Elementary Matrices and an Inversion Algorithm

In Section 1.4, we introduced the idea of the inverse of an $n \times n$ matrix A, and discussed a formula for finding the inverse of a 2×2 matrix.

We would like to be able to find the inverse of matrices of sizes larger than 2×2; unfortunately, formulas for inverses become incredibly complicated as the size of the matrices in question increase. So instead of looking at formulas for inverses of large matrices in this section, we will instead introduce an algorithm that will allow us to find inverses.

In order to understand the algorithm, we must take a few moments to go back to the idea of elementary row operations.

Elementary Row Operations and Their Inverse Operations

In section 1.1, we introduced the elementary row operations:

- Multiply any row by a non-zero constant
- Interchange any pair of rows
- Add or subtract a constant multiple of one row from another.

One of the reasons that these operations are so helpful is that they are quite simple to "reverse" or "undo." For example, let A be the matrix

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right)
$$

Let's apply the first row operation to A, and multiply the 2 nd row of A by 4 :

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
4 \cdot 2 & 4 \cdot 2 & 4 \cdot 5 \\
-1 & 4 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 & 0 & 1 \\
8 & 8 & 20 \\
-1 & 4 & 1
\end{array}\right) .
\end{aligned}
$$

If we wish to reverse this row operation (i.e., return to the original matrix A), all we need to do is multiply the same row by $\frac{1}{4}$:

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & 0 & 1 \\
8 & 8 & 20 \\
-1 & 4 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
\frac{1}{4} \cdot 8 & \frac{1}{4} \cdot 8 & \frac{1}{4} \cdot 20 \\
-1 & 4 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right) \\
& =A .
\end{aligned}
$$

Key Point. The inverse operation to multiplying a row by a nonzero constant c is to multiply the same row by $\frac{1}{c}$.

Let's apply the second row operation to A, and interchange rows 1 and 2 :

$$
\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 2 & 5 \\
3 & 0 & 1 \\
-1 & 4 & 1
\end{array}\right)
$$

To reverse this operation, we simply need to switch the same pair of rows:

$$
\begin{aligned}
\left(\begin{array}{ccc}
2 & 2 & 5 \\
3 & 0 & 1 \\
-1 & 4 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right) \\
& =A .
\end{aligned}
$$

Thus it is clear that
Key Point. The inverse operation to interchanging a pair of rows is to interchange the same two rows.

Finally, let's apply the third row operation to A, and add 2 times row 3 to row 2:

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
2-2 & 2+8 & 5+2 \\
-1 & 4 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 10 & 7 \\
-1 & 4 & 1
\end{array}\right) .
\end{aligned}
$$

To reverse this operation, we should add -2 times row 3 to row 2:

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 10 & 7 \\
-1 & 4 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
0+2 & 10-8 & 7-2 \\
-1 & 4 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right) \\
& =A .
\end{aligned}
$$

In general,
Key Point. The inverse operation to adding c times row i to row j is to add $-c$ times row i to row j.

If we can get from matrix A to matrix B via a sequence of elementary row operations, then the preceding discussion makes it clear that we can go backwards from B to A using the inverses of those operations. In other words, we can "recover" A if we know B and the necessary sequence of operations, so that there is a sense in which the two matrices are equivalent. This leads to the following definition:

Definition 1. Matrices A and B are row equivalent if one can be obtained from the other via a sequence of elementary row operations.

Using the previous example, matrices

$$
\left(\begin{array}{ccc}
-1 & 4 & 1 \\
2 & 2 & 5 \\
3 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right)
$$

are row equivalent since we can get from the first to the second by switching rows 1 and 3 .

Elementary Matrices and Elementary Row Operations

It turns out that each of the elementary row operations can be accomplished via matrix multiplication using a special kind of matrix, defined below:

Definition 2. An elementary matrix is a matrix that can be obtained from I by using a single elementary row operation.

Example. Determine whether or not the following matrices are elementary; for each matrix that is elementary, find the row operation needed to obtain it from I :

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

1. The matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

is elementary: we can obtain it from I by subtracting $\frac{1}{2}$ of row 1 from row 2 :

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2. The next matrix

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

is not elementary, since we are not allowed to multiply rows by 0 .
3. The matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is elementary; we can switch rows 1 and 2 of I to obtain it:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

4. The final matrix

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

is not elementary; it takes at least two elementary row operations (switching rows, multiplying a row by a constant) to obtain it from

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

To understand where elementary matrices fit into our discussion of elementary row operations, let's go back to the matrix

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right)
$$

We saw that, upon interchanging rows 1 and 2 of A, we end up with the matrix

$$
B=\left(\begin{array}{ccc}
2 & 2 & 5 \\
3 & 0 & 1 \\
-1 & 4 & 1
\end{array}\right)
$$

Now I claim that the elementary matrix

$$
E=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which we obtain by the same elementary row operation (switching rows 1 and 2), is a way to encode the row operation's action. To understand why, let's calculate the matrix product $E A$:

$$
\begin{aligned}
E A & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & 2 & 5 \\
-1 & 4 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0+2+0 & 0+2+0 & 0+5+0 \\
3+0+0 & 0+0+0 & 1+0+0 \\
0+0-1 & 0+0+4 & 0+0+1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 & 2 & 5 \\
3 & 0 & 1 \\
-1 & 4 & 1
\end{array}\right) \\
& =B .
\end{aligned}
$$

So there are two ways to obtain matrix B from A : we can either

- perform a row operation on A, or
- multiply A by the elementary matrix E that encodes the same operation.

The phenomenon observed above actually applies to all elementary matrices, as indicated by the following theorem:

Theorem 1.5.1. If the elementary matrix E results from performing a particular row operation on I_{m}, and A is an $m \times n$ matrix, then the product $E A$ is the matrix that results from A by performing the same operation on A.

In essence, the theorem indicates that elementary matrices encode elementary row operations; applying an elementary row operation has the same effect as multiplying by the elementary matrix of the operation.

Inverses of Elementary Matrices

At the beginning of the section, we mentioned that every elementary row operation can be reversed. Since elementary row operations correspond to elementary matrices, the reverse of an operation (which is also an elementary row operation) should correspond to an elementary matrix, as well.

Theorem 1.5.2. Every elementary matrix E has an inverse, and E^{-1} is also elementary. In particular, E^{-1} is the elementary matrix encoding the inverse row operation from E.

For example, we have seen that the matrix

$$
E=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

encodes the elementary row operation of adding $-\frac{1}{2}$ of row 1 to row 3 . The inverse row operationadding $\frac{1}{2}$ of row 1 to row 3 -has elementary matrix

$$
F=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

The theorem indicates that $F=E^{-1}$, which we can quickly check via multiplication:

$$
\begin{aligned}
E F & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2}+\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =I_{4} .
\end{aligned}
$$

Since $E F=I, E$ and F are indeed inverses.

Checking For Invertibility

In the previous section, we mentioned that invertible matrices will play an important in our study of linear algebra; thus it will be helpful to be able to

1. determine whether or not a specific matrix has an inverse, and
2. find inverses when they exist.

The following theorem will provide us with several different ways to check a matrix for invertibility:

Theorem 1.5.3. Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is invertible.
- $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
- The reduced row echelon form of A is I_{n}.
- A is a product of elementary matrices.

Remark. The phrase "the following are equivalent" means that either all of the statements are true, or all of them are false. So if, for example, I know that matrix A has reduced row echelon form

$$
A \rightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

then I can automatically conclude that A is not invertible; that the equation $A \mathbf{x}=\mathbf{0}$ has at least one nontrivial solution; and that A can not be factored as a product of elementary matrices.

Key Point. In section 1.4, we mentioned that the reduced row echelon form of a square matrix is always either:

1. the identity matrix I_{n}, or
2. a matrix with a row of 0 s .

Taken in combination with Theorem 1.5.3 above, it is clear that there are only two possibilities for a square matrix A :

1. A is invertible, and its reduced row echelon form is I_{n}, or
2. A is singular, and its reduced row echelon form is a matrix with a row of 0 s .

A Method for Calculating A^{-1}

Theorem 1.5.3 gives us a method for calculating the inverse of a nonsingular matrix A : if A is invertible, then its reduced row echelon form must be I_{n}.

In other words, there must be a sequence of elementary row operations which reduces A to I_{n}; as we saw earlier in this section, there must also be a sequence of elementary matrices E_{1}, E_{2}, \ldots, E_{k} corresponding to those row operations so that

$$
E_{k} \ldots E_{2} E_{1} A=I_{n}
$$

With a bit of matrix arithmetic, this statement can be rewritten as

$$
A^{-1}=E_{k} \ldots E_{2} E_{1} I_{n}
$$

In other words, the sequence of elementary matrices which reduces A to I_{n} can also be used to calculate A^{-1}.

This leads to a simple algorithm for calculating A^{-1} :
Use elementary row operations to reduce A to I_{n}; apply the same operations in the same order to I_{n}. If A is invertible, then the resulting matrix is A^{-1}.

Example. Find the inverse of

$$
A=\left(\begin{array}{cccc}
2 & 0 & 0 & -2 \\
1 & 3 & 1 & 0 \\
0 & 0 & -3 & 0 \\
1 & 2 & 0 & 0
\end{array}\right)
$$

To help us keep track of all of the data here, let's start by augmenting A with I_{4}; as we apply elementary row operations to A, we will apply them to I as well:

$$
\left(\begin{array}{cccc|cccc}
2 & 0 & 0 & -2 & 1 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Let's start by creating a leading 1 in the first row:

$$
\left(\begin{array}{cccc|cccc}
2 & 0 & 0 & -2 & 1 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Next, we should create 0s below this leading 1:

$$
\begin{aligned}
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{ccccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
1-1 & 3 & 1 & 0+1 & 0-\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 3 & 1 & 1 & -\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 3 & 1 & 1 & -\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
1-1 & 2 & 0 & 0+1 & 0 & -\frac{1}{2} & 0 & 0 \\
1
\end{array}\right) \\
& =\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 3 & 1 & 1 & -\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & -\frac{1}{2} & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Next, we want a leading 1 in row 2 :

$$
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 3 & 1 & 1 & -\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & -\frac{1}{2} & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & -\frac{1}{2} & 0 & 0 & 1
\end{array}\right) .
$$

Let's create 0 entries below the leading 1 from row 2 :

$$
\begin{aligned}
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & -\frac{1}{2} & 0 & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
0 & 2-2 & 0-\frac{2}{3} & 1-\frac{2}{3} & -\frac{1}{2}+\frac{1}{3} & 0-\frac{2}{3} & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{2}{3} & \frac{1}{3} & -\frac{1}{6} & -\frac{2}{3} & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Next we need a leading 1 in row 3 :

$$
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{2}{3} & \frac{1}{3} & -\frac{1}{6} & -\frac{2}{3} & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & -\frac{2}{3} & \frac{1}{3} & -\frac{1}{6} & -\frac{2}{3} & 0 & 1
\end{array}\right)
$$

followed by 0 entries below it:

$$
\begin{aligned}
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & -\frac{2}{3} & \frac{1}{3} & -\frac{1}{6} & -\frac{2}{3} & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & -\frac{2}{3}+\frac{2}{3} & \frac{1}{3} & -\frac{1}{6} & -\frac{2}{3} & 0-\frac{2}{9} & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{3} & -\frac{1}{6} & -\frac{2}{3} & -\frac{2}{9} & 1
\end{array}\right)
\end{aligned}
$$

and a leading 1 in the last row:

$$
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{3} & -\frac{1}{6} & -\frac{2}{3} & -\frac{2}{9} & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right) .
$$

Finally, we need to create 0 entries above all of the leading 1s; starting with the last row, we
have

$$
\begin{aligned}
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right) & \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & \frac{1}{3}-\frac{1}{3} & -\frac{1}{6}+\frac{1}{6} & \frac{1}{3}+\frac{2}{3} & 0+\frac{2}{9} & 0-1 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right) \\
& =\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{3} & 0 & 0 & 1 & \frac{2}{9} & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc|cccccc}
1 & 0 & 0 & -1+1 & \frac{1}{2}-\frac{1}{2} & 0-2 & 0-\frac{2}{3} & 0+3 \\
0 & 1 & \frac{1}{3} & 0 & 0 & 1 & \frac{2}{9} & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right) \\
& =\left(\begin{array}{cccc|ccccc}
1 & 0 & 0 & 0 & 0 & -2 & -\frac{2}{3} & 3 \\
0 & 1 & \frac{1}{3} & 0 & 0 & 1 & \frac{2}{9} & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right)
\end{aligned}
$$

Finally, we need to create 0 entries above the leading 1 from row 3:

$$
\begin{aligned}
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 0 & -2 & -\frac{2}{3} & 3 \\
0 & 1 & \frac{1}{3} & 0 & 0 & 1 & \frac{2}{9} & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right) & \rightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 0 & -2 & -\frac{2}{3} & 3 \\
0 & 1 & \frac{1}{3}-\frac{1}{3} & 0 & 0 & 1 & \frac{2}{9}+\frac{1}{9} & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right) \\
& =\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 0 & -2 & -\frac{2}{3} & 3 \\
0 & 1 & 0 & 0 & 0 & 1 & \frac{1}{3} & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right)
\end{aligned}
$$

Notice that we have now reduced A to the identity; what remains on the righthand side of the augmented matrix is A^{-1}. We conclude that

$$
A^{-1}=\left(\begin{array}{cccc}
0 & -2 & -\frac{2}{3} & 3 \\
0 & 1 & \frac{1}{3} & -1 \\
0 & 0 & -\frac{1}{3} & 0 \\
-\frac{1}{2} & -2 & -\frac{2}{3} & 3
\end{array}\right)
$$

