1. Let $T: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^3$ be given by

$$
T(\alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x + \alpha_0) = \begin{pmatrix} a_0 + a_1 \\ 2a_2 \\ a_3 - a_0 \end{pmatrix}.
$$

- (a) Find the matrix A for T with respect to the standard bases $B = (x^3, x^2, x, 1)$ and $C = (e_1, e_2, e_3)$ for $\mathcal{P}_3(\mathbb{R})$ and \mathbb{R}^3 respectively.
- (b) Given $p(x) = -4x^2 3x 5$, show that $A(p)_B = (T(p))_C$.
- 2. Given the same transformation T above, but bases $D = (x^3 + x^2, x^2 + x, x + 1, 1)$ and

$$
E = \left(\begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix} \right)
$$

for $P_3(\mathbb{R})$ and \mathbb{R}^3 respectively, find the matrix for T.

3. Lists

$$
B = \left(\begin{pmatrix} 7 & 3 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \right)
$$

and

$$
C = \left(\begin{pmatrix} 22 & 7 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 12 & 4 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 33 & 12 \\ 0 & 2 \end{pmatrix} \right)
$$

are both bases for $\mathcal{U}_2(\mathbb{R})$.

- (a) Find the transition matrix X from B to C .
- (b) Vector $v \in \mathcal{U}_2(\mathbb{R})$ has coordinates

$$
(v)_B = \begin{pmatrix} 4 \\ 3 \\ -6 \end{pmatrix}.
$$

Find v.

- (c) Use your transition matrix to find $(v)_C$.
- 4. Let $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that rotates a vector $x \in \mathbb{R}^2$ by angle θ counterclockwise.
	- (a) Show that

$$
T_{\theta}\left(\begin{pmatrix} x_1\\x_2 \end{pmatrix}\right) = \begin{pmatrix} x_1 \cos \theta - x_2 \sin \theta\\x_1 \sin \theta + x_2 \cos \theta \end{pmatrix}
$$

.

- (b) Find the matrix A for T_{θ} with respect to the standard basis $B = (e_1, e_2)$ for \mathbb{R}^2 .*
- 5. The linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ has matrix

$$
A = \begin{pmatrix} -3 & 7\\ 0 & 4 \end{pmatrix}
$$

with respect to the standard basis $B = (e_1, e_2)$ for \mathbb{R}^2 . Find a basis B' for \mathbb{R}^2 so that the matrix for T with respect to B' is diagonal.

- 6. Let V be an *n* dimensional vector space over F, and let $B = (v_1, v_2, \ldots, v_n)$ be a basis for V. Show that $(v_i)_B = e_i$ for all $i, 1 \leq i \leq n$, where $e_i \in \mathbb{F}^n$ is the $n \times 1$ matrix with 1 in the ith entry and 0s elsewhere.
- 7. Let V be a finite dimensional vector space over $\mathbb F$ with bases B and C. Prove that, if $X \in M_n(\mathbb{F})$ is the transition matrix from B to C, then X is invertible, and X^{-1} is the transition matrix from C to B.

*Notice that you've seen this matrix before–A is actually *orthogonal*, that is $A^{\top} = A^{-1}$.