
Section 4.7

Row Space, Column Space, and Null Space

Throughout this course, we have spent a great deal of time studying systems of equations such as

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm

and the corresponding matrix equation
Ax = b,

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn


is the coefficient matrix,

x =


x1
x2
...
xn


is the vector of unknowns, and

b =


b1
b2
...
bm


is the vector of constants.

At this point, we have learned a great deal about the interconnections between the properties
of the coefficient matrix A and the solution types. In fact, in Section 2.3, we saw the following list
of equivalent conditions:

Theorem. Let A be an n× n matrix. Then the following are equivalent:

• A is invertible.

• Ax = 0 has only the trivial solution.

• The reduced row echelon form of A is In.

• A is a product of elementary matrices.

• Ax = b is consistent for every n× 1 matrix b.

• Ax = b has exactly one solution for every n× 1 matrix b.
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• detA ̸= 0.

The main point of the theorem is that (for square matrices) the coefficient matrix A determines
whether any system Ax = b is consistent, and knowing data about A (in particular, its determinant)
tells us immediately whether or not the system will be consistent.

If the coefficient matrix is not square, then the theorem does not tell us anything about the
interconnections between data about A and solutions to the system Ax = b. However, if you have
guessed that there should still be some sort of interconnection, then you are absolutely correct;
these interconnections are the topic of this section.

Row Space and Column Space

We will see in this and in the next section that the essential data about a matrix A has to do with
the row vectors and column vectors that make up A:

Definition 1. Given an m× n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn

 ,

the vectors

r1 =
(
a11 a12 . . . a1n

)
r2 =

(
a21 a22 . . . a2n

)
...

rm =
(
am1 am2 . . . amn

)
in Rn are called the row vectors of A, and the vectors

c1 =


a11
a21
...

an1

 , c2 =


a12
a22
...

an2

 , . . . , c1 =


a1m
a2m
...

anm


in Rm are called the column vectors of A.
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Example

The matrix

A =

1 0
0 1
1 0


is 3× 2; thus it has three row vectors

r1 =
(
1 0

)
, r2 =

(
0 1

)
, and r3 =

(
1 0

)
,

all of which are in R2, and two column vectors

c1 =

1
0
1

 , c2 =

0
1
0

 ,

which are both vectors in R3.

The vectors which make up the rows and columns of A give us a great deal of information about
the structure of A. Let’s think about the geometric structure of these vectors, using the matrix
and vectors from the example above.

The row vectors
r1 =

(
1 0

)
, r2 =

(
0 1

)
, and r3 =

(
1 0

)
of matrix A are all in R2; let’s think geometrically about them by considering their span

span {r1, r2, r3}.

Of course, r1 and r3 are the same vector, so this reduces to

span {r1, r2} = span {
(
1 0

)
,
(
0 1

)
}.

The vectors are graphed below in R2:
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Of course, we know that the set {r1, r2} is a basis for R2, so

span {r1, r2} = R2.

On the other hand, the column vectors

c1 =

1
0
1

 and c2 =

0
1
0


are in R3. They are graphed below:

Since R3 is three dimensional, the set {c1, c2} doesn’t span R3; in fact, the span of the set is
the (two dimensional) plane graphed above.

We will see in this and in the next section that the spans of the row vectors and column vectors
of A give us a multitude of data about A. With this in mind, we define the row space and column
space of A:

Definition 1. Given an m× n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn

 ,

its row vectors span a subspace of Rn called the row space of A, and we denote this vector space
by row (A). The column vectors of A span a subspace of Rm called the column space of A, which
we denote by column (A).
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In the example above, we saw that the row space of the matrix

A =

1 0
0 1
1 0


is all of R2, whereas the column space of A is a two dimensional subspace of R3.

In Section 4.2, we briefly mentioned the following theorem:

Theorem. If A is an m× n matrix, then the set of all solution vectors x to the equation

Ax = 0

is a subspace of Rn.

We are now ready to study this solution set in more detail; indeed, we will see that this set is
closely tied to the ideas of row space and column space. Accordingly, we now give this subspace a
name:

Definition 1. The null space of an m× n matrix A, denoted null (A), is the solution space of the
system

Ax = 0,

which is a subspace of Rn.

Let’s calculate the null space of the matrix

A =

1 0
0 1
1 0

 :

we need to find the subspace of R2 that forms the solution space to

Ax = 0.

Since A is a 3× 2 matrix, x is 2× 1.
Let’s start by calculating Ax:

Ax =

1 0
0 1
1 0

(
x1
x2

)

=

x1 + 0
0 + x2
x1 + 0



=

x1
x2
x1

 .
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So in order for the equation Ax = 0 to be satisfied, we see thatx1
x2
x1

 =

0
0
0

 ;

clearly there is only one way to satisfy the equation–choose

x1 = x2 = 0.

Thus the vector

x =

(
0
0

)
is the only one in the solution space for Ax = 0, so that the null space of A is just the trivial space
{0} consisting of one vector.

For future reference, we should make a quick note here: we will see that there is a sense in
which row space and null space are opposing forces; in our case, the row space of A “took up” all
of R2, so that there was no room for the null space, which was forced to be trivial.

Assorted Theorems About Row Space, Column Space, and Null Space

In general (especially as the size of the matrices increases), calculating the row, column, and null
space of a given matrix A could seem to be a daunting task. Fortunately, we collect some theorems
in this section which can significantly reduce the difficulty inherent in the calculations.

Theorem 4.7.3. Elementary row operations do not change the null space of a matrix.

Theorem 4.7.4. Elementary row operations do not change the row space of a matrix.

Collectively, Theorems 4.7.3 and 4.7.4 say that, if two matrices A and B are row equivalent–we
can get from A to B via a sequence of elementary row operations, and vice versa–then they have
the same row space and the same null space. In terms of making calculations for row and null
space, you should always apply Gauss-Jordan elimination to find the row echelon form of matrix
A; it will always be easier to find the row and null spaces of a matrix in this simple form. Indeed,
the following theorem describes this explicitly:

Theorem 4.7.5. If a matrix R is in row echelon form, then the row vectors with leading 1s form
a basis for the row space of R (and for any matrix row equivalent to R), and the column vectors
with leading 1s form a basis for the column space of R.

Remark. We should make one quick point here–while elementary row operations do not change
the row space of a matrix, they do change its column space. If instead we applied elementary
column operations to our matrix, its column space would stay the same but its row space would
change.

Before we investigate some example, we need to consider one more theorem:
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Theorem 4.7.6. If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if the corresponding
column vectors of B are as well.

(b) A given set of column vectors of A forms a basis for the column space of A if and only if the
corresponding column vectors of B for a basis for its column space.

Given the previous remark, Theorem 6 seems a bit tricky; you can interpret it as an affirmation
of the fact that row operations do not change dimensions of spaces. In particular, row equivalent
matrices A and B may have different column spaces, but their column spaces will have the same
dimension.

Example

Let

A =


0 1 1 4 0
2 6 2 −10 0
3 9 2 −18 1
0 1 0 1 1

 .

Find:

1. A basis for the vector space row (A).

2. A basis for the null space null (A).

3. A basis for the vector space column (A).

Theorems 3 − 5 tell us that the easiest way to solve this problem is by reducing A via Gauss-
Jordan elimination. You should check that the matrix R below in row echelon form is row equivalent
to A:

R =


1 3 1 −5 0
0 1 0 1 1
0 0 1 3 −1
0 0 0 0 0

 .

The matrix R has the same row and null space as A; although it has a different column space
than A, we can use theorem 6 to recover the column space.

1. A basis for the vector space row (A): Theorem 5 tells us that the row vectors

r1
′ =

(
1 3 1 −5 0

)
r2

′ =
(
0 1 0 1 1

)
r3

′ =
(
0 0 1 3 −1

)
with leading 1s form a basis for the row space of R, thus of A as well. Since there are three
vectors in the basis for the row space, we see that the row space of A is a three dimensional
subspace of R5.
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2. A basis for the null space null (A): Since A and R have the same null space, we will find the
solution set to the system

Rx = 0.

Of course, R is already in row echelon form, so this is not hard to do. The augmented equation
for the system is 

1 3 1 −5 0 | 0
0 1 0 1 1 | 0
0 0 1 3 −1 | 0
0 0 0 0 0 | 0

 ;

the second and third rows tell us that we must have

x2 = −x4 − x5

x3 = −3x4 + x5.

In combination with the first row, we see that

x1 = −3x2 − x3 + 5x4

= 3x4 + 3x5 + 3x4 − x5 + 5x4

= 11x4 + 2x5.

Thus the null space of A is made up of all of the vectors of the form

x =


11x4 + 2x5
−x4 − x5
−3x4 + x5

x4
x5

 .

We can actually find a basis for this space quite easily by rewriting x:

x =


11x4 + 2x5
−x4 − x5
−3x4 + x5

x4
x5



=


11x4
−x4
−3x4
x4
0

+


2x5
−x5
x5
0
x5



= x4


11
−1
−3
1
0

+ x5


2
−1
1
0
1

 .
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Now we are free to choose x4 and x5 in any way that we like; any vector of the form in the
last line above is in the null space of A. In other words, the null space of A consists of all
linear combinations of the vectors 

11
−1
−3
1
0

 and


2
−1
1
0
1

 ;

this is a basis for the null space of A, and we now see that the null space is a two dimensional
subspace of R5.

3. A basis for the vector space column (A): Theorem 5 tells us that the column vectors

c1
′ =


1
0
0
0

 , c2
′ =


3
1
0
0

 , and c3
′ =


1
0
1
0


form a basis for the column space of R; clearly the column space is a three dimensional
subspace of R4. While the vectors do not form a basis for the column space of A, we can use
Theorem 4.7.6 to solve the problem: since the first three columns of R are linearly independent
and span the column space of R, the corresponding columns of A are linearly independent
and span the column space of A. Thus the vectors

c1 =


0
2
3
0

 , c2 =


1
6
9
1

 , and c3 =


1
2
2
0


form a basis for the three dimensional subspace of R4 that is the column space of A.

Remark. Above, we saw that the row space of A was a three dimensional subspace of R5, and
that the null space of A was a two dimensional subspace of R5. Again, we see row space and null
space as “opposing” forces: the row space took up 3 dimensions of R5, leaving only two dimensions
for the null space.

More on Solutions to Ax = b

When we consider a system of equations whose matrix equation is given by

Ax = b,

we want to know if the system is consistent–i.e., is there at least one vector x that satisfies the
equation?

Now that we know the definition of column space, we can utilize a lovely theorem to quickly
answer the question above:
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Theorem 4.7.1. A system of linear equations with matrix equation Ax = b is consistent if and
only if the matrix b is in the column space of A.

Example

Given the system of equations Ax = b with

A =

1 0
0 1
1 0

 ,

use Theorem 1 to determine if the system is consistent if

1.

b =

1
0
0


2.

b =

 6
−8
6

 .

According to Theorem 1, we need to check to see if b is in the column space of A, which we
calculated earlier as

span

{1
0
1

 ,

0
1
0

}
;

clearly this is the set of all vectors of the form

s

1
0
1

+ t

0
1
0


where s and t are scalars.

1. The vector

b =

1
0
0


is definitely not in the column space of A–there are no scalars s and t so that

s

1
0
1

+ t

0
1
0

 =

1
0
0

 .
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Thus the system 1 0
0 1
1 0

x =

1
0
0


is inconsistent (no solution vectors x).

2. This time we’re in luck–the vector

b =

 6
−8
6


is clearly in the column space of A, since it can be written as

b =

 6
−8
6

 = 6

1
0
1

− 8

0
1
0

 .

So the system 1 0
0 1
1 0

x =

 6
−8
6


is definitely consistent; it has at least one solution vector, and may have infinitely many.
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