
Unit 3, Section 2: Matrices as Linear Transformations

Matrices as Linear Transformations of Finite Dimensional Vector
Spaces

In the previous section, we investigated an interesting example of a linear transformation: to matrix

M =

1 0
0 1
1 1


we associated the linear transformation TM defined by

TM

((
u1
u2

))
= M

(
u1
u2

)
.

This idea of a matrix as a linear transformation is one that we will discuss in great detail in this
section. We begin with a lemma that you may have already guessed at:

Lemma. If A is an m× n matrix with entries in F, then the function TA : Fn → Fm defined by

TA(u) = Au

is a linear transformation.

We will not prove the lemma, as it is clear from the properties of matrix operations. Instead,
we will look at a generalization of this lemma to linear transformations between any vector spaces.

In fact, we wish to prove something more, a deeper result that will be integral to our under-
standing of vector spaces: every linear transformation between finite dimensional vector spaces has
a realization in terms of matrices and matrix multiplication.

Coordinatization and Linear Transformations

First, we recall the definition for coordinates of a vector :

Definition. If S = (v1, v2, . . . , vn) is a basis for the vector space V and the vector v ∈ V is the
linear combination

v = α1v1 + α2v2 + . . .+ αnvn,

then the scalars α1, α2, . . . , αn are called the coordinates of v relative to the basis S, and the vector
α1

α2
...
αn


in Fn is called the coordinate vector of v relative to the basis S, denoted by

(v)S =


α1

α2
...
αn

 .
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Again, coordinatization allows us to think of vectors in abstract spaces as vectors in Fn. With
this idea in mind, you may be able to see how we can think of matrices as linear transformations
among abstract spaces. We illustrate this idea in the following example.

Example. The vectors f1(x) = 2x−3, f2(x) = x2+1, and f3(x) = 2x2−x are linearly independent
and span the vector space P2(R) of all real-valued polynomials of degree no more than 2, so that
the list

B = (f1, f2, f3)

is a basis for P2(R). Let p ∈ P2(R) with coordinates

(p)B =

α1

α2

α3

 ,

and let I denote the 3× 3 identity matrix. Define the function TI : P2(R)→ R3 by

TI(p) := I(p)B.

1. Find the image of vector p(x) = −x2 − 5x+ 10 in R3 under the transformation.

2. Show that TI is a linear transformation from P2(R) to R3.

1. In order to find the image of the vector, we must first locate its coordinates under basis B.
We look for the scalars α, β, γ so that

αf1 + βf2 + γf3 = p.

Per usual, we think of the associated linear system for the equation above, whose augmented
matrix is given by  0 1 2 | −1

2 0 −1 | −5
−3 1 0 | 10

 ;
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row reducing, we have 0 1 2 | −1
2 0 −1 | −5
−3 1 0 | 10

 →

 2 0 −1 | −5
0 1 2 | −1
−3 1 0 | 10



→

 1 0 −1/2 | −5/2
0 1 2 | −1
−3 1 0 | 10



→

1 0 −1/2 | −5/2
0 1 2 | −1
0 1 −3/2 | 5/2



→

1 0 −1/2 | −5/2
0 1 2 | −1
0 0 −7/2 | 7/2



→

1 0 −1/2 | −5/2
0 1 2 | −1
0 0 1 | −1



→

1 0 −1/2 | −5/2
0 1 0 | 1
0 0 1 | −1



→

1 0 0 | −3
0 1 0 | 1
0 0 1 | −1

 .

Thus
p = −3f1 + f2 − f3,

and has coordinates

(p)B =

−3
1
−1

 .

So

TI(p) = I(p)B

=

1 0 0
0 1 0
0 0 1

−3
1
−1



=

−3
1
−1

 .
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Thus the vector −3
1
−1

 ∈ R3

is the image of p under TI , that is

−x2 − 5x+ 10
TI−→

−3
1
−1

 .

2. To show that TI is a linear transformation, we proceed as usual: we must show that TI
interacts nicely with both vector addition and scalar multiplication.

(a) Given p, q ∈ P2(R) with

p(x) = α1f1(x) + α2f2(x) + α3f3(x)

q(x) = β1f1(x) + β2f2(x) + β3f3(x),

so that vector p+ q is given by

(p+ q)(x) = (α1 + β1)f1(x) + (α2 + β2)f2(x) + (α3 + β3)f3(x),

we have the following unique coordinates:

(p)B =

α1

α2

α3

 , (q)B =

β1β2
β3

 ,

and

(p+ q)B =

α1 + β1
α2 + β2
α3 + β3

 = (p)B + (q)B.

Thus

TI(p+ q) = I(p+ q)B

= I((p)B + (q)B)

= I(p)B + I(q)B

= TI(p) + TI(q).

(b) Next, we investigate the action of TI on λp, λ ∈ R, whose coordinates are given by

(λp)B =

λα1

λα2

λα3

 = λ

α1

α2

α3

 = λ(p)B.
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We have

TI(λp) = I(λp)B

= I(λ(p)B)

= λI(p)B

= λTI(p).

Thus TI interacts nicely with both vector addition and scalar multiplication, and is a
linear transformation from P2(R) to R3.

With the previous example in mind, we are now ready to discuss a theorem on the interconnec-
tions among linear transformations and matrices:

Theorem. Let V and W be finite dimensional vector spaces with dim(V ) = n and dim(W ) = m,
and let

B = (v1, v2, . . . , vn)

and
C = (w1, w2, . . . , wm)

be bases for V and W respectively. Let T : V → W be any linear transformation from V to W .
Then there is a unique m× n matrix A = A(B,C) so that, for every v ∈ V ,

A(v)B = (T (v))C ,

that is, A times the coordinates of V with respect to B yields the coordinates of T (v) with respect
to C.

Remark 1. The theorem above gives us an alternate way to think about linear transformations
between finite dimensional vector spaces: abusing terminology a bit, linear transformations are
matrices. More precisely, every matrix can be viewed as a linear transformation between finite
dimensional vector spaces, and every linear transformation has realization as a matrix (once a basis
has been chosen). Thus the theorem allows us to ignore the distraction of the “decorations” in a
particular space, and represent all the interactions algebraically using matrix arithmetic. That is,
we can always find a matrix A to do the job of T , expressing all of the calculations in coordinates.

Remark 2. The notation A(B,C), which refers to the matrix realization of linear transformation
T , merely indicates that A represents the action of T on V , and converts coordinates with respect
to basis B into coordinates with respect to basis C.
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Proof. We proceed via construction: given a linear transformation T : V → W and bases B and
C for V , W respectively, we will construct the matrix realization A = A(B,C) for T .

Let (T (vi))C be the coordinates of vector T (vi) ∈ W with respect to basis C; notice that we
may think of (T (vi))C as an m× 1 (column) matrix. Set

A =

 | | |
(T (v1))C (T (v2))C . . . (T (vn))C
| | |

 ,

that is A is the m× n matrix whose ith column is (T (vi))C .
Now I claim that, for any v ∈ V ,

(T (v))C = A(v)B.

To prove the claim, let v ∈ V ,
v = α1v1 + . . .+ αnvn,

so that v has coordinates

(v)B =

α1
...
αn

 .

Now

T (v) = T (α1v1 + . . .+ αnvn)

= α1T (v1) + . . .+ αnT (vn),

so that
(T (v))C = α1(T (v1))C + . . .+ αn(T (vn))C .

On the other hand, we see that

A(v)B =

 | | |
(T (v1))C (T (v2))C . . . (T (vn))C
| | |


α1

...
αn


= α1(T (v1))C + . . .+ αn(T (vn))C .

Thus A(v)B = (T (v))C , as desired.
To show that A is unique, let A′ be any (necessarily m× n) matrix so that A′(v)B = (T (v))C .

For each vi ∈ B,
A′(vi)B = (T (vi))C .

Now vi is a basis vector, and must have coordinates

(vi)B =


0
...
1
...
0

 = ei,
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where 1 occurs in the ith position. With this in mind and the fact that A′(vi)B = (T (vi))C , we
may calculate the ith column of A′: indeed, the only entries of A′ that meet a nonzero entry of
(v)B = ei are those in the ith column, so that

A′(vi)B = A′ei = column i of A′;

but since
A′(vi)B = (T (vi))C ,

the ith column of A′ must be (T (vi))C , so that A = A′.

Remark. Notice that the proof of the theorem tells us how to build A, given transformation T
and bases B and C. Indeed, we need merely inspect the coordinates for basis elements of V under
the transformation (as indicated by Theorem 3.5); the coordinates for the basis elements of V with
respect to basis C of W are the columns of A. In particular,

A(B,C) =

 | | |
(T (v1))C (T (v2))C . . . (T (vn))C
| | |

 .

Example. Recall that the vectors f1(x) = 2x− 3, f2(x) = x2 + 1, and f3(x) = 2x2−x are linearly
independent and span the vector space P2(R) of all real-valued polynomials of degree no more than
2; of course, p1(x) = x2, p2(x) = x, and p3(x) = 1 have the same properties. Thus the lists

B = (f1, f2, f3)

and
B̂ = (p1, p2, p3)

are both bases for P2(R).
Consider the linear transformation T : P2(R)→ R3 given by

T (αx2 + βx+ δ) :=

αβ
δ

 .

1. Given p(x) = −x2 − 5x+ 10, find T (p) and (T (p))C .

2. Find the matrix A = A(B,C) for T with respect to basis B and the standard basis for R3

(denoted by C).

3. With p(x) = −x2 − 5x+ 10, show that

A(p)B = (T (p))C .
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4. Find the matrix Â = A(B̂,C) for T with respect to basis B̂ and the standard basis for R3.

5. Show that
Â(p)B = (T (p))C .

1. Using the definition of T , we see that

T (−5x2 − x+ 10) =

−5
−1
10

 ;

since −5
−1
10

 = −5

1
0
0

−
0

1
0

+ 10

0
0
1

 ,

the coordinates (T (p))C of T (p) with respect to the standard basis C on R3 are given by

T (p)C =

−5
−1
10

 .

2. To find matrix A, we only need to find the coordinates of T (fi) with respect to basis C. Thus
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we evaluate T at the basis vectors from B:

T (f1) = T (2x− 3)

=

 0
2
−3



= 0

1
0
0

+ 2

0
1
0

− 3

0
0
1

 ;

T (f2) = T (x2 + 1)

=

1
0
1



= 1

1
0
0

+ 0

0
1
0

+ 1

0
0
1

 ;

T (f3) = T (2x2 − x)

=

 2
−1
0



= 2

1
0
0

−
0

1
0

+ 0

0
0
1

 .

Thus we have the following coordinates for the images of the basis vectors from B:

(T (f1))C =

 0
2
−3

 ;

(T (f2))C =

1
0
1

 ;

(T (f3))C =

 2
−1
0

 .
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The matrix representing T with respect to bases B and C is

A =

 0 1 2
2 0 −1
−3 1 0

 .

3. To find the image of p(x) = −5x2−x+10 under the action of T using the matrix A, we recall
that A is the matrix so that

A(p)B = (T (p))C ;

that is, A times the coordinate vector of p with respect to B will yield the coordinates (with
respect to basis C) of T (p).

As we saw earlier, the coordinates of p(x) with respect to basis B are given by

(p)B =

−3
1
−1

 .

Thus we caclulate

A(p)B =

 0 1 2
2 0 −1
−3 1 0

−3
1
−1



=

−1
−5
10

 .

Notice that this matches up precisely with the vector (T (p))C that we found in part 1.

4. To find Â, we need to consider the action of T on the standard basis for P2(R). Accordingly,
we have

T (p1) = T (x2)

=

1
0
0

 ;

T (p2) = T (x)

=

0
1
0

 ;

T (p3) = T (1)

=

0
0
1

 .
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Thus Â is given by

Â =

1 0 0
0 1 0
0 0 1

 .

5. Vector p(x) has coordinates with respect to basis B̂ given by

(p)B̂ =

−1
−5
10

 .

Thus

Â(p)B̂ =

1 0 0
0 1 0
0 0 1

−1
−5
10



=

−1
−5
10

 ,

which again matches up precisely with (T (p))C .

Example. Recall that the vector space sl(2,R) of 2× 2 trace 0 matrices has basis

B = (e1, e2, e3),

where

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
0 0

)
, and e3 =

(
0 0
1 0

)
.

Let T : sl(2,R)→ sl(2,R) be the linear transformation with matrix (with respect to B)

A =

0 1 0
0 0 1
1 0 0

 .

Describe the action of T on any vector

v =

(
α β
γ −α

)
∈ sl(2,R).

Recall that the action of T on v ∈ sl(2,R) is completely determined by its action on the basis
B. Thus we simply need to describe the action of T on each of e1, e2, and e3.
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We know that

(T (e1))B = A(e1)B

=

0 1 0
0 0 1
1 0 0

1
0
0



=

0
0
1


= (e3)B;

(T (e2))B = A(e2)B

=

0 1 0
0 0 1
1 0 0

0
1
0



=

1
0
0


= (e1)B;

and

(T (e3))B = A(e3)B

=

0 1 0
0 0 1
1 0 0

0
0
1



=

0
1
0


= (e2)B.

Reverting from coordinate representation to sl(2,R) itself, we see that

T

((
1 0
0 −1

))
=

(
0 0
1 0

)
;

T

((
0 1
0 0

))
=

(
1 0
0 −1

)
; and

T

((
0 0
1 0

))
=

(
0 1
0 0

)
.

12



Unit 3, Section 2: Matrices as Linear Transformations

Thus the action of T on any vector

v =

(
α β
γ −α

)
is given by

T (v) = T

((
α β
γ −α

))

= T

(
α

(
1 0
0 −1

)
+ β

(
0 1
0 0

)
+ γ

(
0 0
1 0

))

= αT

((
1 0
0 −1

))
+ βT

((
0 1
0 0

))
+ γT

((
0 0
1 0

))

= α

(
0 0
1 0

)
+ β

(
1 0
0 −1

)
+ γ

(
0 1
0 0

)

=

(
β γ
α −β

)
.

As indicated by the last example, linear transformations from a space V to itself are particularly
important; below, we give such transformations a name.

Definition 3.67. A linear transformation from a vector space V to itself is called a linear operator.

Note that the linear transformation T above,

T

((
α β
γ −α

))
=

(
β γ
α −β

)
,

is an example of a linear operator, since T : sl(2,R)→ sl(2,R).

Change of Basis

Let V be a vector space with bases

B = (v1, v2, . . . , vn)

and
C = (w1, w2, . . . , wn).

We may happen to know the coordinates for v ∈ V with respect to basis B, say

(v)B =


α1

α2
...
αn

 .
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Of course, v has coordinates with respect to C as well, say

(v)C =


γ1
γ2
...
γn

 .

We would like to have a process for finding (v)C if we already know (v)B, that is we would like to be
able to convert coordinates from one basis to another. This process of converting the coordinates
of a vector from one basis to another can be accomplished rapidly using matrix multiplication.

Indeed, we can construct a matrix A = A(B,C) for the identity transformation TI : V → V ,
TI(v) = v. In particular, since TI(vi) = vi, the matrix A for TI has form

A =

 | | |
(v1)C (v2)C . . . (vn)C
| | |

 .

Using the theorem above, we see that, for any v ∈ V ,

A(v)B = (TI(v))C = (v)C ,

that is, matrix A converts coordinates for v with respect to basis B into coordinates with respect to
basis C.

Definition. Let V be an n dimensional vector space with bases

B = (v1, v2, . . . , vn)

and
C = (w1, w2, . . . , wn).

The n × n matrix A = A(B,C) representing the identity transformation TI is called the transition
matrix from coordinates with respect to B to coordinates with respect to C. The ith column of A
consists of the coordinates of vi with respect to to basis C, that is

A =

 | | |
(v1)C (v2)C . . . (vn)C
| | |

 .

The following theorem reiterates the important feature of a transition matrix which we discov-
ered above:

Theorem. Let B and C be bases for a vector space V . Then A = A(B,C) is the transition matrix
from coordinates in terms of B to coordinates in terms of C if and only if

A(v)B = (v)C

for all v ∈ V .
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Remark. A transition matrix is the matrix for a particular linear operator–the identity transfor-
mation TI . A transition matrix does not change a vector–it simply encodes a “change of basis”.
Again a transition matrix rewrites coordinates in terms of one basis with respect to the new basis.

Example. Given vectors

e1 =

(
1
0

)
, e2 =

(
0
1

)
, v1 =

(
3
1

)
, and v2 =

(
2
2

)
vector space R2 has bases

B = (e1, e2)

and
C = (v1, v2).

1. Find the transition matrix A from coordinates with respect to B to coordinates with respect
to C.

2. Use the transition matrix to calculate the coordinates of point p = (−7, 3) in R2 with respect
to basis C.

1. To find the 2 × 2 matrix A that rewrites coordinates in terms of basis B as coordinates in
terms of basis C, we must write vectors in B as linear combinations of vectors in C. It is
easy to see that

v1 = 3e1 + e2

v2 = 2e1 + 2e2.

Solving for e1 and e2 in the first pair of equations, we have

e1 = 1
2
v1 − 1

4
v2

e2 = − 1
2
v1 + 3

4
v2.

In particular, this gives us the coordinates of e1 and e2 with respect to the new basis:

(e1)C =


1

2

−1

4

 and (e2)C =


−1

2

3

4

 .

Thus the transition matrix is given by

A =

 | |
(e1)C (e2)C
| |

 =

(
1
2
− 1

2

− 1
4

3
4

)
.
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2. Since A is a transition matrix, we know that

A(p)B = (p)C .

Since the coordinates for p = (−7, 3) with respect to basis B are just

(p)B =

(
−7
3

)
,

the coordinates of p with respect to basis C are

(p)C = A(p)B

=

(
1
2
− 1

2

− 1
4

3
4

)(
−7
3

)

=

(
−5
4

)
.

The calculation above is easy to verify–indeed, you should check that p = −5v1 + 4v2.

Example. Given the vector space sl(2,R) of 2× 2 trace 0 matrices, basis

B = (e1, e2, e3),

we may think of matrix

A =

0 1 0
0 0 1
1 0 0


as a transition matrix from coordinates in terms of B to coordinates in terms of a new basis C.
Find C.

Column i of A consists of the coordinates of ei with respect to basis C = (w1, w2, w3). Since
the first column of A is 0

0
1

 ,

we see that
e1 = 0w1 + 0w2 + w3 = w3.

Similarly,
e2 = w1 + 0w2 + 0w3 = w1,

and
e3 = 0w1 + w2 + 0w3.

Thus basis C is just
C = (e2, e3, e1).
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Let’s check that the calculations above make sense, with a particular matrix in sl(2,R): given

v =

(
−1 2
4 1

)
,

it is easy to see that v has coordinates

(v)B =

−1
2
4


and

(v)C =

 2
4
−1

 .

Now applying A to (v)B, we have

A(v)B =

0 1 0
0 0 1
1 0 0

−1
2
4



=

 2
4
−1


= (v)C .

Thus A simply converts coordinates for v in terms of B to coordinates in terms of C.

In addition to finding the transition matrix A = A(B,C), we can also create the transition matrix
A′ = A(C,B) that converts coordinates in terms of C to coordinates in terms of B. A′ reverses the
action of A–that is,

A′A(v)B = A′(v)C = (v)B.

Thus the following theorem is not too surprising:

Theorem. The transition matrix A = A(B,C) is invertible, and A−1 is given by A−1 = A(C,B).

We can use this theorem to our advantage if we wish to find a nicer ”version” of the matrix for
an operator T . In particular, suppose that A = A(B,B) is the matrix for T with respect to basis B,
and let X be the transition matrix from coordinates in terms of B to coordinates in terms of C, so
that X−1 converts coordinates from C to B. Then I claim that XAX−1 is the matrix for T with
respect to C, that is

A(C,C) = XAX−1.

To check the claim, we need to verify that

XAX−1(v)C = (T (vC));
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since X−1 converts coordinates from C to B, we have

XAX−1(v)C = XA(X−1(v)C)

= X(A(v)B)

= X(T (v))B

= (T (v))C

as desired, since X converts coordinates from B to C.

Example. Recall that the vector space R2 has bases

B = (e1, e2)

and
C = (v1, v2).

Let T : R2 → R2 be the operator with matrix

A = A(C,C) =

(
5/2 1
−3/4 1/2

)
.

Find the matrix of T with respect to B and describe the action of T on x ∈ R2.

We simply need to know the transition matrices X from C to B, and its inverse, the transition
matrix from B to C. Of course, we already know that

X =

(
1/2 −1/2
1/4 3/4

)
and X−1 =

(
3 2
1 2

)
.

Thus

A(B,B) = XAX−1

=

(
1/2 −1/2
1/4 3/4

)(
5/2 1
−3/4 1/2

)(
3 2
1 2

)

=

(
2 0
0 1

)
.

Now it is much easier to see how T treats vectors in R2: indeed, since x = (x)B in this example,
we see that

T (x) = (T (x))B

= A(B,B)x

=

(
2 0
0 1

)(
x1
x2

)

=

(
2x1
x2

)
.
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Matrix for the Composition of Linear Transformations

Recall that, if T ∈ L(V,U) and S ∈ L(U,W ), then the product ST defined by

ST (v) = S(T (v))

is a linear transformation, and
ST : V →W,

that is ST ∈ L(V,W ). We think of ST as a composition of the transformations T and S.
Now choosing basis B for V , C for U , and D for W , we may find the matrix representations

for T and S, say A(B,C) for T and A(C,D) for S. We naturally ask:

What is the relationship between the matrix representation for the
composition ST and the matrix representations for T and S?

As one might suspect, given our knowledge of matrix arithmetic and the interconnections with
linear transformations, the matrix for a composition is the product of the matrices for the component
transformations:

Theorem. Let V , U andW be finite dimensional vector spaces with basesB, C, andD respectively.
Let T : V → U and S : U →W be linear transformations with corresponding matrix representations
A(B,C) and A(C,D) respectively. Then the matrix A(B,D) for the linear transformation ST : V →W
is the product

A(B,D) = A(C,D)A(B,C).

Remark. We have already seen an example of the use of the theorem above. In Unit 3, Section 1,
we considered the linear transformation TM : R2 → R3 with associated matrix

M =

1 0
0 1
1 1


and TN : R3 → R1 with associated matrix

N =
(
1 1 1

)
;

then the transformation
TNTM : R2 → R1

has matrix
NM =

(
2 2

)
.
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