
Homework 7, Part 2 Key

1. Recall that the set R+ of all positive real numbers is a vector space with the following
definitions for addition and scalar multiplication (to avoid confusion, we use the symbol � to
refer to the addition operation, and ∧ to refer to the operation of scalar multiplication):

a�b = ab and λ ∧ a = aλ.

(a) Find a basis B for R+, and justify your answer.

Example: One possible choice is B = (2), since for any x ∈ R+, log2(x) ∈ R so that

x = 2log2(x)

= (log2 x) ∧ 2.

(b) Define the map T : R+ → R by T (u) = lnu. Evaluate T (e�e4) and T (−3 ∧ 5). (Notice
that we have not proved that T is a linear transformation. Therefore you should not
assume the properties of a linear transformation when making the calculations above).

Solution: Since e�e4 = e ∗ e4 = e5, we have

T (e�e4) = T (e5)

= ln(e5)

= 5.

Similarly, −3 ∧ 5 = 5−3, so

T (−3 ∧ 5) = T (5−3)

= ln(5−3)

= −3 ln 5.

(c) Given the basis B you chose in part (a), define a map T ′ : B → R by

T ′(b) = ln b ∀b ∈ B.

Describe the action of T ′ on each vector in B.

Solution: The only basis vector was 2, so we have

T ′(2) = ln 2.

(d) Recall that T ′ defines a unique linear transformation (which we will call T ′ as well) on
all of R+. Show that T is a linear transformation by proving that T = T ′. (Hint: Use
the change of base formula for logarithms).

Solution: Since every vector in R+ can be written in the form α ∧ 2 for some α ∈ R, we
extend T ′ to a map on R+ as follows:

T ′(α ∧ 2) = αT ′(2)

= α ln 2.
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Now we want to show that T and T ′ match up. Given x ∈ R+ so that x = α ∧ 2, we
know that α = log2(x). So we have

T ′(x) = T ′((log2(x)) ∧ 2)

= log2(x) · ln 2

=

(
lnx

ln 2

)
ln 2

= lnx

= T (x).

2. Show that T from the problem above is a linear transformation using the definition of trans-
formation.

Solution: Per usual, we need to show that T (x�y) = T (x) + T (y) and T (λ ∧ x) = λT (x):

T (x�y) = T (xy)

= ln(xy)

= lnx+ ln y

= T (x) + T (y).

Similarly,

T (λ ∧ x) = T (xλ)

= lnxλ

= λ lnx

= λT (x).

3. Let V and W be finite dimensional vector spaces over F and let U be a subspace of V .
Let T : U → W be a linear transformation. Show that T can be extended to a linear
transformation T ′ : V → W (that is, T ′ is a linear transformation so that T ′(u) = T (u)
whenever u ∈ U). (Not required, but interesting to think about: Is T ′ unique?)

Solution: Let S = (u1, . . . , un) be a basis for U , which we may extend to a basis Ŝ =
(u1, . . . , un, v1, . . . , vm) for V . Now set T ′(u) = T (u) for all u ∈ S, and choose arbitrary
wi ∈ W , 1 ≤ i ≤ m, and set T ′(vi) = wi. Now since we have defined T ′ on a basis for V ,
T ′ extends uniquely to a linear transformation T ′ : V →W , and clearly T ′(u) = T (u) for all
u ∈ U (since T ′ is also a linear transformation on U).

Once we have chosen the images wi of the vi, T
′ is unique. However, there are infinitely many

ways to choose these images, so there are infinitely many different linear transformations that
we can build from T .
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4. Let X ∈Mn(F) be a matrix with det(X) 6= 0 so that X−1 exists. Show that the map

cX :Mn(F)→Mn(F)

defined by
cX(A) = XAX−1

is a linear transformation.

Solution: Given A, B ∈Mn(F) and λ ∈ F, we have

cX(A+B) = X(A+B)X−1

= XAX−1 +XBX−1

= cX(A) + cX(B),

and

cX(λA) = X(λA)X−1

= λXAX−1

= λcX(A).

5. Given

X =

(
0 −1
1 0

)
,

consider the linear transformation cX :M2(R)→M2(R) defined in the previous problem.

(a) Find the matrix A for cX with respect to the standard basis B = (e11, e12, e21, e22) for
M2(R).

Solution: We need to describe the action of X on each of the basis vectors. Setting

e1 =

(
1 0
0 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
1 0

)
, e4 =

(
0 0
0 1

)
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we have

cX(e1) =

(
0 0
0 1

)
= e4;

cX(e2) =

(
0 0
−1 0

)
= −e3;

cX(e3) =

(
0 −1
0 0

)
= −e2;

cX(e4) =

(
1 0
0 0

)
= e1.

With respect to the standard basis, we have coordinates

(cX(e1)) =


0
0
0
1

 ,

(cX(e2)) =


0
0
−1
0

 ,

(cX(e3)) =


0
−1
0
0

 ,

(cX(e5)) =


1
0
0
0

 .

Thus the matrix A for cX with respect to the standard basis is

A =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .
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(b) Show that, for any Y ∈M∈(R), A(Y )B = (cX(Y ))B.

Solution: On one hand, given

Y =

(
α β
γ δ

)
with coordinates

(Y )B =


α
β
γ
δ

 ,

we have

A(Y )B =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



α
β
γ
δ



=


δ
−γ
−β
α

 .

On the other hand,

cX(Y ) = XYX−1

=

(
0 −1
1 0

)(
α β
γ δ

)(
0 1
−1 0

)

=

(
−γ −δ
α β

)(
0 1
−1 0

)

=

(
δ −γ
−β α

)
.

Thus the coordinates of cX(Y ) are given by

(cX(Y ))B =


δ
−γ
−β
α

 = A(Y )B.

5


