1. Let $T : P_3(\mathbb{R}) \to P_3(\mathbb{R})$ be given by

$$T(\alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x + \alpha_0) = 2\alpha_1 x^3 + (\alpha_3 + \alpha_2)x + (\alpha_1 + \alpha_0).$$

(a) Is $x^3 - 5x^2 + 3x - 6$ in null (T)? Explain why/why not.
(b) Is $4x^3 - 4x^2$ in null (T)? Explain why/why not.
(c) Is $8x^3 - x - 1$ in range (T)? Explain why/why not.
(d) Is $4x^3 - 3x^2 + 7$ in range (T)? Explain why/why not.

2. Given

$$M = \begin{pmatrix} 3 & 2 & 11 \\ 2 & 1 & 8 \end{pmatrix},$$

define $T_M : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T_M(v) = Mv.$$

(a) Find the rank of M.
(b) Find a basis for the null space of T_M.
(c) Find a basis for the range of T_M.
(d) Verify the Fundamental Theorem for T_M.

3. Define $T : M_3(\mathbb{R}) \to M_3(\mathbb{R})$ by

$$T(X) = X - X^T.$$

(a) Find a basis for the null space of T.
(b) Find a basis for the range of T.
(c) Verify the Fundamental Theorem for T.

4. Find an example of a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ so that null $(T) = \text{range} (T)$.

5. A linear transformation $T : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ has matrix

$$A = A_{(B,C)} = \begin{pmatrix} 1 & -3 & 0 \\ -4 & 13 & -1 \\ 8 & -25 & 2 \end{pmatrix}$$

with respect to some bases B and C of $P_2(\mathbb{R})$.

(a) Is T injective? Explain why/why not.
(b) Is T surjective? Explain why/why not.

6. Suppose that R, S, and T are linear operators on V so that RST is surjective. Prove that S is injective.
7. Recall Theorem 5.10:

Let $T : V \to V$ be a linear operator on the finite dimensional vector space V. If $\lambda_1, \ldots, \lambda_n$ are distinct eigenvalues of T, and if v_1, \ldots, v_n are vectors so that v_i is an eigenvector associated with λ_i, then the list (v_1, v_2, \ldots, v_n) is an independent list.

Fill in the details of the following sketch of the proof:

Proceed by induction: show that, if v_1 and v_2 are eigenvectors for T and are also dependent, then they must be associated with the same eigenvalue.

For the inductive hypothesis, let v_1, \ldots, v_n be any eigenvectors associated with unique eigenvalues, so that (v_1, \ldots, v_n) is an independent list. Let v_{n+1} be any eigenvector of T in span (v_1, \ldots, v_n), and show that v_{n+1} must be associated with one of the eigenvalues $\lambda_1, \ldots, \lambda_n$.