
Unit 3, Section 6: Existence of Eigenvalues

Existence of Eigenvalues

Now that we have introduced the concept of eigenvalues of a transformation, we should ask whether
or not a transformation is guaranteed to have them. Indeed, there are certainly examples of
operators which have no eigenvalues; we look at one such in the next example.

Example. Show that the only operator of the form Tθ : R2 → R2 defined by

Tθ(v) =

(
cos θ − sin θ
sin θ cos θ

)
v

that has an eigenvalue (up to integer multiples of π) is T0.

Recall that λ ∈ R is an eigenvalue of Tθ if and only if it is also an eigenvalue of the matrix

Mθ =

(
cos θ − sin θ
sin θ cos θ

)
;

thus we search for solutions to the characteristic equation

det(Mθ − λI) = 0.

Since

Mθ − λI =

(
cos θ − λ − sin θ

sin θ cos θ − λ

)
,

we have

det(Mθ − λI) = det

(
cos θ − λ − sin θ

sin θ cos θ − λ

)
= (cos θ − λ)2 + sin2 θ

= cos2 θ + sin2 θ − 2λ cos θ + λ2

= λ2 − 2λ cos θ + 1.

Using the quadratic equation to search for solutions λ ∈ R, we have

2 cos θ ±
√

4 cos2 θ − 4

2
=

2 cos θ ±
√

4(cos2 θ − 1)

2
.

Now since
cos2 θ ≤ 1,

the quadratic equation has real solutions if and only if θ = 0. Thus the operator Tθ : R2 → R2 has
no (real) eigenvalues for θ 6= nπ.

1



Unit 3, Section 6: Existence of Eigenvalues

This result should not be particularly surprising–Tθ acts on a vector by rotating it by θ. Rotation
only scales a vector if the angle of rotation is an integer multiple of π, thus there are no real
eigenvalues for other values of θ.

Eigenvalues are extremely useful tools for understanding spaces and their operators, so we
would like to find some conditions on V and T : V → V that will guarantee that T does have
eigenvalues. We will explore that problem in this section, but must first introduce the helpful
concept of polynomials applied to operators.

Polynomials Applied to Operators

Definition 5.16. Let T : V → V be a linear operator, and let m > 0 be an integer. We define
powers of T as follows:

• Tm is the linear operator
Tm = T . . . T︸ ︷︷ ︸

m copies

.

• T 0 is defined to be the identity TI on V .

• If T is an invertible operator, so that T−1 exists, then we use the notation T−m to indicate
the operator (T−1)m.

The definition should remind you of our definitions for powers of matrices; indeed, the definitions
are virtually identical, and it is easy to show that identities such as

TmTn = Tm+n and (Tm)n = Tmn

hold for m,n ≥ 0.
A definition for powers of an operator is useful in that it will allow us to apply polynomials to

operators, as indicated in the next definition:

Definitions 5.17. Let V be a vector space over F, and let T : V → V be a linear operator. Let
p ∈ P(F) be a polynomial, say

p(x) = αnx
n + . . .+ α1x+ α0,

where x ∈ F. Then p(T ) : V → V is the operator defined by

p(T ) = αnT
n + . . .+ α1T + α0TI .

Recall that the product pq of a pair of polynomials is the polynomial defined by

pq(x) = p(x)q(x).
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It is easy to show that
pq(T ) = p(T )q(T ) = q(T )p(T ).

Example. Let

M =

(
cos π6 − sin π

6

sin π
6 cos π6

)
=

(√
3
2 −1

2

1
2

√
3
2

)
,

and define TM : R2 → R2 by matrix multiplication by M , that is

TM (v) = Mv.

Recall that M is a rotation matrix, that is, it rotates a given vector v by π/6 counterclockwise.
Let p(x) = x4 − 2x3 − 2x. Find the transformation p(TM ).

Clearly
p(TM ) = T 4

M − 2T 3
M − 2TM ;

of course, we would like to describe the action of p(T ) on a given vector v ∈ R2. Clearly T k(v) =
Mkv, so we merely need to understand powers of M to make the calculation.

Since M is a rotation matrix, it will be quite simple to calculate the powers: indeed, Mk rotates
a given vector by kπ/6. Thus

M4 =

(
cos 2π

3 − sin 2π
3

sin 2π
3 cos 2π

3

)

=

(
−1

2 −
√
3
2

√
3
2 −1

2

)
,

−2M3 = −2

(
cos π2 − sin π

2

sin π
2 cos π2

)

=

(
0 2

−2 0

)
,

and

−2M = −2

(
cos π6 − sin π

6

sin π
6 cos π6

)

=

(
−
√

3 1

−1 −
√

3

)
.
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Thus the matrix corresponding to p(TM ) is(
−
√

3− 1
2 3−

√
3
2

−3 +
√
3
2 −

√
3− 1

2

)
,

that is

p(TM )v =

(
−
√

3− 1
2 3−

√
3
2

−3 +
√
3
2 −

√
3− 1

2

)
v.

Existence of Eigenvalues

We are now ready to answer the question that motivated our discussion of polynomials on operators:

Which linear operators are guaranteed to have eigenvalues?

The next theorem answers the question:

Theorem 5.21. Let V be a finite dimensional nontrivial vector space over C; then every linear
operator on V has an eigenvalue.

Proof. Let V be an n dimensional vector space over C, n > 0, and let T : V → V be a linear
operator. For any v ∈ V , the vectors

v, T (v), T 2(v), . . . , Tn(v)

cannot be independent (since there are n+ 1 of them), so there are some αi ∈ C not all 0 so that

αnT
n(v) + . . .+ α2T

2(v) + α1T (v) + α0v = 0.

Let p ∈ P(C) be the polynomial defined by

p(x) = αnx
n + . . .+ α2x

2 + α1x+ α0,

so that
p(T ) = αnT

n + . . .+ α2T
2 + α1T + α0TI .

In particular,
p(T )(v) = αnT

n(v) + . . .+ α2T
2(v) + α1T (v) + α0v = 0.

By the Fundamental Theorem of Algebra, p(x) has a root λ; indeed by the division algorithm
and repeated application of the Fundamental Theorem of Algebra, p has as many (not necessarily
unique) roots as its degree, and factors as

p(x) = c(x− λ1) . . . (x− λm),

where c and each λi are elements of C (m = n in case αn 6= 0).
Now

p(T ) = c(T − λ1TI) . . . (T − λmTI);
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however,

p(T )(v) = c(T − λ1TI) . . . (T − λmTI)(v)

= αnT
n(v) + . . .+ α2T

2(v) + α1T (v) + α0v

= 0.

Thus at least one of the T − λkTI is not injective, which means that there is a nonzero u ∈ V so
that

(T − λkTI)u = 0;

equivalently,
T (u) = λku.

Thus λk is an eigenvalue for T .

The theorem above cannot guarantee that an operator over R will have real eigenvalues; indeed,
while many operators over R do have real eigenvalues, we have seen that Tθ : R2 → R2 defined by

Tθ(v) =

(
cos θ − sin θ
sin θ cos θ

)
v

does not, as long as θ 6= nπ.
However, if we think of Tθ as an operator over C2, that is Tθ : C2 → C2 again defined by

Tθ(v) =

(
cos θ − sin θ
sin θ cos θ

)
v,

then Tθ is guaranteed to have eigenvalues (in C). Indeed, the eigenvalues are given by

λ =
2 cos θ ±

√
4(cos2 θ − 1)

2

= cos θ ± i
√

1− cos2 θ

= cos θ ± i sin θ

= eiθ or e−iθ.

Upper Triangular Matrix for an Operator

Recall that, given an operator T : V → V , there is a matrix A(B,B) with respect to any basis B for
V so that

A(B,B)(v)B = (T (v))B.
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In particular, the matrices A(B,B) and A(C,C) are different if B and C are different bases. To
make calculations easier, we prefer to find a matrix for our transformation that has a nice form,
say diagonal or upper triangular. This amounts to finding the right basis for V .

It follows as a consequence of Theorem 5.21 that every operator on a finite dimensional vector
space V over C has an upper triangular matrix. We record the theorem without proof:

Theorem 5.27. Let V be a finite dimensional vector space over C, and let T : V → V be an
operator. Then there is a basis B for V so that A(B,B) is upper triangular.

Example. The operator Tθ : C2 → C2 defined by

Tθ(v) =

(
cos θ − sin θ
sin θ cos θ

)
v

has matrix

A(B,B) =

(
cos θ − sin θ
sin θ cos θ

)
with respect to the standard basis B for C2. Find a basis C for V so that A(C,C) is upper triangular.

Since λ = eiθ is an eigenvalue for Tθ, we know that the operator

Tθ − eiθTI

has nontrivial nullspace, that is there is a vector x ∈ C2 so that

Tθ(x)− eiθTI(x) = Tθ(x)− eiθv = 0.

It would be helpful to have one such eigenvector, so we calculate

0 = Tθ(v)− eiθv

= (Tθ − eiθTI)v

=

(
cos θ − eiθ − sin θ

sin θ cos θ − eiθ
)(

x1
x2

)
.

Since cos θ − eiθ = −i sin θ, we may row reduce as follows:(
cos θ − eiθ − sin θ

sin θ cos θ − eiθ
)
→

(
cos θ − eiθ − sin θ

0 cos θ − eiθ + i sin θ

)

→
(

cos θ − eiθ − sin θ
0 0

)
.
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Setting x2 = 1, we se that

(cos θ − eiθ)x1 = sin θ

x1 =
sin θ

cos θ − eiθ

=
sin θ

−i sin θ

= −1

i

= i.

Thus

v =

(
i
1

)
is an eigenvector associated with eigenvalue eiθ. In particular, if we let C = (v, v′) (with v′ as yet
to be determined), then since

T (v) = eiθv,

we know that

(T (v))C = eiθ(v)C = eiθ
(

1
0

)
.

Now since eigenvectors associated with unique eigenvalues are linearly independent by Theorem
5.10, we can easily complete C to a basis by using the eigenvector

v′ =

(
−i
1

)
associated with eigenvalue λ = e−iθ. Thus our basis is

C = (v, v′) =

((
i
1

)
,

(
−i
1

))
.

The matrix A(C,C) for T with respect to C is

A(C,C) =

(
eiθ 0
0 e−iθ

)
,

which is upper triangular as desired (and actually diagonal).
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