Unit 4, Section 2: The Gram-Schmidt Process
Orthonormality and the Gram-Schmidt Process

The basis
(61, €2, ..., en)

for R™ (or C") is considered the standard basis for the space because of its geometric properties
under the standard inner product:

1. |le;|| =1 for all ¢, and

2. e;, e are orthogonal whenever 7 # j.

With this idea in mind, we record the following definitions:
Definitions 6.23/6.25. Let V be an inner product space.

e A list of vectors in V is called orthonormal if each vector in the list has norm 1, and if each
pair of distinct vectors is orthogonal.

e A basis for V is called an orthonormal basis if the basis is an orthonormal list.

Remark. If a list (v, ..., v,) is orthonormal, then
0 ifi#j
(vi, vj) = o
1 ife=j.

Example. The list
(617 627 sy en)

forms an orthonormal basis for R /C™ under the standard inner products on those spaces.

Example. The standard basis for M,,(C) consists of n? matrices eij, 1 < 4,7 < n, where ¢;; is

the n x n matrix with a 1 in the ij entry and Os elsewhere. Under the standard inner product on
M.,,(C) this is an orthonormal basis for M,,(C):

1. <€ij> eij>:

(eij,eij) = tr(eeq)
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2. (eij,ekl>, k 7é ] OI‘j 7& l:

(eijrent) = tr(epeij)

= ftr (elkeij)
= tr(0)if k#i, ortr(ey) if k=dibutl#j
= 0.

So every vector in the list has norm 1, and every distinct pair of vectors is orthogonal.

Example. Show that the list

(5 ) (6% ) () (s )

forms an orthonormal basis for Ms(R).

We won’t work through all of the details for this example; indeed, all of the calculations are
similar. We start by verifying that each vector in the list has norm 1:

(37 2 = (57 42) (57 1)

=" (1(/)2 192)

= 1.

Similarly, each vector in the list has norm 1.
Next, we should check that each pair of distinct vectors is orthogonal; we only check

7 ) e 07 = (e ) CR7 1)

(5
= 0.

Similarly, each pair of distinct vectors is orthogonal. Thus the basis is an orthonormal basis.

Orthonormal lists (and orthonormal bases in particular) have several important properties:

Theorem 6.26. Every orthonormal list of vectors is linearly independent.
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Theorem 6.30. Let (e1, €2, ..., e,) be an orthonormal basis of V. Then for any v € V,

v=(v,e1)e; + (v,e2)ea + ...+ (v,ep)en.
Proof. Every v € V is a linear combination of basis vectors, say
UV =aie] + ...+ apeén;
since the basis vectors are orthonormal, we can easily calculate a; by evaluating
(v,e;) = (are1+ ...+ apvp,€;)
= aifer,e;) + ...+ aile;,e) + anlen, e;)
= q

(again, this follows because basis vectors are orthonormal).

Example. Find the coordinate vector for

v 75
S\ 1
with respect to the orthonormal basis

o=((0" a) (07 3t (e 707%) (e 7))

Notice that Theorem 6.30 makes this calculation significantly easier than it would have been
otherwise. To find the coordinates for v with respect to B, we simply need to evaluate a few inner

products:
(@0 (67 v = = (% 122 (D)

(£ (5 ) - (5 )6 )

@0 e 57 = (ke W) ED)
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and
(D) e 5 = (e 7))
= 3V2
Thus
4
() =v2| s
3

The Gram-Schmidt Procedure

Our final topic in this course is a powerful algorithm known as the Gram-Schmidt procedure. The
algorithm gives us a method for finding an orthonormal basis for any finite dimensional space.

The Gram-Schmidt Procedure. Let vy, ..., v, be a linearly independent list of vectors in V/,
and set
U1
e = —.
[|va]

For 2 < j <'m, define e; inductively by

oo = Vi (pe)er— ... — (vj,e-1)¢j-1
T oy — (v en)er — ... — (vj,e5-1)ej1]|
Then ey, ..., e, is an independent list so that
span (e1,..., €y) =span (vi,..., Un).

The algorithm has an immediate corollary:

Corollary 6.34. Every finite dimensional inner product space has an orthonormal basis.

Example. Apply the Gram-Schmidt procedure to basis
B=(2%—2% 22—z, x—1, 1)

of P3(R) (under the standard inner product on P3(R)) to find an orthonormal basis for P3(R).

Setting
v = 2°—a?
vy = 2—=zx
v3 = x—1
V4 = 1,
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let us begin by calculating ||v;|| under the standard inner product

(a3x® + aor? + 1w + g, B31° + Bax® + Bz + By ) = azfBs + azBe + a1B1 + aofo,

we have
]l = V/(2® — a2, 23— 2?)
= V141
= V2.
Thus we set ) )
e = —a° — —1°
2 2

Next, we find e using the formula

vg — (v, e1)eq

ey = :
27 Jlva = (va, exen]
1 1 1 1
2 2 3 2 3 2
vy — (9, e1)er = x°—x— (" —x, —2° — —2°)(—2° — —x
2 <2 1)1 < \/i \/5 >( B} 2 )
1 1 1
2 3 2
= -+ —(—=a° — —==x
\/5(\/5 V2 )
1 1
= m2—x+§x3—§x2
1 1
= §x3+§x2—x;

we also need

1, 1, 1 1
- Z 2 _ T |
Hzx +2x x|| 4+4+
\/5
5

Thus
Lo, 1o \/5
eg=—x"+ —x° —/-x.
TV Vb 3
Moving on, we find eg using the formula

_ w3 —(us, er)er — (vs, ez)en
vz — (v3, e1)er — (vs, ez)ea|

€3
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vy — (v3, e1)er — (vs, ea)es = x—1— (v —1, ﬁx - \ﬁm2>(—2m3 ﬁaﬁ)
_<$_17f$3+\}6x2 gx)(lfsx?’—i-\}émj—
S R R s R T e e
= x—1+%x3+%x2—§x
= §x3+éx2+%$—1,

whose norm is

H— +1x —i—lx—lH Y L
3 9 9 9
/12
~ Vo
2
- 7

Thus we set

1 1 1 V3
ﬁ 2\f Tt T

Finally, we need to calculate ey, using the formula

€3 —

vy — (v, e1)er — (vg, ez)ez — (vy,ez)es
|[va = (va, er)er — (va, ea)ea — (va, ez)es||

€4 =
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V4 — <U4, €1>€1 - <U4, €2>€2 - <U4,€3>€3 = 1- <17 7=

We have

1 1 1 1
HZx3 +ori 4+ Sz + ZH =

4

Thus we set

and the list

1, 1 5, 1

1 3 1 2 1 3 1 2
x —X —X
7 ¢§>(2 57°)
1 1 2 1 1 2
—(1, =2+ =2 —y/Zx :c3+a:2—\/>x
VIV A RV
1 1 1 V3
—(1, —=2* + —=2*+ —=z — —
< 2¢/3 23 2¢/3 2>
N | V3
—x"+ —=x"+ —=r —
(%@ 2v/3 2v/3 2)
1 1
= 1—(0)(—=2® - —=2?
(X¢§ ¢§)
1 1 2
0 a:3+3:2—\/>:c
O 752" + 75a® —y/39)
3., 1 1 1 3
_(_i)( x5+ 2+ T i)
2 7°2V/3 23 23 2
1 1 13
— 1432y e
+4x +4a: +4a; 1
B 13+12+1 +1
RN
4 16 16 16 16
_ . JA
V16
1
= 5
_13+12+1 +1
AT Tt Tt Ty
1 1 V3 1 4 1, 1
ot T gty

1 \/5 1
3 2 3 2
—zx° — —zx°, —x°+ —=x° —\/=x, x° + e+ T —
(\/Q V2 V6 V6 3 2v/3 23 2v/3

is an orthonormal basis for P3(R).



