3 0 0 0 1 0
0 2 0 1 − 1

2
0 0 1

 →


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 −3 0 0 0 1 0
0 2 0 1 − 1

2
0 0 1

 .

Let’s create 0 entries below the leading 1 from row 2:
1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 −3 0 0 0 1 0
0 2 0 1 − 1

2
0 0 1

 →


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3

− 1
6

1
3

0 0
0 0 −3 0 0 0 1 0
0 2− 2 0− 2

3
1− 2

3
− 1

2
+ 1

3
0− 2

3
0 1



=


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 −3 0 0 0 1 0
0 0 − 2

3
1
3
− 1

6
− 2

3
0 1

 .
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Next we need a leading 1 in row 3:
1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 −3 0 0 0 1 0
0 0 − 2

3
1
3
− 1

6
− 2

3
0 1

 →


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 1 0 0 0 − 1

3
0

0 0 − 2
3

1
3
− 1

6
− 2

3
0 1

 ,

followed by 0 entries below it:
1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 1 0 0 0 − 1

3
0

0 0 − 2
3

1
3
− 1

6
− 2

3
0 1

 →


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 1 0 0 0 − 1

3
0

0 0 − 2
3
+ 2

3
1
3
− 1

6
− 2

3
0− 2

9
1



→


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 1 0 0 0 − 1

3
0

0 0 0 1
3
− 1

6
− 2

3
− 2

9
1


and a leading 1 in the last row:

1 0 0 −1 1
2

0 0 0
0 1 1

3
1
3
− 1

6
1
3

0 0
0 0 1 0 0 0 − 1

3
0

0 0 0 1
3
− 1

6
− 2

3
− 2

9
1

 →


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 1 0 0 0 − 1

3
0

0 0 0 1 − 1
2
−2 − 2

3
3

 .

Finally, we need to create 0 entries above all of the leading 1s; starting with the last row, we
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have
1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

6
1
3

0 0
0 0 1 0 0 0 − 1

3
0

0 0 0 1 − 1
2
−2 − 2

3
3

 →


1 0 0 −1 1

2
0 0 0

0 1 1
3

1
3
− 1

3
− 1

6
+ 1

6
1
3
+ 2

3
0 + 2

9
0− 1

0 0 1 0 0 0 − 1
3

0
0 0 0 1 − 1

2
−2 − 2

3
3



=


1 0 0 −1 1

2
0 0 0

0 1 1
3

0 0 1 2
9
−1

0 0 1 0 0 0 − 1
3

0
0 0 0 1 − 1

2
−2 − 2

3
3



→


1 0 0 −1 + 1 1

2
− 1

2
0− 2 0− 2

3
0 + 3

0 1 1
3

0 0 1 2
9

−1
0 0 1 0 0 0 − 1

3
0

0 0 0 1 − 1
2

−2 − 2
3

3



=


1 0 0 0 0 −2 − 2

3
3

0 1 1
3

0 0 1 2
9
−1

0 0 1 0 0 0 − 1
3

0
0 0 0 1 − 1

2
−2 − 2

3
3

 .

Finally, we need to create 0 entries above the leading 1 from row 3:
1 0 0 0 0 −2 − 2

3
3

0 1 1
3

0 0 1 2
9
−1

0 0 1 0 0 0 − 1
3

0
0 0 0 1 − 1

2
−2 − 2

3
3

 →


1 0 0 0 0 −2 − 2

3
3

0 1 1
3
− 1

3
0 0 1 2

9
+ 1

9
−1

0 0 1 0 0 0 − 1
3

0
0 0 0 1 − 1

2
−2 − 2

3
3



=


1 0 0 0 0 −2 − 2

3
3

0 1 0 0 0 1 1
3
−1

0 0 1 0 0 0 − 1
3

0
0 0 0 1 − 1

2
−2 − 2

3
3

 .

Notice that we have now reduced A to the identity; the remaining submatrix on the right hand
side of the augmented matrix is A−1. We conclude (and you should check) that

A−1 =


0 −2 − 2

3
3

0 1 1
3
−1

0 0 − 1
3

0
− 1

2
−2 − 2

3
3

 .
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