Trigonometry Review

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by $\theta = \frac{s}{r}$:

To convert from radians (rad) to degrees ($^\circ$) and vice versa, use the following conversions:

$$1 \text{ rad} = \frac{180^\circ}{\pi}, \quad 1^\circ = \frac{\pi}{180} \text{ rad}.$$

In particular, $180^\circ = \pi$ rad.

Given a right triangle (a triangle one of whose angles is $\frac{\pi}{2}$ rad), choose one of the acute angles ($< \frac{\pi}{2}$ rad), and call it θ. We label the sides relative to θ as follows:

Let o, a, and h be the lengths of the opposite side, adjacent side, and hypoteneuse, respectively. We use these numbers to define the following functions:

$$\sin \theta = \frac{o}{h}, \quad \cos \theta = \frac{a}{h}, \quad \tan \theta = \frac{o}{a} = \frac{\sin \theta}{\cos \theta}, \quad \csc \theta = \frac{h}{o} = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{h}{a} = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{a}{o} = \frac{1}{\tan \theta}.$$
Some “special” angles have particularly nice trigonometric properties; we can use a unit circle (a circle of radius 1) to determine the trigonometric values for such angles.

First, let’s consider the special angle $\theta = \frac{\pi}{6}$:

We can determine third angle in the right triangle above, since the sum of the degrees in the angles of any triangle must be π rad. The third angle is

$$\alpha = \pi - \frac{\pi}{2} - \frac{\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3}.$$

Now that we know values for all of its angles, let’s inspect the triangle above more closely; we would like to find values for $\sin\left(\frac{\pi}{6}\right)$, $\cos\left(\frac{\pi}{6}\right)$, etc. To do so, we must determine the lengths of each of the sides; fortunately, we know that the length of the hypotenuse is 1 since the triangle was embedded in a unit circle. Let’s “double” the triangle, as depicted below:

This new larger triangle is equiangular (all of its angles are $\frac{\pi}{3}$), thus is also equilateral—all of its sides have length 1. It is clear that the length of the opposite side is $o = \frac{1}{2}$, and we can use the Pythagorean identity $o^2 + a^2 = h^2$ to see that $a = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$.

So we have

$$\sin\left(\frac{\pi}{6}\right) = \frac{o}{h} = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{a}{h} = \frac{\sqrt{3}}{2}, \quad \text{and} \quad \tan\left(\frac{\pi}{6}\right) = \frac{o}{a} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.$$
Let’s do the same thing for \(\theta = \frac{\pi}{4} \). The unit circle and right triangle for this case are graphed below:

![Unit Circle and Right Triangle for \(\theta = \frac{\pi}{4} \)](image)

It is clear that the remaining angle is \(\frac{\pi}{4} \); since two angles of the triangle are equal, the opposite sides are as well; thus \(a = o \). By the Pythagorean identity, \(a^2 + o^2 = h^2 \), which we rewrite as \(a^2 + a^2 = 1 \) or \(2a^2 = 1 \). So \(a = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \). Then

\[
\sin \frac{\pi}{4} = \frac{o}{h} = \frac{1}{\sqrt{2}}, \quad \cos \frac{\pi}{4} = \frac{a}{h} = \frac{1}{\sqrt{2}}, \quad \text{and} \quad \tan \frac{\pi}{4} = \frac{o}{a} = 1.
\]

I strongly recommend that you memorize the following table of trig values at special angles in the first quadrant:

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0</th>
<th>(\frac{\pi}{6})</th>
<th>(\frac{\pi}{4})</th>
<th>(\frac{\pi}{3})</th>
<th>(\frac{\pi}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin \theta)</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>1</td>
</tr>
<tr>
<td>(\cos \theta)</td>
<td>1</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>(\tan \theta)</td>
<td>0</td>
<td>(\sqrt{3})</td>
<td>1</td>
<td>(\sqrt{3})</td>
<td>undefined</td>
</tr>
</tbody>
</table>

Our current definitions for the six trigonometric functions only apply to acute angles, i.e. angles less than \(\frac{\pi}{2} \); however, we may extend the definitions to apply to any angle.

Given an angle \(\theta \) in the \(xy \) plane, we may draw a ray from the origin in the appropriate direction, pick a point \((x, y)\) on the ray, and label the segment from the origin to \((x, y)\) with \(r \):
Then we define the trigonometric functions for angle θ as follows:

\[
\sin \theta = \frac{y}{r} \quad \cos \theta = \frac{x}{r} \quad \tan \theta = \frac{y}{x} \\
\csc \theta = \frac{r}{y} \quad \sec \theta = \frac{r}{x} \quad \cot \theta = \frac{x}{y}
\]

If $\theta < \frac{\pi}{2}$, then these definitions are precisely the same as the earlier definitions; these newer definitions simply allow us to apply the trigonometric functions to angles greater than $\frac{\pi}{2}$.

Note that the definitions tell us the signs of each of the trig functions in the different quadrants:

Another helpful set of facts to have at our disposal involves the definitions of the trig functions on the unit circle. Since $h = 1$, it is easy to check the accuracy of the following diagram:
Finding the values of trig functions for values of θ that do not lie in the first quadrant is made much simpler by using reference angles, which allow us to return to acute angles.

For example, consider finding $\sin \theta$ in the unit circle ($r = 1$) below:

In this example, $\sin \theta = \frac{y}{r} = y$. Now consider $\sin \alpha$:

It turns out that $\sin \alpha = y$ as well; in fact, if $\theta + \alpha = \pi$, then $\sin \theta = \sin \alpha$ for any $\frac{\pi}{2} < \theta \pi$. Since it is easier to evaluate trig functions on acute angles, we would really prefer to work with α, and we call α a reference angle for θ.

5
We can actually use a similar process for each of the trig functions in each of the four quadrants; the reference angle α in each quadrant is graphed below:

Quadrant 2

Quadrant 3

Quadrant 4
To determine the value for $\sin \theta$, $\cos \theta$, or $\tan \theta$, simply evaluate the trig function on the reference angle α, then change the sign of the answer according to whether the function is positive or negative on the quadrant in which θ lies.

For example, let’s find $\sin \frac{4\pi}{3}$, $\cos \frac{4\pi}{3}$, and $\tan \frac{4\pi}{3}$:

The reference angle for $\theta = \frac{4\pi}{3}$ is

$$\alpha = \pi - \frac{4\pi}{3} = \frac{\pi}{3}.$$

In addition, the sine and cosine functions are negative in the third quadrant, whereas the tangent function is positive. Since

$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2}, \quad \text{and} \quad \tan \frac{\pi}{3} = \sqrt{3},$$

we see that

$$\sin \frac{4\pi}{3} = -\frac{\sqrt{3}}{2}, \quad \cos \frac{4\pi}{3} = -\frac{1}{2}, \quad \text{and} \quad \tan \frac{4\pi}{3} = \sqrt{3}.$$
Finally, here are a few important identities to keep in mind when working with trig functions:

\[
\sin^2 \theta + \cos^2 \theta = 1, \quad \sec^2 \theta = \tan^2 \theta + 1, \quad \csc^2 \theta = \cot^2 \theta + 1
\]

\[
\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta
\]

\[
\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta
\]

\[
\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}
\]

\[
\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}
\]