
Homework 6 Key

1. Recall that the vector space sl(2,R) of 2 × 2 trace 0 matrices is a subspace of M2(R). The
list ((

1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

))
.

Find two different subspaces W1 and W2 of M2(R) so that

M2(R) = sl(2,R)⊕W1 and sl(2,R)⊕W2.

Example: Since sl(2,R) is 3 dimensional, W should be 1 dimensional. Two possible choices
are

W1 = span

((
1 0
0 0

))
and

W2 = span

((
0 0
0 1

))
.

2. Let V be the subspace of R4 spanned by the vectors

(
11
4
1
10

 ,


2
1
1
1

 ,


8
1
−5
13

 ,


−1
0
1
−2

).
(a) Determine the dimension of V .

Solution: V is 2 dimensional, as is shown below.

(b) Find a basis for V .

Example: The span of the list above is a vector space, so if the list itself is dependent,
then we may reduce it to a basis for V by deleting dependent vectors. Thus we look for
nonzero solutions to

α


11
4
1
10

+ β


2
1
1
1

+ γ


8
1
−5
13

+ δ


−1
0
1
−2

 =


0
0
0
0

 .

Per usual, we look at the coefficient matrix
11 2 8 −1
4 1 1 0
1 1 −5 1
10 1 13 −2
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for the corresponding matrix equation, and row reduce to find solutions:
11 2 8 −1
4 1 1 0
1 1 −5 1
10 1 13 −2

 →


1 1 −5 1
11 2 8 −1
4 1 1 0
10 1 13 −2



→


1 1 −5 1
0 −9 63 −12
0 −3 21 −4
0 −9 63 −12



→


1 1 −5 1
0 1 −7 4/3
0 −3 21 −4
0 0 0 0



→


1 1 −5 1
0 1 −7 4/3
0 0 0 0
0 0 0 0



→


1 0 2 −1/3
0 1 −7 4/3
0 0 0 0
0 0 0 0

 .

Thus γ and δ are free variables, and we parametrize them accordingly, say γ = 1, δ = 3,
so that α = −1 and β = 3. Thus

−


11
4
1
10

+ 3


2
1
1
1

+


8
1
−5
13

+ 3


−1
0
1
−2

 =


0
0
0
0

 ,

and we rewrite 
11
4
1
10

 = 3


2
1
1
1

+


8
1
−5
13

+ 3


−1
0
1
−2

 .

Thus

span

(
11
4
1
10

 ,


2
1
1
1

 ,


8
1
−5
13

 ,


−1
0
1
−2

) = span

(
2
1
1
1

 ,


8
1
−5
13

 ,


−1
0
1
−2

);

2



Homework 6 Key

if these three vectors are independent, then they form a basis for V . We check using the
same process: 

2 8 −1
1 1 0
1 −5 1
1 13 −2

 →


1 4 −1/2
0 −3 1/2
0 −9 3/2
0 9 −3/2



→


1 4 −1/2
0 1 −1/6
0 0 0
0 0 0



→


1 0 1/6
0 1 −1/6
0 0 0
0 0 0

 .

Again, we have a free variable: parameterizing c = 6, so that b = 1 and a = −1, we have

−


2
1
1
1

+


8
1
−5
13

+ 6


−1
0
1
−2

 =


0
0
0
0

 ,

again rewriting as 
2
1
1
1

 =


8
1
−5
13

+ 6


−1
0
1
−2

 .

So

span

(
2
1
1
1

 ,


8
1
−5
13

 ,


−1
0
1
−2

) = span

(
8
1
−5
13

 ,


−1
0
1
−2

);

these last two vectors are clearly independent, so the list

(
8
1
−5
13

 ,


−1
0
1
−2

)

is a basis for V .

3. Let

A =

1 −1 4
2 −1 5
1 0 1

 .
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We can think of the columns of A as vectors in R3. The subspace of R3 spanned by the
columns of A is called the column space of A, denoted by column (A).

(a) Find two nonzero vectors in column (A).

Example: We could, of course, just pick two columns of A, but more interesting possi-
bilities are 6

8
2

 = 2

1
2
1

− 4

−1
−1
0


and  4

−4
0

 =

1
2
1

+

−1
−1
0

−
4

5
1

 .

(b) Show that column (A) 6= R3 using an argument on the determinant of A.

Solution: Since det(A) = 0, there are nontrivial solutions to the matrix equation1 −1 4
2 −1 5
1 0 1

x1x2
x3

 =

0
0
0

 ,

i.e. there are nonzero scalars such that

x1

1
2
1

+ x2

−1
−1
0

+ x3

4
5
1

 =

0
0
0

 .

Thus the three vectors are not independent, so that column (A) 6= R3.

(c) Find a basis for column (A) and determine the dimension of column (A).

Example: Since the list of vectors

(1
2
1

 ,

−1
−1
0

 ,

4
5
1

)

is not independent, but does span column (A), it contains a basis for column (A); deleting
one (or two) carefully chosen vectors will result in the desired basis.

In essence, we would like to find a nonzero solution to the matrix equation1 −1 4
2 −1 5
1 0 1

x1x2
x3

 =

0
0
0

 ,
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so let’s begin by row-reducing the coefficient matrix:1 −1 4
2 −1 5
1 0 1

 →

1 −1 4
0 1 −3
0 1 −3



→

1 −1 4
0 1 −3
0 0 0

 .

→

1 0 1
0 1 −3
0 0 0

 .

Thus x3 is free; choosing x3 = 1, we have x2 = 3 and x1 = −1. Thus

−

1
2
1

+ 3

−1
−1
0

+

4
5
1

 =

0
0
0

 ,

so that 1
2
1

 = 3

−1
−1
0

+

4
5
1

 .

Since 1
2
1


is a linear combination of the other two vectors, we may safely remove it from the list.
Thus ( −1

−1
0

 ,

4
5
1

)
still spans column (A), and we can quickly row-reduce the resulting coefficient matrix to
see that the vectors above are linearly independent:−1 4

1 5
0 1

 →

1 −4
1 5
0 1



→

1 −4
0 9
0 1



→

1 0
0 1
0 0

 ,
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so that a = b = 0 is the only solution to−1 4
1 5
0 1

(a
b

)
=

0
0
0

 .

Thus ( −1
−1
0

 ,

4
5
1

)
is a basis for column (A), and dim(column (A)) = 2.

4. Let V be the subspace of P4(R) of all vectors p ∈ P4(R) so that

p′′(1/2) = 0.

(a) Find a basis for V .

Example: If p ∈ V with

p(x) = αx4 + βx3 + γx2 + δx+ λ,

then
p′′(x) = 12αx2 + 6βx+ 2γ,

so that

0 = p′′(1/2)

= 3α+ 3β + 2γ.

We have

γ = −3

2
α− 3

2
β,

so that

p(x) = αx4 + βx3 + (−3

2
α− 3

2
β)x2 + δx+ λ.

Thus every vector in V may be written in the form

p(x) = α(x4 − 3

2
x2) + β(x3 − 3

2
x2) + δx+ λ,

so that the vectors

x4 − 3

2
x2, x3 − 3

2
x2, x, 1

form a spanning list for V . It is straightforward to show that this list is also independent,
so the list

(x4 − 3

2
x2, x3 − 3

2
x2, x, 1)

is also a basis for V .
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(b) Extend the basis to a basis for P4(R).

Example: V itself is 4 dimensional, and P4(R) is 5 dimensional, so we need to add a
single vector to the basis to extend it to a basis for all of P4(R). I claim that we can add
x2 and maintain independence of the list; to be certain, we check the coefficient matrix
for the system

α(x4 − 3

2
x2) + β(x3 − 3

2
x2) + δx+ λ+ µx2 = 0.

The matrix is 
1 0 0 0 0
0 1 0 0 0
−3/2 −3/2 0 0 1

0 0 1 0 0
0 0 0 1 0

 ,

which has determinant 1. Since the determinant is nonzero, the only solution to the
matrix equation 

1 0 0 0 0
0 1 0 0 0
−3/2 −3/2 0 0 1

0 0 1 0 0
0 0 0 1 0



α
β
δ
λ
µ

 =


0
0
0
0
0


is the trivial solution 

α
β
δ
λ
µ

 =


0
0
0
0
0

 .

Thus the vectors are independent, and the list

(x4 − 3

2
x2, x3 − 3

2
x2, x, 1, x2)

is a basis for P4(R).

5. Prove that every subspace of R3 is either {0}, a line through the origin, or a plane through
the origin.

Solution: Every subspace V of R3 must have dimension

dim(V ) ≤ 3.

If dimV = 3, then clearly V = R3.

We handle the remaining cases seperately:

(a) dimV = 0: Then the empty list is a basis for V , and span () = {0}.
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(b) dimV = 1: Then there is a single vector u 6= 0 in R3 so that

V = span (u),

say

u =

u1u2
u3

 .

Then every vector v ∈ V may be written in the form

v = α

u1u2
u3

 =

αu1αu2
αu3

 ,

α ∈ R. Now the set of all scalar multiples of a nonzero vector in R3 is a line, and
particular this line must pass through the origin (α = 0).

(c) dimV = 2: There is a pair of (nonzero) vectors u, v ∈ R3 so that

V = span (u, v),

say

u =

u1u2
u3

 , v =

v1v2
v3

 .

Then every vector w ∈ V may be written in the form

w = α

u1u2
u3

+ β

v1v2
v3

 ,

α, β ∈ R. But the set of all vectors of this form is just a plane in R3, again passing
through the origin since we can set α = β = 0.

6. Prove that if U and W are both 5 dimensional subspaces of R9, then U ∩W 6= {0}.
Solution:

Recall that
dim(U +W ) = dimU + dimW − dim(U ∩W ).

If U ∩W = {0}, then dim(U ∩W ) = 0, and we have

dim(U +W ) = dimU + dimW = 10.

However, U +W is a subspace of the 9 dimensional vector space V ; we now have a contradic-
tion, since the dimension of a subspace of V cannot be more than the dimension of V itself.
Thus U ∩W 6= {0}.
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7. The notation
dimF(V )

denotes the dimension of V as a vector space over field F.

Let V be any vector space over C. Since R ⊂ C, V is also a vector space over R. Prove that

dimR(V ) = 2 dimC(V ).

Solution: Suppose that dimC(V ) = n; that is, every basis of V over C contains n vectors. Let

BC = (v1, v2, . . . , vn)

be one such basis.

I claim that
BR = (v1, v2, . . . , vn, iv1, iv2, . . . , ivn)

is a basis for V over R. To prove the claim, we need to show that BR is independent and
spanning.

To show that BR spans V over R, suppose that v ∈ V . Now BC spans V over C, so we know
that there constants αj ∈ C so that

α1v1 + α2v2 + . . .+ αnvn = v.

Of course, each αj may be rewritten as

αj = aj + ibj ,

aj , bj ∈ R, so that we may rewrite v as a linear combination of vectors in BR as follows:

v = α1v1 + α2v2 + . . .+ αnvn

= (a1 + b1i)v1 + (a2 + b2i)v2 + . . .+ (an + bni)vn

= a1v1 + a2v2 + . . .+ anvn + b1(iv1) + b2(iv2) + . . .+ bn(ivn);

since all of the scalars above are elements of R, this is the desired linear combination of vectors
in BR, which clearly spans V over R.

To show that the vectors are independent over R, recall that the only constants αi ∈ C so
that

α1v1 + α2v2 + . . .+ αnvn = 0

are
α1 = α2 = . . . = αn = 0.

Thus if
a1v1 + a2v2 + . . .+ anvn + b1(iv1) + b2(iv2) + . . .+ bn(ivn) = 0,

we may rewrite this as a linear combination of vectors in BC by setting βj = aj + ibj . Then
we have

0 = a1v1 + a2v2 + . . .+ anvn + b1(iv1) + b2(iv2) + . . .+ bn(ivn)

= β1v1 + β2v2 + . . .+ βnvn,
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so that βj = 0 for all j by the above argument. Thus aj = bj = 0 for all j, and the vectors
in BR are independent over R.
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