
Homework 9 Key

1. Let T : P3(R)→ P3(R) be given by

T (α3x
3 + α2x

2 + α1x+ α0) = 2α1x
3 + (α3 + α2)x+ (α1 + α0).

(a) Is x3 − 5x2 + 3x− 6 in null (T )? Explain why/why not.

Solution: No, because

T (x3 − 5x2 + 3x− 6) = 6x3 − 4x2 − 3 6= 0.

(b) Is 4x3 − 4x2 in null (T )? Explain why/why not.

Solution: Yes, because
T (4x3 − 4x2) = (4− 4)x = 0.

(c) Is 8x3 − x− 1 in range (T )? Explain why/why not.

Solution: Yes, because
T (−x3 + 4x− 5) = 8x3 − x− 1.

(d) Is 4x3 − 3x2 + 7 in range (T )? Explain why/why not.

Solution: No, because no vector whose x2 component has nonzero coefficient is in the
range of T .

2. Given

M =

(
3 2 11
2 1 8

)
,

define TM : R3 → R2 by
TM (v) = Mv.

(a) Find the rank of M .

Solution: The RREF of M is (
1 0 5
0 1 −2

)
;

since this matrix has 2 leading 1s, its rank is 2.

(b) Find a basis for the null space of TM .

Solution: Solutions to Mx = 0 may be parameterized as

x = s

−5
2
1

 ;

thus one choice for a basis for null (TM ) is

(−5
2
1

).
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(c) Find a basis for the range of TM .

Solution: Row reducing the augmented matrix for the system, we have(
3 2 11 |v1
2 1 8 |v2

)
→
(

1 0 5 | 2v2 − v1
0 1 −2 | 2v1 − 3v2

)
.

This system is always consistent, so the range of TM is all of R2; thus we may choose
any basis we like for R2, say ((

1
0

)
,

(
0
1

))
.

(d) Verify the Fundamental Theorem for TM .

Solution: The dimension of null (TM ) = 1, and dimension of range (TM ) = 2; we have

dim(null (TM )) + dim(range (TM )) = 3 = dim(R3).

3. Define T :M3(R)→M3(R) by
T (X) = X −X>.

(a) Find a basis for the null space of T .

Solution: If X − X> = 0, then we have X = X>, that is X is symmetric. Thus one
choice of basis for null (T ) is

(1 0 0
0 0 0
0 0 0

 ,

0 1 0
1 0 0
0 0 0

 ,

0 0 1
0 0 0
1 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 1
0 1 0

 ,

0 0 0
0 0 0
0 0 1

).
(b) Find a basis for the range of T .

Solution: If V = X −X>, it is clear that

V > = (X −X>)>

= −X +X>

= −(X −X>)

= −V.

Thus every vector in range (T ) is skew symmetric, and a basis for range (T ) is

( 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

).
(c) Verify the Fundamental Theorem for T .

Solution: We have dim(null (T )) = 6, dim(range (T )) = 3, and dim(M3(R)) = 9. So
clearly

dim(null (T )) + dim(range (T )) = dim(M3(R)).
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4. Find an example of a linear transformation T : R4 → R4 so that null (T ) = range (T ).

Example: For any x ∈ R4, T (x) ∈ range (T ). Thus the stipulation null (T ) = range (T )
implies that

T (T (x)) = 0

for all x ∈ R4. One possible way to build such an operator is

T

(
x1
x2
x3
x4

) =


0
0
x1
x2

 .

It is clear that T is indeed a linear transformation, and

x ∈ range (T ) ⇐⇒ x =


0
0
v
w

 ⇐⇒ T (x) = 0.

5. A linear transformation T : P2(R)→ P2(R) has matrix

A = A(B,C) =

 1 −3 0
−4 13 −1
8 −25 2


with respect to some bases B and C of P2(R).

(a) Is T injective? Explain why/why not.

Solution: If T is injective, then (T ) = {0}, that is T (v) = 0 ⇐⇒ v = 0.

Now T (v) = 0 ⇐⇒ (T (v))C = 0, and since

i. A(v)B = (T (v))C , and

ii. every x ∈ R3 is the coordinate vector for some p ∈ P2,
we may translate the observation into one on matrix equations: Ax = 0 has only the
trivial solution if and only if det(A) 6= 0.

Now the determinant of A is det(A) = 1, so the only solution to A(v)B = 0 is the trivial
one, (v)B = 0. Thus T is indeed injective

(b) Is T surjective? Explain why/why not.

Solution: A linear operator is injective if and only if it is also surjective, so T is surjective.

6. Suppose that R, S, and T are linear operators on V so that RST is surjective. Prove that S
is injective.

Solution: Since RST is surjective, we know that for every w ∈ V , there is a v ∈ V so that
RST (v) = w. Since RST (v) = R(S(T (v))), there is also a vector (namely u := S(T (v))) so
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that R(u) = w. Thus the operator R is surjective as well; this is equivalent to R injective.
Thus for every w ∈ V , there is precisely one v ∈ V so that R(v) = w.

Thus ST must be a surjective map, and using the same reasoning as above, S is surjective as
well, and thus injective.

7. (Deleted) Recall Theorem 5.10:

Let T : V → V be a linear operator on the finite dimensional vector space V . If λ1, . . . ,
λn are distinct eigenvalues of T , and if v1, . . . , vn are vectors so that vi is an eigenvector
associated with λi, then the list (v1, v2, . . . , vn) is an independent list.

Fill in the details of the following sketch of the proof:

Proceed by induction: show that, if v1 and v2 are eigenvectors for T and are also dependent,
then they must be associated with the same eigenvalue.

For the inductive hypothesis, let v1, . . . , vn be any eigenvectors associated with unique
eigenvalues, so that (v1, . . . , vn) is an independent list. Let vn+1 be any eigenvector of
T in span (v1, . . . , vn), and show that vn+1 must be associated with one of the eigenvalues
λ1, . . . , λn.
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