1. Every complex number has form \(a + bi \), where \(a \) and \(b \) are real numbers. In addition, every complex number other than 0 has a multiplicative inverse, i.e., another complex number \(c + di \) so that \((a + bi)(c + di) = 1 \). Suppose that \(a \) and \(b \) are real numbers, and at least one of them is not 0. Find the real numbers \(c \) and \(d \) so that \(c + di \) is the multiplicative inverse of \(a + bi \). Hint: start by thinking of \(c + di \) as the number

\[
 c + di = \frac{1}{a + bi}.
\]

Then use a calculus trick to rewrite this fraction with no complex numbers in the denominator.*

2. Find two distinct square roots of \(i \).

3. Matrices \(A \), \(B \) and \(C \) are given by

\[
 A = \begin{pmatrix}
 1 & 1 & -3 \\
 2 & 1 & -4
 \end{pmatrix}, \quad B = \begin{pmatrix}
 4 & 1 & 0 \\
 -1 & 3 & 1 \\
 0 & -5 & 1
 \end{pmatrix}, \quad \text{and} \quad C = \begin{pmatrix}
 0 & 0 & -1 \\
 4 & 2 & 0 \\
 -1 & 3 & 1
 \end{pmatrix}.
\]

(a) Find \(A^\top \).
(b) Calculate \(AB \).
(c) Calculate \(B - C \).
(d) Find the matrix \(3C \).

4. Matrix \(A \) has size \(3 \times 5 \); \(B \) and \(C \) are both \(5 \times 7 \); and \(D \) has size \(3 \times 3 \). If the following calculations are possible, determine the size of the resulting matrix. Otherwise, write “not defined”.

(a) \(AB \)
(b) \(BA \)
(c) \(B + C \)
(d) \(A^\top D \)

5. Suppose that \(A \) is an \(m \times n \) matrix, and that \(B \) is a matrix so that \(AB \) and \(BA \) are both defined. Prove that \(B \) has size \(n \times m \).

*The multiplicative inverse of a complex number is unique, but I am not requiring you to prove this.