1. Let $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ be given by

$$T(\alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x + \alpha_0) = 2\alpha_1 x^3 + (\alpha_3 + \alpha_2) x + (\alpha_1 + \alpha_0).$$

(a) Is $x^3 - 5x^2 + 3x - 6$ in null (T)? Explain why/why not.

Solution: No, because

$$T(x^3 - 5x^2 + 3x - 6) = 6x^3 - 4x^2 - 3 \neq \mathbf{0}.$$

(b) Is $4x^3 - 4x^2$ in null (T)? Explain why/why not.

Solution: Yes, because

$$T(4x^3 - 4x^2) = (4 - 4)x = \mathbf{0}$$

(c) Is $8x^3 - x - 1$ in range (T)? Explain why/why not.

Solution: Yes, because

$$T(-x^3 + 4x - 5) = 8x^3 - x - 1.$$

(d) Is $4x^3 - 3x^2 + 7$ in range (T)? Explain why/why not.

Solution: No, because no vector whose x^2 component has nonzero coefficient is in the range of T.

2. Given

$$M = \begin{pmatrix} 3 & 2 & 11 \\ 2 & 1 & 8 \end{pmatrix},$$

define $T_M : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T_M(v) = Mv.$$

(a) Find the rank of M.

Solution: The RREF of M is

$$\begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & -2 \end{pmatrix};$$

since this matrix has 2 leading 1s, its rank is 2.

(b) Find a basis for the null space of T_M .

Solution: Solutions to $Mx = \mathbf{0}$ may be parameterized as

$$x = s \begin{pmatrix} -5\\2\\1 \end{pmatrix};$$

thus one choice for a basis for $\operatorname{null}(T_M)$ is

$$\left(\begin{pmatrix} -5\\2\\1 \end{pmatrix} \right).$$

(c) Find a basis for the range of T_M .

Solution: Row reducing the augmented matrix for the system, we have

$$\begin{pmatrix} 3 & 2 & 11 & |v_1| \\ 2 & 1 & 8 & |v_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 5 & | & 2v_2 - v_1 \\ 0 & 1 & -2 & | & 2v_1 - 3v_2 \end{pmatrix}$$

This system is always consistent, so the range of T_M is all of \mathbb{R}^2 ; thus we may choose any basis we like for \mathbb{R}^2 , say

$$\left(\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right).$$

(d) Verify the Fundamental Theorem for T_M .

Solution: The dimension of null $(T_M) = 1$, and dimension of range $(T_M) = 2$; we have

 $\dim(\operatorname{null}(T_M)) + \dim(\operatorname{range}(T_M)) = 3 = \dim(\mathbb{R}^3).$

3. Define $T: \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$ by

$$T(X) = X - X^{\top}.$$

(a) Find a basis for the null space of T.

Solution: If $X - X^{\top} = \mathbf{0}$, then we have $X = X^{\top}$, that is X is symmetric. Thus one choice of basis for null (T) is

$$\left(\begin{pmatrix}1 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 & 1\\0 & 0 & 0\\1 & 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 1\end{pmatrix}\right).$$

(b) Find a basis for the range of T.

Solution: If $V = X - X^{\top}$, it is clear that

$$V^{\top} = (X - X^{\top})^{\top}$$
$$= -X + X^{\top}$$
$$= -(X - X^{\top})$$
$$= -V.$$

Thus every vector in range (T) is skew symmetric, and a basis for range (T) is

$$\left(\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\right).$$

(c) Verify the Fundamental Theorem for T.

Solution: We have $\dim(\operatorname{null}(T)) = 6$, $\dim(\operatorname{range}(T)) = 3$, and $\dim(\mathcal{M}_3(\mathbb{R})) = 9$. So clearly

$$\dim(\operatorname{null}(T)) + \dim(\operatorname{range}(T)) = \dim(\mathcal{M}_3(\mathbb{R}))$$

4. Find an example of a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ so that null (T) = range(T).

Example: For any $x \in \mathbb{R}^4$, $T(x) \in \operatorname{range}(T)$. Thus the stipulation null $(T) = \operatorname{range}(T)$ implies that

$$T(T(x)) = \mathbf{0}$$

for all $x \in \mathbb{R}^4$. One possible way to build such an operator is

$$T\left(\begin{pmatrix} x_1\\x_2\\x_3\\x_4 \end{pmatrix}\right) = \begin{pmatrix} 0\\0\\x_1\\x_2 \end{pmatrix}.$$

It is clear that T is indeed a linear transformation, and

$$x \in \operatorname{range}(T) \iff x = \begin{pmatrix} 0\\0\\v\\w \end{pmatrix} \iff T(x) = \mathbf{0}.$$

5. A linear transformation $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ has matrix

$$A = A_{(B,C)} = \begin{pmatrix} 1 & -3 & 0 \\ -4 & 13 & -1 \\ 8 & -25 & 2 \end{pmatrix}$$

with respect to some bases B and C of $\mathcal{P}_2(\mathbb{R})$.

(a) Is T injective? Explain why/why not.

Solution: If T is injective, then $(T) = \{\mathbf{0}\}$, that is $T(v) = \mathbf{0} \iff v = \mathbf{0}$. Now $T(v) = \mathbf{0} \iff (T(v))_C = \mathbf{0}$, and since

i. $A(v)_B = (T(v))_C$, and

ii. every $x \in \mathbb{R}^3$ is the coordinate vector for some $p \in \mathcal{P}_2$,

we may translate the observation into one on matrix equations: Ax = 0 has only the trivial solution if and only if $det(A) \neq 0$.

Now the determinant of A is det(A) = 1, so the only solution to $A(v)_B = \mathbf{0}$ is the trivial one, $(v)_B = \mathbf{0}$. Thus T is indeed injective

(b) Is T surjective? Explain why/why not.

Solution: A linear operator is injective if and only if it is also surjective, so T is surjective.

6. Suppose that R, S, and T are linear operators on V so that RST is surjective. Prove that S is injective.

Solution: Since RST is surjective, we know that for every $w \in V$, there is a $v \in V$ so that RST(v) = w. Since RST(v) = R(S(T(v))), there is also a vector (namely u := S(T(v))) so

that R(u) = w. Thus the operator R is surjective as well; this is equivalent to R injective. Thus for every $w \in V$, there is precisely one $v \in V$ so that R(v) = w.

Thus ST must be a surjective map, and using the same reasoning as above, S is surjective as well, and thus injective.

7. (Deleted) Recall Theorem 5.10:

Let $T: V \to V$ be a linear operator on the finite dimensional vector space V. If $\lambda_1, \ldots, \lambda_n$ are *distinct* eigenvalues of T, and if v_1, \ldots, v_n are vectors so that v_i is an eigenvector associated with λ_i , then the list (v_1, v_2, \ldots, v_n) is an independent list.

Fill in the details of the following sketch of the proof:

Proceed by induction: show that, if v_1 and v_2 are eigenvectors for T and are also dependent, then they must be associated with the same eigenvalue.

For the inductive hypothesis, let v_1, \ldots, v_n be any eigenvectors associated with unique eigenvalues, so that (v_1, \ldots, v_n) is an independent list. Let v_{n+1} be any eigenvector of T in span (v_1, \ldots, v_n) , and show that v_{n+1} must be associated with one of the eigenvalues $\lambda_1, \ldots, \lambda_n$.