1. Let $T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{3}(\mathbb{R})$ be given by

$$
T\left(\alpha_{3} x^{3}+\alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}\right)=2 \alpha_{1} x^{3}+\left(\alpha_{3}+\alpha_{2}\right) x+\left(\alpha_{1}+\alpha_{0}\right) .
$$

(a) Is $x^{3}-5 x^{2}+3 x-6$ in null (T) ? Explain why/why not.

Solution: No, because

$$
T\left(x^{3}-5 x^{2}+3 x-6\right)=6 x^{3}-4 x^{2}-3 \neq \mathbf{0} .
$$

(b) Is $4 x^{3}-4 x^{2}$ in null (T)? Explain why/why not.

Solution: Yes, because

$$
T\left(4 x^{3}-4 x^{2}\right)=(4-4) x=\mathbf{0}
$$

(c) Is $8 x^{3}-x-1$ in range (T) ? Explain why/why not.

Solution: Yes, because

$$
T\left(-x^{3}+4 x-5\right)=8 x^{3}-x-1
$$

(d) Is $4 x^{3}-3 x^{2}+7$ in range (T) ? Explain why/why not.

Solution: No, because no vector whose x^{2} component has nonzero coefficient is in the range of T.
2. Given

$$
M=\left(\begin{array}{ccc}
3 & 2 & 11 \\
2 & 1 & 8
\end{array}\right)
$$

define $T_{M}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
T_{M}(v)=M v .
$$

(a) Find the rank of M.

Solution: The RREF of M is

$$
\left(\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & -2
\end{array}\right) ;
$$

since this matrix has 2 leading 1 s , its rank is 2 .
(b) Find a basis for the null space of T_{M}.

Solution: Solutions to $M x=\mathbf{0}$ may be parameterized as

$$
x=s\left(\begin{array}{c}
-5 \\
2 \\
1
\end{array}\right)
$$

thus one choice for a basis for null $\left(T_{M}\right)$ is

$$
\left(\left(\begin{array}{c}
-5 \\
2 \\
1
\end{array}\right)\right)
$$

(c) Find a basis for the range of T_{M}.

Solution: Row reducing the augmented matrix for the system, we have

$$
\left(\begin{array}{ccc|c}
3 & 2 & 11 & v_{1} \\
2 & 1 & 8 & \mid v_{2}
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 5 & 2 v_{2}-v_{1} \\
0 & 1 & -2 & 2 v_{1}-3 v_{2}
\end{array}\right) .
$$

This system is always consistent, so the range of T_{M} is all of \mathbb{R}^{2}; thus we may choose any basis we like for \mathbb{R}^{2}, say

$$
\left(\binom{1}{0},\binom{0}{1}\right) .
$$

(d) Verify the Fundamental Theorem for T_{M}.

Solution: The dimension of null $\left(T_{M}\right)=1$, and dimension of range $\left(T_{M}\right)=2$; we have

$$
\operatorname{dim}\left(\operatorname{null}\left(T_{M}\right)\right)+\operatorname{dim}\left(\operatorname{range}\left(T_{M}\right)\right)=3=\operatorname{dim}\left(\mathbb{R}^{3}\right) .
$$

3. Define $T: \mathcal{M}_{3}(\mathbb{R}) \rightarrow \mathcal{M}_{3}(\mathbb{R})$ by

$$
T(X)=X-X^{\top} .
$$

(a) Find a basis for the null space of T.

Solution: If $X-X^{\top}=\mathbf{0}$, then we have $X=X^{\top}$, that is X is symmetric. Thus one choice of basis for null (T) is

$$
\left(\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right) .
$$

(b) Find a basis for the range of T.

Solution: If $V=X-X^{\top}$, it is clear that

$$
\begin{aligned}
V^{\top} & =\left(X-X^{\top}\right)^{\top} \\
& =-X+X^{\top} \\
& =-\left(X-X^{\top}\right) \\
& =-V .
\end{aligned}
$$

Thus every vector in range (T) is skew symmetric, and a basis for range (T) is

$$
\left(\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)\right) .
$$

(c) Verify the Fundamental Theorem for T.

Solution: We have $\operatorname{dim}(\operatorname{null}(T))=6, \operatorname{dim}(\operatorname{range}(T))=3$, and $\operatorname{dim}\left(\mathcal{M}_{3}(\mathbb{R})\right)=9$. So clearly

$$
\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}\left(\mathcal{M}_{3}(\mathbb{R})\right) .
$$

4. Find an example of a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ so that null $(T)=\operatorname{range}(T)$.

Example: For any $x \in \mathbb{R}^{4}, T(x) \in \operatorname{range}(T)$. Thus the stipulation null $(T)=\operatorname{range}(T)$ implies that

$$
T(T(x))=\mathbf{0}
$$

for all $x \in \mathbb{R}^{4}$. One possible way to build such an operator is

$$
T\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)\right)=\left(\begin{array}{c}
0 \\
0 \\
x_{1} \\
x_{2}
\end{array}\right)
$$

It is clear that T is indeed a linear transformation, and

$$
x \in \operatorname{range}(T) \Longleftrightarrow x=\left(\begin{array}{l}
0 \\
0 \\
v \\
w
\end{array}\right) \Longleftrightarrow T(x)=\mathbf{0} .
$$

5. A linear transformation $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ has matrix

$$
A=A_{(B, C)}=\left(\begin{array}{ccc}
1 & -3 & 0 \\
-4 & 13 & -1 \\
8 & -25 & 2
\end{array}\right)
$$

with respect to some bases B and C of $\mathcal{P}_{2}(\mathbb{R})$.
(a) Is T injective? Explain why/why not.

Solution: If T is injective, then $(T)=\{\mathbf{0}\}$, that is $T(v)=\mathbf{0} \Longleftrightarrow v=\mathbf{0}$.
Now $T(v)=\mathbf{0} \Longleftrightarrow(T(v))_{C}=\mathbf{0}$, and since
i. $A(v)_{B}=(T(v))_{C}$, and
ii. every $x \in \mathbb{R}^{3}$ is the coordinate vector for some $p \in \mathcal{P}_{2}$,
we may translate the observation into one on matrix equations: $A x=\mathbf{0}$ has only the trivial solution if and only if $\operatorname{det}(A) \neq 0$.
Now the determinant of A is $\operatorname{det}(A)=1$, so the only solution to $A(v)_{B}=\mathbf{0}$ is the trivial one, $(v)_{B}=\mathbf{0}$. Thus T is indeed injective
(b) Is T surjective? Explain why/why not.

Solution: A linear operator is injective if and only if it is also surjective, so T is surjective.
6. Suppose that R, S, and T are linear operators on V so that $R S T$ is surjective. Prove that S is injective.

Solution: Since RST is surjective, we know that for every $w \in V$, there is a $v \in V$ so that $R S T(v)=w$. Since $R S T(v)=R(S(T(v))$), there is also a vector (namely $u:=S(T(v))$) so
that $R(u)=w$. Thus the operator R is surjective as well; this is equivalent to R injective. Thus for every $w \in V$, there is precisely one $v \in V$ so that $R(v)=w$.
Thus $S T$ must be a surjective map, and using the same reasoning as above, S is surjective as well, and thus injective.
7. (Deleted) Recall Theorem 5.10:

Let $T: V \rightarrow V$ be a linear operator on the finite dimensional vector space V. If λ_{1}, \ldots, λ_{n} are distinct eigenvalues of T, and if v_{1}, \ldots, v_{n} are vectors so that v_{i} is an eigenvector associated with λ_{i}, then the list $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is an independent list.
Fill in the details of the following sketch of the proof:
Proceed by induction: show that, if v_{1} and v_{2} are eigenvectors for T and are also dependent, then they must be associated with the same eigenvalue.
For the inductive hypothesis, let v_{1}, \ldots, v_{n} be any eigenvectors associated with unique eigenvalues, so that $\left(v_{1}, \ldots, v_{n}\right)$ is an independent list. Let v_{n+1} be any eigenvector of T in span $\left(v_{1}, \ldots, v_{n}\right)$, and show that v_{n+1} must be associated with one of the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

