Orthonormality and the Gram-Schmidt Process

The basis

$$(e_1, e_2, \ldots, e_n)$$

for \mathbb{R}^n (or \mathbb{C}^n) is considered the *standard* basis for the space because of its geometric properties under the standard inner product:

- 1. $||e_i|| = 1$ for all *i*, and
- 2. e_i , e_j are orthogonal whenever $i \neq j$.

With this idea in mind, we record the following definitions:

Definitions 6.23/6.25. Let V be an inner product space.

- A list of vectors in V is called *orthonormal* if each vector in the list has norm 1, and if each pair of distinct vectors is orthogonal.
- A basis for V is called an *orthonormal basis* if the basis is an orthonormal list.

Remark. If a list (v_1, \ldots, v_n) is orthonormal, then

$$\langle v_i, v_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

Example. The list

$$(e_1, e_2, \ldots, e_n)$$

forms an orthonormal basis for $\mathbb{R}^n/\mathbb{C}^n$ under the standard inner products on those spaces.

Example. The standard basis for $\mathcal{M}_n(\mathbb{C})$ consists of n^2 matrices e_{ij} , $1 \leq i, j \leq n$, where e_{ij} is the $n \times n$ matrix with a 1 in the ij entry and 0s elsewhere. Under the standard inner product on $\mathcal{M}_n(\mathbb{C})$ this is an orthonormal basis for $\mathcal{M}_n(\mathbb{C})$:

1. $\langle e_{ij}, e_{ij} \rangle$:

$$\langle e_{ij}, e_{ij} \rangle$$
 = $\operatorname{tr}(e_{ij}^* e_{ij})$
= $\operatorname{tr}(e_{ji} e_{ij})$
= $\operatorname{tr}(e_{jj})$
= 1.

2. $\langle e_{ij}, e_{kl} \rangle$, $k \neq i$ or $j \neq l$:

$$\langle e_{ij}, e_{kl} \rangle = \operatorname{tr}(e_{kl}^* e_{ij})$$

$$= \operatorname{tr}(e_{lk} e_{ij})$$

$$= \operatorname{tr}(\mathbf{0}) \text{ if } k \neq i, \text{ or } \operatorname{tr}(e_{lj}) \text{ if } k = i \text{ but } l \neq j$$

$$= 0.$$

So every vector in the list has norm 1, and every distinct pair of vectors is orthogonal.

Example. Show that the list

$$\left(\begin{pmatrix}1/\sqrt{2} & 0\\ 0 & 1/\sqrt{2}\end{pmatrix}, \begin{pmatrix}-1/\sqrt{2} & 0\\ 0 & 1/\sqrt{2}\end{pmatrix}, \begin{pmatrix}0 & -1/\sqrt{2}\\ 1/\sqrt{2} & 0\end{pmatrix}, \begin{pmatrix}0 & 1/\sqrt{2}\\ 1/\sqrt{2} & 0\end{pmatrix}\right)$$

forms an orthonormal basis for $\mathcal{M}_2(\mathbb{R})$.

We won't work through all of the details for this example; indeed, all of the calculations are similar. We start by verifying that each vector in the list has norm 1:

$$\| \begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \| = \sqrt{\operatorname{tr} \left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \right)}$$

$$= \sqrt{\operatorname{tr} \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}}$$

$$= 1.$$

Similarly, each vector in the list has norm 1.

Next, we should check that each pair of distinct vectors is orthogonal; we only check

$$\left\langle \begin{pmatrix} -1/\sqrt{2} & 0\\ 0 & 1/\sqrt{2} \end{pmatrix}, \begin{pmatrix} 0 & -1/\sqrt{2}\\ 1/\sqrt{2} & 0 \end{pmatrix} \right\rangle = \operatorname{tr} \left(\begin{pmatrix} 0 & 1/\sqrt{2}\\ -1/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 0\\ 0 & 1/\sqrt{2} \end{pmatrix} \right)$$

$$= \operatorname{tr} \begin{pmatrix} 0 & 1/2\\ 1/2 & 0 \end{pmatrix}$$

$$= 0.$$

Similarly, each pair of distinct vectors is orthogonal. Thus the basis is an orthonormal basis.

Orthonormal lists (and orthonormal bases in particular) have several important properties:

Theorem 6.26. Every orthonormal list of vectors is linearly independent.

Theorem 6.30. Let (e_1, e_2, \ldots, e_n) be an orthonormal basis of V. Then for any $v \in V$,

$$v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \ldots + \langle v, e_n \rangle e_n.$$

Proof. Every $v \in V$ is a linear combination of basis vectors, say

$$v = a_1 e_1 + \ldots + a_n e_n;$$

since the basis vectors are orthonormal, we can easily calculate a_i by evaluating

$$\langle v, e_i \rangle = \langle a_1 e_1 + \dots + a_n v_n, e_i \rangle$$

$$= a_1 \langle e_1, e_i \rangle + \dots + a_i \langle e_i, e_i \rangle + a_n \langle e_n, e_i \rangle$$

$$= a_i$$

(again, this follows because basis vectors are orthonormal).

Example. Find the coordinate vector for

$$v = \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix}$$

with respect to the orthonormal basis

$$B = \left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix}, \ \begin{pmatrix} -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix}, \ \begin{pmatrix} 0 & -1/\sqrt{2} \\ 1/\sqrt{2} & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 \end{pmatrix} \right).$$

Notice that Theorem 6.30 makes this calculation significantly easier than it would have been otherwise. To find the coordinates for v with respect to B, we simply need to evaluate a few inner products:

$$\langle \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \rangle = \operatorname{tr} \left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix} \right)$$
$$= 4\sqrt{2};$$

$$\begin{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \rangle = \operatorname{tr} \left(\begin{pmatrix} -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix} \right) \\
= -3\sqrt{2};$$

$$\begin{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1/\sqrt{2} \\ 1/\sqrt{2} & 0 \end{pmatrix} \rangle = \operatorname{tr} \left(\begin{pmatrix} 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix} \right) \\
= -2\sqrt{2};$$

and

$$\begin{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 \end{pmatrix} \rangle = \operatorname{tr} \left(\begin{pmatrix} 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 & 1 \end{pmatrix} \right) \\
= 3\sqrt{2}.$$

Thus

$$(v)_B = \sqrt{2} \begin{pmatrix} 4\\ -3\\ -2\\ 3 \end{pmatrix}.$$

The Gram-Schmidt Procedure

Our final topic in this course is a powerful algorithm known as the Gram-Schmidt procedure. The algorithm gives us a method for finding an orthonormal basis for any finite dimensional space.

The Gram-Schmidt Procedure. Let v_1, \ldots, v_m be a linearly independent list of vectors in V, and set

$$e_1 = \frac{v_1}{||v_1||}.$$

For $2 \leq j \leq m$, define e_j inductively by

$$e_j = \frac{v_j - \langle v_j, e_1 \rangle e_1 - \ldots - \langle v_j, e_{j-1} \rangle e_{j-1}}{||v_i - \langle v_i, e_1 \rangle e_1 - \ldots - \langle v_i, e_{j-1} \rangle e_{j-1}||}.$$

Then e_1, \ldots, e_m is an independent list so that

$$\operatorname{span}(e_1, \ldots, e_m) = \operatorname{span}(v_1, \ldots, v_m).$$

The algorithm has an immediate corollary:

Corollary 6.34. Every finite dimensional inner product space has an orthonormal basis.

Example. Apply the Gram-Schmidt procedure to basis

$$B = (x^3 - x^2, x^2 - x, x - 1, 1)$$

of $\mathcal{P}_3(\mathbb{R})$ (under the standard inner product on $\mathcal{P}_3(\mathbb{R})$) to find an orthonormal basis for $\mathcal{P}_3(\mathbb{R})$.

Setting

$$v_1 = x^3 - x^2$$

$$v_2 = x^2 - x$$

$$v_3 = x - 1$$

$$v_4 = 1$$

let us begin by calculating $||v_1||$ under the standard inner product

$$\langle \alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x + \alpha_0, \beta_3 x^3 + \beta_2 x^2 + \beta_1 x + \beta_0 \rangle = \alpha_3 \beta_3 + \alpha_2 \beta_2 + \alpha_1 \beta_1 + \alpha_0 \beta_0,$$

we have

$$||v_1|| = \sqrt{\langle x^3 - x^2, x^3 - x^2 \rangle}$$
$$= \sqrt{1+1}$$
$$= \sqrt{2}.$$

Thus we set

$$e_1 = \frac{1}{\sqrt{2}}x^3 - \frac{1}{\sqrt{2}}x^2.$$

Next, we find e_2 using the formula

$$e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{||v_2 - \langle v_2, e_1 \rangle e_1||}$$
:

$$v_{2} - \langle v_{2}, e_{1} \rangle e_{1} = x^{2} - x - \langle x^{2} - x, \frac{1}{\sqrt{2}}x^{3} - \frac{1}{\sqrt{2}}x^{2} \rangle (\frac{1}{\sqrt{2}}x^{3} - \frac{1}{\sqrt{2}}x^{2})$$

$$= x^{2} - x + \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}x^{3} - \frac{1}{\sqrt{2}}x^{2})$$

$$= x^{2} - x + \frac{1}{2}x^{3} - \frac{1}{2}x^{2}$$

$$= \frac{1}{2}x^{3} + \frac{1}{2}x^{2} - x;$$

we also need

$$||\frac{1}{2}x^3 + \frac{1}{2}x^2 - x|| = \sqrt{\frac{1}{4} + \frac{1}{4} + 1}$$

= $\sqrt{\frac{3}{2}}$.

Thus

$$e_2 = \frac{1}{\sqrt{6}}x^3 + \frac{1}{\sqrt{6}}x^2 - \sqrt{\frac{2}{3}}x.$$

Moving on, we find e_3 using the formula

$$e_3 = \frac{v_3 - \langle v_3, e_1 \rangle e_1 - \langle v_3, e_2 \rangle e_2}{||v_3 - \langle v_3, e_1 \rangle e_1 - \langle v_3, e_2 \rangle e_2||} :$$

$$v_{3} - \langle v_{3}, e_{1} \rangle e_{1} - \langle v_{3}, e_{2} \rangle e_{2} = x - 1 - \langle x - 1, \frac{1}{\sqrt{2}}x^{3} - \frac{1}{\sqrt{2}}x^{2} \rangle (\frac{1}{\sqrt{2}}x^{3} - \frac{1}{\sqrt{2}}x^{2})$$

$$-\langle x - 1, \frac{1}{\sqrt{6}}x^{3} + \frac{1}{\sqrt{6}}x^{2} - \sqrt{\frac{2}{3}}x \rangle (\frac{1}{\sqrt{6}}x^{3} + \frac{1}{\sqrt{6}}x^{2} - \sqrt{\frac{2}{3}}x)$$

$$= x - 1 - (0)(\frac{1}{\sqrt{2}}x^{3} - \frac{1}{\sqrt{2}}x^{2}) - (-\sqrt{\frac{2}{3}})(\frac{1}{\sqrt{6}}x^{3} + \frac{1}{\sqrt{6}}x^{2} - \sqrt{\frac{2}{3}}x)$$

$$= x - 1 + \frac{1}{3}x^{3} + \frac{1}{3}x^{2} - \frac{2}{3}x$$

$$= \frac{1}{3}x^{3} + \frac{1}{3}x^{2} + \frac{1}{3}x - 1,$$

whose norm is

$$||\frac{1}{3}x^3 + \frac{1}{3}x^2 + \frac{1}{3}x - 1|| = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{1}{9} + 1}$$

$$= \sqrt{\frac{12}{9}}$$

$$= \frac{2}{\sqrt{3}}.$$

Thus we set

$$e_3 = \frac{1}{2\sqrt{3}}x^3 + \frac{1}{2\sqrt{3}}x^2 + \frac{1}{2\sqrt{3}}x - \frac{\sqrt{3}}{2}.$$

Finally, we need to calculate e_4 , using the formula

$$e_4 = \frac{v_4 - \langle v_4, e_1 \rangle e_1 - \langle v_4, e_2 \rangle e_2 - \langle v_4, e_3 \rangle e_3}{||v_4 - \langle v_4, e_1 \rangle e_1 - \langle v_4, e_2 \rangle e_2 - \langle v_4, e_3 \rangle e_3||} :$$

$$v_4 - \langle v_4, e_1 \rangle e_1 - \langle v_4, e_2 \rangle e_2 - \langle v_4, e_3 \rangle e_3 = 1 - \langle 1, \frac{1}{\sqrt{2}} x^3 - \frac{1}{\sqrt{2}} x^2 \rangle (\frac{1}{\sqrt{2}} x^3 - \frac{1}{\sqrt{2}} x^2)$$

$$- \langle 1, \frac{1}{\sqrt{6}} x^3 + \frac{1}{\sqrt{6}} x^2 - \sqrt{\frac{2}{3}} x \rangle (\frac{1}{\sqrt{6}} x^3 + \frac{1}{\sqrt{6}} x^2 - \sqrt{\frac{2}{3}} x)$$

$$- \langle 1, \frac{1}{2\sqrt{3}} x^3 + \frac{1}{2\sqrt{3}} x^2 + \frac{1}{2\sqrt{3}} x - \frac{\sqrt{3}}{2} \rangle$$

$$(\frac{1}{2\sqrt{3}} x^3 + \frac{1}{2\sqrt{3}} x^2 + \frac{1}{2\sqrt{3}} x - \frac{\sqrt{3}}{2})$$

$$= 1 - (0)(\frac{1}{\sqrt{6}} x^3 + \frac{1}{\sqrt{6}} x^2 - \sqrt{\frac{2}{3}} x)$$

$$- (0)(\frac{1}{\sqrt{6}} x^3 + \frac{1}{\sqrt{6}} x^2 - \sqrt{\frac{2}{3}} x)$$

$$- (-\frac{\sqrt{3}}{2})(\frac{1}{2\sqrt{3}} x^3 + \frac{1}{2\sqrt{3}} x^2 + \frac{1}{2\sqrt{3}} x - \frac{\sqrt{3}}{2})$$

$$= 1 + \frac{1}{4} x^3 + \frac{1}{4} x^2 + \frac{1}{4} x - \frac{3}{4}$$

$$= \frac{1}{4} x^3 + \frac{1}{4} x^2 + \frac{1}{4} x + \frac{1}{4}.$$

We have

$$||\frac{1}{4}x^3 + \frac{1}{4}x^2 + \frac{1}{4}x + \frac{1}{4}|| = \sqrt{\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}}$$
$$= \sqrt{\frac{4}{16}}$$
$$= \frac{1}{2}.$$

Thus we set

$$e_4 = \frac{1}{2}x^3 + \frac{1}{2}x^2 + \frac{1}{2}x + \frac{1}{2},$$

and the list

$$(\frac{1}{\sqrt{2}}x^3 - \frac{1}{\sqrt{2}}x^2, \ \frac{1}{\sqrt{6}}x^3 + \frac{1}{\sqrt{6}}x^2 - \sqrt{\frac{2}{3}}x, \ \frac{1}{2\sqrt{3}}x^3 + \frac{1}{2\sqrt{3}}x^2 + \frac{1}{2\sqrt{3}}x - \frac{\sqrt{3}}{2}, \ \frac{1}{2}x^3 + \frac{1}{2}x^2 + \frac{1}{2}x + \frac{1}{2})$$

is an orthonormal basis for $\mathcal{P}_3(\mathbb{R})$.