
Section 6.3

Orthogonality and the Gram-Schmidt Process

In Chapter 4, we spent a great deal of time studying the problem of finding a basis for a vector
space. We know that a basis for a vector space can potentially be chosen in many different ways:
for example, the sets

B1 =

{(
1
0

)
,

(
0
1

)}
and

B2 =

{(
3
1

)
,

(
2
2

)}
both form bases for R2. The vectors from the first basis are graphed below in red, and the vectors
from the second basis are graphed in blue:

There are two things that are particularly nice about the first basis

B1 =

{(
1
0

)
,

(
0
1

)}
as compared with the second basis:

1. The vectors in B1 are orthogonal with respect to the usual inner product (dot product) on
R2.

2. Both of the vectors in B1 are unit vectors (length 1) with respect to the dot product.

Since a basis gives us a means for representing the coordinates or location of any vector in the
space, bases with the two properties listed above are especially advantageous; in this section, we
will describe a method for locating bases of a vector space that have these two properties.
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Orthogonal and Orthonormal Sets

It is now a convenient time to develop some vocabulary to describe the types of basis vectors that
we are looking for:

Definition 1. A set of vectors in a (real) inner product space V equipped with the inner product
⟨·, ·⟩ is called orthogonal if each distinct pair of vectors is orthogonal with respect to ⟨·, ·⟩. If in
addition each vector in the set has norm 1 with respect to the inner product, the set is called
orthonormal.

Returning to our example of two different basis for R2, it is easy to see that the red vectors
below form an orthonormal set:

They are both orthogonal and length 1, and we say that they form an orthonormal basis for R2.
However, the blue vectors are neither orthogonal nor length 1, thus they form neither an or-

thonormal nor an orthogonal basis for R2.

Fortunately, even if vector v is not a unit vector, there is a simple algorithm for finding a unit
vector preserving the direction of v: if v is not the zero vector, so that

||v|| ≠ 0,

then the vector

uv =
1

||v||
v

is a unit vector, and has the same direction as v.
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We can quickly check that each of these claims is true: first, let’s calculate the length of uv:

||uv|| = || 1

||v||
v||

=
1

||v||
||v|| since

1

||v||
is a nonnegative scalar

= 1,

so that uv is indeed a unit vector.
Let’s check that uv and v have the same direction by calculating the angle θ between them:

recall that

θ = cos−1

(
⟨uv,v⟩
||u|| ||v||

)

= cos−1

(⟨ 1
||v||v,v⟩
||v||

)

= cos−1

(
⟨v,v⟩
||v||2

)

= cos−1

(
⟨v,v⟩(√
⟨v,v⟩

)2)

= cos−1

(
⟨v,v⟩
⟨v,v⟩

)
= cos−1 1

= 0.

Since the angle θ between uv and v is 0, the vectors clearly have the same direction.

The process of finding a unit vector with the same direction as v is called normalizing v.

Key Point. We can normalize any nonzero vector v by calculating

uv =
1

||v||
v.

The normalized vector uv is the unit vector in the same direction as v.

Regardless of their length, orthogonal vectors are extremely important for the following reason:

Theorem 1.6.3. If S = {v1, v2, . . . ,vn} is an orthogonal set of (nonzero) vectors in a inner
product space V , then the S is a linearly independent set.
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The theorem leads to a helpful observation:

Key Point. A set of n orthogonal vectors in an n dimensional inner product space V is a basis
for V .

Example

The vectors
f = f(x) = 2 + x2, g = g(x) = 2x, and h = h(x) = −1 + 2x2

form a basis for P2.

1. Is the basis an orthogonal basis under the usual inner product on P2?

2. Is the basis an orthonormal basis?

3. If it is orthogonal but not orthonormal, use the vectors above to find a basis for P2 that is
orthonormal.

Recall that the standard inner product on P2 is defined on vectors

f = f(x) = a0 + a1x+ a2x
2 and g = g(x) = b0 + b1x+ b2x

2

in P2 by
⟨f ,g⟩ = a0b0 + a1b1 + a2b2.

To answer all of the questions above, we’ll need to calculate the lengths of each vector and the
angles between each pair of vectors; since both calculations involve the inner products, we record
each pair of inner products on the chart below:

⟨·, ·⟩ f g h

f 5 0 0

g 0 4 0

h 0 0 5

Since the length of a vector f is given by

||f || =
√
⟨f , f⟩,

we see that
||f || =

√
5, ||g|| = 2, and ||h|| =

√
5.

The angle between a pair of vectors is given by

θ = cos−1

(
⟨f ,g⟩

||f || ||g||

)
;

however, inspecting the chart above, we see that

⟨f ,g⟩ = ⟨g,h⟩ = ⟨f ,h⟩ = 0.

Since cos−1 0 =π
2
, the three vectors are clearly mutually orthogonal.

We are now ready to answer each of the questions posed above:
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1. Is the basis an orthogonal basis under the usual inner product on P2?

Since the basis vectors are mutually orthogonal, the basis is an orthogonal basis.

2. Is the basis an orthonormal basis?

None of the basis vectors are unit vectors, so it is orthogonal but not orthonormal.

3. If it is orthogonal but not orthonormal, use the vectors above to find a basis for P2 that is
orthonormal.

We can use the vectors above to create unit vectors using the formula

uv =
v

||v||
.

Since ||f || =
√
5, ||g|| = 2, and ||h|| =

√
5, the vectors

uf =
2√
5
+

1√
5
x2, ug = x, and uh = − 1√

5
+

2√
5
x2

are unit vectors. Since they preserve the directions of f , g, and h respectively, uf , ug, and
uh are mutually orthogonal (and so are linearly independent as well as a basis for the three
dimensional P2). Since they are also unit vectors, they form an orthonormal basis for P2.

Examples of Orthonormal Bases

Standard Basis for Rn

The standard basis vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , and en =


0
0
...
1


of Rn are mutually orthogonal unit vectors under the standard inner product (dot product) on Rn,
thus form an orthonormal basis for Rn.

Standard Basis for Pn

The standard basis vectors
1, x, x2, . . . , and xn

of the vector space Pn of all polynomials of degree no more than n are mutually orthogonal unit
vectors under the standard inner product on Pn defined by

⟨f ,g⟩ = a0b0 + a1b1 + . . .+ anbn.
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An Orthonormal Basis for Mn

Let eij indicate the n × n matrix whose i, j entry is 1, and all of whose other entries are 0. For
example, e23 is given by

e32 =


0 0 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

. . .
...

0 0 0 . . . 0


Under the standard inner product on Mn,

⟨U, V ⟩ = tr (U⊤V ),

the set of all matrices of the form eij for 1 ≤ i, j,≤ n forms an orthonormal basis for Mn.

Coordinates and Orthogonal/Orthonormal Bases

In Section 4.4, we learned that if the (ordered) set S = {v1, . . . , vn} of vectors in V forms a basis
for V , so that any vector u in V is a linear combination of the basis vectors, such as

u = c1v1 + c2v2 + . . .+ cnvn,

then we can use the coefficients c1, c2, etc. of the basis vectors to write the coordinates of u under
the basis as

(u)S


c1
c2
...
cn

 .

As we saw in Section 4.4, it can often be complicated to find the desired coordinates for a
given vector. However, if the basis being used for the coordinate representation is orthogonal or
orthonormal, there is a simple formula for finding the coordinates of a given vector:

Theorem 6.3.2. Let S = {v1, . . . , vn} be a basis for an inner product space V under the
inner product ⟨·, ·⟩.

1. If S is an orthogonal basis and u is any vector in V , then u may be written as the linear
combination

u =
⟨u,v1⟩
||v1||2

v1 +
⟨u,v2⟩
||v2||2

v2 + . . .+
⟨u,vn⟩
||vn||2

vn,
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and the coordinates of u under this basis are given by the matrix

⟨u,v1⟩
||v1||2

⟨u,vn⟩
||vn||2

...

⟨u,vn⟩
||vn||2


.

2. If S is an orthonormal basis and u is any vector in V , then u may be written as the linear
combination

u = ⟨u,v1⟩v1 + ⟨u,v2⟩v2 + . . .+ ⟨u,vn⟩vn,

and the coordinates of u under this basis are given by the matrix

⟨u,v1⟩

⟨u,vn⟩

...

⟨u,vn⟩


.

Example

Find the coordinates of p = p(x) = −2 + x− 2x2 under the orthonormal basis

{uf =
2√
5
+

1√
5
x2, ug = x,uh = − 1√

5
+

2√
5
x2}.

Since the given basis is orthonormal, the coordinates of p are given by the matrix
⟨p,uf ⟩

⟨p,ug⟩

⟨p,uh⟩

 .
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Let’s make the calculations:

⟨p,uf ⟩ = ⟨−2 + x− 2x2,
2√
5
+

1√
5
x2⟩

= −2 · 2√
5
+ 1 · 0 + (−2)·

( 1√
5

)
= − 4√

5
− 2√

5

= − 6√
5
;

⟨p,ug⟩ = ⟨−2 + x− 2x2, x⟩

= −2 · 0 + 1 · 1− 2 · 0

= 1;

⟨p,uh⟩ = ⟨−2 + x− 2x2,− 1√
5
+

2√
5
x2⟩

= −2·
(
− 1√

5

)
+ 1 · 0− 2·

( 2√
5

)
=

2√
5
− 4√

5

= − 2√
5
.

Thus the coordinates of p with respect to this basis are given by


⟨p,uf ⟩

⟨p,ug⟩

⟨p,uh⟩

 =



− 6√
5

1

− 2√
5


.
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Finding an Orthonormal/Orthogonal Basis for an Inner Product Space

The next theorem describes a truly beautiful fact about inner product spaces:

Theorem 6.3.5. Every (finite-dimensional) inner product space has an orthonormal basis.

Of course, the theorem leads to a question: Given an inner product space V , how do we find
an orthonormal basis for it?

The following algorithm (one of the more important and well known algorithms in the field),
called the Gram-Schmidt Process, answers this question. Given any basis for the inner product
space of interest, the Gram-Schmidt Process converts it into an orthogonal (or orthonormal, if
desired) basis.

The Gram-Schmidt Process. Let {u1, u2, . . . , un} be any basis for an inner product space
V with inner product ⟨·, ·⟩. The following process uses this basis to build an orthogonal basis
{v1, v2, . . . , vn} for V :

1. v1 = u1

2. v2 = u2 −
⟨u2,v1⟩
||v1||2

v1

3. v3 = u3 −
⟨u3,v1⟩
||v1||2

v1 −
⟨u3,v2⟩
||v2||2

v2

4-r. Repeat up to vr = . . ..

To convert this basis to an orthonormal one, normalize each of the basis vectors v1, v2,. . . , vr.

Essentially, the algorithm works by projecting each old basis vector ui onto the orthogonal
subspace to that spanned by the previous orthogonal vectors v1, . . . , vi−1.

Example

Convert the basis {(
3
1

)
,

(
2
2

)}
into an orthonormal one.

With

u1 =

(
3
1

)
and u2 =

(
2
2

)
,

9



Section 6.3

we begin the Gram-Schmidt Process by setting v1 = u1.

Next, we calculate v2 using the formula

v2 = u2 −
⟨u2,v1⟩
||v1||2

v1;

we need to find

⟨u2,v1⟩ = 2 · 3 + 2 · 1
= 8

and

||v1|| =
√

32 + 12

=
√
10.

Thus we have

v2 = u2 −
⟨u2,v1⟩
||v1||2

v1

=

(
2
2

)
− 8

10

(
3
1

)

=

(
2
2

)
−
(

12
5
4
5

)

=

(
− 2

5
6
5

)
.

Thus the set {3

1

 ,


−2

5

6

5

}

forms an orthogonal basis for R2; however, as we were asked to find an orthonormal basis, we need
to normalize each of the vectors above by multiplying them by the reciprocals of their lengths. We
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have

1

||v1||
v1 =

1√
10

(
3
1

)

=


3√
10

1√
10



=


3
√
10

10

√
10

10

 ,

and

1

||v2||
v2 =

5
√
10

20


−2

5

6

5



=


−
√
10

10

3
√
10

10

 .

Thus the set {
3
√
10

10

√
10

10

 ,


−
√
10

10

3
√
10

10


}

is an orthonormal basis for R2.
The two vectors from the original basis are graphed below:
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As we saw earlier, they are neither orthogonal nor orthonormal.

The new basis vectors under the Gram-Schmidt Process are graphed in red:

Notice that they are orthogonal, and that they appear to be the same length (unit vectors).

Finally, the original basis and the new basis are graphed together:
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Notice that one of the new basis vectors is just a scaled-down version of one of the old vectors,
whereas the second new basis vector has been moved so that it is orthogonal.
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