Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by $\theta=\frac{s}{r}$:

To convert from radians (rad) to degrees (\circ) and vice versa, use the following conversions:

$$
1 \mathrm{rad}=\frac{180^{\circ}}{\pi}, \quad 1^{\circ}=\frac{\pi}{180} \mathrm{rad}
$$

In particular, $180^{\circ}=\pi r a d$.

Given a right triangle (a triangle one of whose angles is $\frac{\pi}{2} \mathrm{rad}$), choose one of the acute angles ($<\frac{\pi}{2} \mathrm{rad}$), and call it θ. We label the sides relative to θ as follows:

Let o, a, and h be the lengths of the opposite side, adjacent side, and hypoteneuse, respectively. We use these numbers to define the following functions:

$$
\begin{array}{lll}
\sin \theta=\frac{o}{h} & \cos \theta=\frac{a}{h} & \tan \theta=\frac{o}{a}=\frac{\sin \theta}{\cos \theta} \\
\csc \theta=\frac{h}{o}=\frac{1}{\sin \theta} & \sec \theta=\frac{h}{a}=\frac{1}{\cos \theta} & \cot \theta=\frac{a}{o}=\frac{1}{\tan \theta}
\end{array}
$$

Some "special" angles have particularly nice trigonometric properties; we can use a unit circle (a circle of radius 1) to determine the trigonometric values for such angles.

First, let's consider the special angle $\theta=\frac{\pi}{6}$:

We can determine the third angle in the right triangle above, since the sum of the degrees in the angles of any triangle must be $\pi r a d$. The third angle is

$$
\alpha=\pi-\frac{\pi}{2}-\frac{\pi}{6}=\frac{2 \pi}{6}=\frac{\pi}{3} .
$$

Now that we know values for all of its angles, let's inspect the triangle above more closely; we would like to find values for $\sin \left(\frac{\pi}{6}\right), \cos \left(\frac{\pi}{6}\right)$, etc. To do so, we must determine the lengths of each of the sides; fortunately, we know that the length of the hypoteneuse is 1 since the triangle was embedded in a unit circle. Let's "double" the triangle, as depicted below:

This new larger triangle is equiangular (all of its angles are $\frac{\pi}{3}$), thus is also equilateral-all of its sides have length 1. It is clear that the length of the opposite side is $o=\frac{1}{2}$, and we can use the

Pythagorean identity $o^{2}+a^{2}=h^{2}$ to see that $a=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$.
So we have

$$
\sin \frac{\pi}{6}=\frac{o}{h}=\frac{1}{2}, \cos \frac{\pi}{6}=\frac{a}{h}=\frac{\sqrt{3}}{2}, \text { and } \tan \frac{\pi}{6}=\frac{o}{a}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} .
$$

Let's do the same thing for $\theta=\frac{\pi}{4}$. The unit circle and right triangle for this case are graphed below:

It is clear that the remaining angle has measure $\frac{\pi}{4}$, so that $a=o$. By the Pythagorean identity, $a^{2}+o^{2}=h^{2}$, which we rewrite as $a^{2}+a^{2}=1$ or $2 a^{2}=1$. So $a=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$. Then

$$
\sin \frac{\pi}{4}=\frac{o}{h}=\frac{1}{\sqrt{2}}, \quad \cos \frac{\pi}{4}=\frac{a}{h}=\frac{1}{\sqrt{2}}, \text { and } \tan \frac{\pi}{4}=\frac{o}{a}=1 .
$$

Below is a table of the values of the sine, cosine, and tangent functions at special angles in the first quadrant:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undefined

Our current definitions for the six trigonometric functions only apply to acute angles, i.e. angles less than $\frac{\pi}{2}$; however, we may extend the definitions to apply to any angle.

Given an angle θ in the $x y$ plane, we may draw a ray from the origin in the appropriate direction, pick a point (x, y) on the ray, and label the segment from the origin to (x, y) with r :

Then we define the trigonometric functions for angle θ as follows:

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x} \\
\csc \theta=\frac{r}{y} & \sec \theta=\frac{r}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

If $\theta<\frac{\pi}{2}$, then these definitions are precisely the same as the earlier definitions; these newer definitions simply allow us to apply the trigonometric functions to angles greater than $\frac{\pi}{2}$.

Note that the definitions tell us the signs of each of the trig functions in the different quadrants:

Below is a list of the domains and ranges of the various trigonometric functions:

Function	Domain	Range
$\sin \theta$	all real numbers	$[-1,1]$
$\cos \theta$	all real numbers	$[-1,1]$
$\tan \theta$	all real numbers except $\frac{\pi}{2},-\frac{\pi}{2}, \frac{3 \pi}{2},-\frac{3 \pi}{2}$, etc.	all real numbers
$\cot \theta$	all real numbers except $0, \pi,-\pi, 2 \pi$, etc.	all real numbers
$\sec \theta$	all real numbers except $\frac{\pi}{2},-\frac{\pi}{2}, \frac{3 \pi}{2},-\frac{3 \pi}{2}$, etc.	$(-\infty,-1] \cup[1, \infty)$
$\csc \theta$	all real numbers except $0, \pi,-\pi, 2 \pi$, etc.	$(-\infty,-1] \cup[1, \infty)$

Another helpful set of facts to have at our disposal involves the definitions of the trig functions on the unit circle. Since $h=1$, it is easy to check the accuracy of the following diagrams:

Finding the values of trig functions for values of θ that do not lie in the first quadrant is made much simpler by using reference angles, which allow us to return to acute angles.

For example, consider finding $\sin \theta$ in the unit circle $(r=1)$ below:

In this example on the unit circle with $r=1, \sin \theta=\frac{y}{r}=y$. Now consider the angle α in the

graph below:

We can think of this acute angle as an angle in the first quadrant:

Notice that the endpoints of the line segments above have the same height or y coordinate. Because of this, $\sin \alpha=y$ as well; in fact, if $\theta+\alpha=\pi$, then $\sin \theta=\sin \alpha$ for any $\frac{\pi}{2}<\theta \pi$. Since it is easier to evaluate trig functions on acute angles, we would really prefer to work with α, and we call α a reference angle for θ.

We can actually use a similar process for each of the trig functions in each of the four quadrants; the reference angle α in each quadrant is graphed below:

To determine the value for $\sin \theta, \cos \theta$, or $\tan \theta, \operatorname{simply}$ evaluate the trig function on the reference angle α, then change the sign of the answer according to whether the function is positive or negative on the quadrant in which θ lies.

For example, let's find $\sin \frac{4 \pi}{3}, \cos \frac{4 \pi}{3}$, and $\tan \frac{4 \pi}{3}$:

The reference angle for $\theta=\frac{4 \pi}{3}$ is $\alpha=\frac{\pi}{3}$.

In addition, the sine and cosine functions are negative in the third quadrant, whereas the tangent function is positive. Since

$$
\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \cos \frac{\pi}{3}=\frac{1}{2}, \text { and } \tan \frac{\pi}{3}=\sqrt{3},
$$

we see that

$$
\sin \frac{4 \pi}{3}=,-\frac{\sqrt{3}}{2}, \cos \frac{4 \pi}{3}=-\frac{1}{2}, \text { and } \tan \frac{4 \pi}{3}=\sqrt{3} .
$$

Finally, here are a few important identities to keep in mind when working with trig functions:

$$
\begin{array}{cc}
\sin ^{2} \theta+\cos ^{2} \theta=1, \sec ^{2} \theta=\tan ^{2} \theta+1, \csc ^{2} \theta=\cot ^{2} \theta+1 \\
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta & \cos ^{2} \alpha=\frac{1+\cos (2 \alpha)}{2} \\
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta & \sin ^{2} \alpha=\frac{1-\cos (2 \alpha)}{2}
\end{array}
$$

Below are graphs of the various trig functions.

$\tan \theta$

$\cot \theta$

$\csc \theta$

