Homework 7, Part 2, Due 4/8

1. Recall that the set \mathbb{R}_+ of all positive real numbers is a vector space with the following definitions for addition and scalar multiplication (to avoid confusion, we use the symbol \Box to refer to the addition operation, and \wedge to refer to the operation of scalar multiplication):

$$a\Box b = ab$$
 and $\lambda \wedge a = a^{\lambda}$.

- (a) Find a basis B for \mathbb{R}^+ , and justify your answer.
- (b) Define the map $T : \mathbb{R}^+ \to \mathbb{R}$ by $T(u) = \ln u$. Evaluate $T(e \Box e^4)$ and $T(-3 \land 5)$. (Notice that we have *not* proved that T is a linear transformation. Therefore you should not assume the properties of a linear transformation when making the calculations above).
- (c) Given the basis B you chose in part (a), define a map $T': B \to \mathbb{R}$ by

$$T'(b) = \ln b \ \forall b \in B.$$

Describe the action of T' on each vector in B.

- (d) Recall that T' defines a unique linear transformation (which we will call T' as well) on all of \mathbb{R}^+ . Show that T is a linear transformation by proving that T = T' (Hint: Use the change of base formula for logarithms).
- 2. Show that T from the problem above is a linear transformation using the definition of transformation.
- 3. Let V and W be finite dimensional vector spaces over \mathbb{F} and let U be a subspace of V. Let $T: U \to W$ be a linear transformation. Show that T can be extended to a linear transformation $T': V \to W$ (that is, T' is a linear transformation so that T'(u) = T(u) whenever $u \in U$). (Not required, but interesting to think about: Is T' unique?)
- 4. Let $X \in \mathcal{M}_n(\mathbb{F})$ be a matrix with $\det(X) \neq 0$ so that X^{-1} exists. Show that the map

$$c_X: \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_n(\mathbb{F})$$

defined by

$$c_X(A) = XAX^{-1}$$

is a linear transformation.

5. Given

$$X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

consider the linear transformation $c_X : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ defined in the previous problem.

- (a) Find the matrix A for c_X with respect to the standard basis $B = (e_{11}, e_{12}, e_{21}, e_{22})$ for $\mathcal{M}_2(\mathbb{R})$.
- (b) Show that, for any $Y \in \mathcal{M}_{\in}(\mathbb{R})$, $A(Y)_B = (c_X(Y))_B$.