1. Recall that the set \mathbb{R}_+ of all positive real numbers is a vector space with the following definitions for addition and scalar multiplication (to avoid confusion, we use the symbol \Box to refer to the addition operation, and \wedge to refer to the operation of scalar multiplication):

$$a\Box b = ab$$
 and $\lambda \wedge a = a^{\lambda}$.

(a) Find a basis B for \mathbb{R}^+ , and justify your answer. Example: One possible choice is B = (2), since for any $x \in \mathbb{R}^+$, $\log_2(x) \in \mathbb{R}$ so that

$$\begin{aligned} x &= 2^{\log_2(x)} \\ &= (\log_2 x) \wedge 2. \end{aligned}$$

(b) Define the map $T : \mathbb{R}^+ \to \mathbb{R}$ by $T(u) = \ln u$. Evaluate $T(e \Box e^4)$ and $T(-3 \land 5)$. (Notice that we have *not* proved that T is a linear transformation. Therefore you should not assume the properties of a linear transformation when making the calculations above). Solution: Since $e \Box e^4 = e * e^4 = e^5$, we have

$$T(e \Box e^4) = T(e^5)$$

= $\ln(e^5)$
= 5.

Similarly, $-3 \wedge 5 = 5^{-3}$, so

$$T(-3 \wedge 5) = T(5^{-3})$$

= $\ln(5^{-3})$
= $-3\ln 5.$

(c) Given the basis B you chose in part (a), define a map $T': B \to \mathbb{R}$ by

$$T'(b) = \ln b \ \forall b \in B.$$

Describe the action of T' on each vector in B. Solution: The only basis vector was 2, so we have

$$T'(2) = \ln 2.$$

(d) Recall that T' defines a unique linear transformation (which we will call T' as well) on all of \mathbb{R}^+ . Show that T is a linear transformation by proving that T = T'. (Hint: Use the change of base formula for logarithms).

Solution: Since every vector in \mathbb{R}^+ can be written in the form $\alpha \wedge 2$ for some $\alpha \in \mathbb{R}$, we extend T' to a map on \mathbb{R}^+ as follows:

$$T'(\alpha \wedge 2) = \alpha T'(2)$$
$$= \alpha \ln 2.$$

Now we want to show that T and T' match up. Given $x \in \mathbb{R}^+$ so that $x = \alpha \wedge 2$, we know that $\alpha = \log_2(x)$. So we have

$$T'(x) = T'((\log_2(x)) \land 2)$$

= $\log_2(x) \cdot \ln 2$
= $\left(\frac{\ln x}{\ln 2}\right) \ln 2$
= $\ln x$
= $T(x).$

2. Show that T from the problem above is a linear transformation using the definition of transformation.

Solution: Per usual, we need to show that $T(x \Box y) = T(x) + T(y)$ and $T(\lambda \land x) = \lambda T(x)$:

$$T(x\Box y) = T(xy)$$

= $\ln(xy)$
= $\ln x + \ln y$
= $T(x) + T(y).$

Similarly,

$$T(\lambda \wedge x) = T(x^{\lambda})$$

= $\ln x^{\lambda}$
= $\lambda \ln x$
= $\lambda T(x)$.

3. Let V and W be finite dimensional vector spaces over \mathbb{F} and let U be a subspace of V. Let $T: U \to W$ be a linear transformation. Show that T can be extended to a linear transformation $T': V \to W$ (that is, T' is a linear transformation so that T'(u) = T(u) whenever $u \in U$). (Not required, but interesting to think about: Is T' unique?)

Solution: Let $S = (u_1, \ldots, u_n)$ be a basis for U, which we may extend to a basis $S = (u_1, \ldots, u_n, v_1, \ldots, v_m)$ for V. Now set T'(u) = T(u) for all $u \in S$, and choose arbitrary $w_i \in W$, $1 \leq i \leq m$, and set $T'(v_i) = w_i$. Now since we have defined T' on a basis for V, T' extends uniquely to a linear transformation $T': V \to W$, and clearly T'(u) = T(u) for all $u \in U$ (since T' is also a linear transformation on U).

Once we have chosen the images w_i of the v_i , T' is unique. However, there are infinitely many ways to choose these images, so there are infinitely many different linear transformations that we can build from T.

4. Let $X \in \mathcal{M}_n(\mathbb{F})$ be a matrix with $\det(X) \neq 0$ so that X^{-1} exists. Show that the map

$$c_X: \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_n(\mathbb{F})$$

defined by

$$c_X(A) = XAX^{-1}$$

is a linear transformation.

Solution: Given $A, B \in \mathcal{M}_n(\mathbb{F})$ and $\lambda \in \mathbb{F}$, we have

$$c_X(A+B) = X(A+B)X^{-1}$$
$$= XAX^{-1} + XBX^{-1}$$
$$= c_X(A) + c_X(B),$$

and

$$c_X(\lambda A) = X(\lambda A)X^{-1}$$

= λXAX^{-1}
= $\lambda c_X(A)$.

5. Given

$$X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

consider the linear transformation $c_X : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ defined in the previous problem.

(a) Find the matrix A for c_X with respect to the standard basis $B = (e_{11}, e_{12}, e_{21}, e_{22})$ for $\mathcal{M}_2(\mathbb{R})$.

Solution: We need to describe the action of X on each of the basis vectors. Setting

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

we have

$$c_X(e_1) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

= $e_4;$
$$c_X(e_2) = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

= $-e_3;$
$$c_X(e_3) = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$

= $-e_2;$
$$c_X(e_4) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

= $e_1.$

With respect to the standard basis, we have coordinates

$$(c_X(e_1)) = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix},$$

$$(c_X(e_2)) = \begin{pmatrix} 0\\0\\-1\\0 \end{pmatrix},$$

$$(c_X(e_3)) = \begin{pmatrix} 0\\-1\\0\\0 \end{pmatrix},$$

$$(c_X(e_5)) = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}.$$

Thus the matrix A for c_X with respect to the standard basis is

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

(b) Show that, for any $Y \in \mathcal{M}_{\in}(\mathbb{R})$, $A(Y)_B = (c_X(Y))_B$. Solution: On one hand, given

$$Y = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

with coordinates

$$(Y)_B = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix},$$

we have

$$A(Y)_{B} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$
$$= \begin{pmatrix} \delta \\ -\gamma \\ -\beta \\ \alpha \end{pmatrix}.$$

On the other hand,

$$c_X(Y) = XYX^{-1}$$

$$= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -\gamma & -\delta \\ \alpha & \beta \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \delta & -\gamma \\ -\beta & \alpha \end{pmatrix}.$$

Thus the coordinates of $c_X(Y)$ are given by

$$(c_X(Y))_B = \begin{pmatrix} \delta \\ -\gamma \\ -\beta \\ \alpha \end{pmatrix} = A(Y)_B.$$