
Section 1.7

Diagonal, Triangular, and Symmetric Matrices

Certain matrices, such as the identity matrix

I =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1

 ,

have a special “shape”, which endows the matrix with special properties. The identity matrix is
an example of a diagonal matrix; we will discuss diagonal, triangular, and symmetric matrices and
their properties in this section.

Diagonal Matrices

Examine the matrices below:

3 0 0
0 1 0
0 0 −12

 ,


.5 0 0 0 0
0 7 0 0 0
0 0 3 0 0
0 0 0 −1 0
0 0 0 0 0

 ,

(
2 0
0 2

)
.

You should notice that the three matrices have a common shape–their only nonzero entries
occur on their diagonals.

Definition. A square matrix is diagonal if all of its off-diagonal entries are 0s. A diagonal matrix
has form 

d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

. . .
...

0 0 0 . . . dn

 .

We give such matrices a name because they have interesting properties not shared by non-
diagonal matrices; we discuss these properties below.

Properties of Diagonal Matrices

We have seen that matrix multiplication is, in general, quite tedious. However, if the two matrices
in question are actually diagonal matrices, multiplication becomes quite simple. To understand
why, let’s try a simple example:
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Example. Calculate the product −2 0 0
0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 .

Recall that the aij entry of a product of two matrices is the scalar product of the ith row of the
first matrix and the jth column of the second; so the 1, 1 entry of the product should be

a11 = −2 · 4 + 0 + 0 = −8;

thus the product has form −2 0 0
0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 =

 −8
 .

Let’s calculate the next entry:

a12 = −2 · 0 + 0 · (−1) + 0 = 0

(easy to calculate since there’s at least one zero in each term!). Thus the product takes on the form −2 0 0
0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 =

 −8 0
 .

We should be able to calculate the remaining entries a bit more cleverly–as you may have noticed,
the large numbers of 0s in the original matrices makes the calculations quite simple. Indeed, since
we are multiplying rows by columns, we simply need to locate the rows and columns which have
nonzero entries that get multiplied together. Let’s think about the 1, 3 entry, which we get by
multiplying the highlighted row and column: −2 0 0

0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 .

Clearly a13 = 0, as each term of the scalar product includes at least one 0.

The same phenomena occurs for the 2, 1 entry–no nonzero entries “match up”: −2 0 0
0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 .

Let’s try the 2, 2 entry:
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Section 1.7  −2 0 0
0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 .

This example is different–the 5 and −1 “match up”, so that a22 = −5.
Let’s look at our results so far. We’ve seen that −2 0 0

0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 =

 −8 0 0
0 −5

 .

At this point, you may have guessed the punch line–off-diagonal entries will be 0, and diagonal
entries are the products of the corresponding entries from the original matrices. Indeed, the final
matrix product is  −2 0 0

0 5 0
0 0 −3

 4 0 0
0 −1 0
0 0 −2

 =

 −8 0 0
0 −5 0
0 0 6

 .

The pattern we saw in the previous example holds true in general, as indicated by the following
theorem:

Theorem. The product of a pair of diagonal matrices

A =


a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

. . .
...

0 0 0 . . . an

 and B =


b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
...

. . .
...

0 0 0 . . . bn


is also a diagonal matrix, and has form

AB =


a1b1 0 0 . . . 0
0 a2b2 0 . . . 0
0 0 a3b3 . . . 0
...

. . .
...

0 0 0 . . . anbn

 .

The theorem above has several nice consequences. For starters, finding the inverse of a diagonal
matrix is quite simple (unlike finding inverses for most other matrices!). Indeed, a diagonal matrix
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is invertible if and only if all of its diagonal entries are nonzero; if this is the case, then the inverse
of

D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

. . .
...

0 0 0 . . . dn

 is D−1 =


d−1
1 0 0 . . . 0

0 d−1
2 0 . . . 0

0 0 d−1
3 . . . 0

...
. . .

...
0 0 0 . . . d−1

n

 .

Example. Given

A =


1
2

0 0 0 0
0 7 0 0 0
0 0 3 0 0
0 0 0 −1 0
0 0 0 0 5

4

 ,

find A−1 and A3.

1. A−1 is simple, and you should check that

A−1 =


2 0 0 0 0
0 1

7
0 0 0

0 0 1
3

0 0
0 0 0 −1 0
0 0 0 0 4

5


2. To find A3, we could start by finding A2, then calculating A2 · A. However, we know that

each product will yield another diagonal matrix, whose diagonal entries are just the products
of the corresponding diagonal entries of the factors. So to find A3, all we really need to do is
cube each of its diagonal entries. We have

A3 =


( 1
2
)3 0 0 0 0
0 73 0 0 0
0 0 33 0 0
0 0 0 (−1)3 0
0 0 0 0 ( 5

4
)3



=


1
8

0 0 0 0
0 343 0 0 0
0 0 27 0 0
0 0 0 −1 0
0 0 0 0 125

64

 .
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Upper and Lower Triangular Matrices

Triangular matrices are our next special type of matrix:

Definition. A square matrix is upper triangular if all of its below-diagonal entries are 0s. An upper
triangular matrix has form 

a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
...

. . .
...

0 0 0 . . . ann

 .

A square matrix is lower triangular if all of its above-diagonal entries are 0s. A lower triangular
matrix has form 

a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0
...

. . .
...

an1 an2 an3 . . . ann

 .

The first two matrices below are upper triangular, and the last is lower triangular:

1 3 1
0 5 1
0 0 2



2 0 1 0
0 1 1 1
0 0 0 3
0 0 0 −1


1 0 0
3 5 0
1 1 2

 .

In the example above, you should have noticed that the first and third matrices are just trans-
poses. This is an illustration of the first part of the following theorem, which lists some important
properties of triangular matrices:

Theorem 1.7.1. (a) The transpose of an upper triangular matrix is lower triangular, and vice
versa.

(b) The product of two upper triangular matrices is upper triangular, and the product of two
lower triangular matrices is lower triangular.

(c) A triangular matrix is invertible if and only if each of its diagonal entries is nonzero.

(d) The inverse of an invertible upper triangular matrix is lower triangular, and vice versa.

Symmetric Matrices

The matrix

A =

 6 −3 2
−3 4 0
2 0 5


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has a special property, which you can discover by calculating A⊤:

A⊤ =

 6 −3 2
−3 4 0
2 0 5

 .

Notice that A⊤ and A are the same matrix, that is

A = A⊤.

As you may have suspected, we have a name for such special types of matrices:

Definition. A square matrix A is symmetric if A = A⊤. If A is symmetric, then aij = aji.

The following theorem lists some interesting properties of symmetric matrices:

Theorem 1.7.2. If A and B are symmetric n× n matrices, and k is any scalar, then:

(a) A⊤ is symmetric.

(b) A+B and A−B are symmetric.

(c) kA is symmetric.

Proof. Let’s prove part (b) of the theorem. We’d like to show that, if A and B are symmetric,
then so is A+B. Of course, if A and B are symmetric, then we know that

A = A⊤ and B = B⊤.

Now, to show that A + B is symmetric, we need to be convinced that (A + B)⊤ = (A + B).
Let’s check that this is the case:

(A+B)⊤ = A⊤ +B⊤,

since the transpose of a sum is the sum of the transposes. Fortunately, combining this with the
observation that A = A⊤ and B = B⊤ give us

(A+B)⊤ = A⊤ +B⊤

= A+B.

Thus
(A+B)⊤ = (A+B)

as we hoped, which means that A+B is a symmetric matrix.

We should answer one final question in this section on symmetric matrices: If A and B are
symmetric, is their product AB symmetric too? We can investigate this possibility with a few
examples. Let

A =

(
1 2
2 5

)
B =

(
2 1
1 4

)
and C =

(
2 1
1 7

)
.
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Notice that each of A, B, and C is symmetric (i.e. A = A⊤, etc.). Per our question above,
we should determine if products such as AB or AC are also symmetric. Let’s calculate these two
products:

AB =

(
1 2
2 5

)(
2 1
1 4

)
=

(
2 + 2 1 + 8
4 + 5 2 + 20

)
=

(
4 9
9 22

)
.

Notice that the product AB is indeed symmetric–i.e., (AB)⊤ = AB. Let’s check the next
example, AC:

AC =

(
1 2
2 5

)(
2 1
1 7

)
=

(
2 + 2 1 + 14
4 + 5 2 + 35

)
=

(
4 15
9 37

)
.

Unfortunately, even though A and C are symmetric, their product AC is not a symmetric
matrix.

We should try to pick apart what is going on here. We have seen that a product of two symmetric
matrices might be symmetric itself, or it might not. What qualities of the matrices in question will
control whether or not their product retains symmetry?

To answer this question, let’s think about it in general, with a pair of matrices A and B (not
necessarily the ones from the previous example) that we will assume are symmetric; A = A⊤, and
B = B⊤. We want to understand the matrix AB–what conditions will make (AB)⊤ = AB, so that
AB is symmetric?

In Section 1.4, we learned a helpful fact about transposes of products of matrices:

(AB⊤) = B⊤A⊤. (Theorem 1.4.8)

Let’s use this fact to help us out. We know that

(AB)⊤ = B⊤A⊤.

Of course, if we also know that A and B are symmetric (A = A⊤!), then we can continue this
line of reasoning:

(AB)⊤ = B⊤A⊤

= BA.
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So on one hand, we are certain that

(AB)⊤ = BA;

on the other hand, we know that, if AB is symmetric, then

(AB)⊤ = AB.

We can conclude that, if AB happens to be symmetric, then

AB = (AB)⊤ = BA.

In other words, if AB is symmetric, then A and B commute! If they do not commute, then AB
cannot possibly be symmetric.

Our conclusion is precisely the statement of the following theorem:

Theorem 1.7.3. If A and B are symmetric matrices, then their product AB is symmetric if and
only if A and B commute.

We finish off this section with a few more quick theorems about symmetric matrices:

Theorem 1.7.4. If A is both symmetric and invertible (so that A−1 exists), then A−1 is also
symmetric.

Theorem. Given any n × m matrix A, the product AA⊤ of A with its transpose is an n × n
symmetric matrix, and the product A⊤A is an m×m symmetric matrix.

Proof. Exercise.
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