
Section 16.3

The Fundamental Theorem for Line Integrals
For the purposes of this section, we will start by recording a few definitions.
A curve is simple if it does not self-intersect. The first example below is a simple curve, while

the second intersects itself, thus is not simple:

Figure 1: Simple Curve

Figure 2: Non-simple Curve

A curve is closed if its initial and terminal points are the same. The first example below is a
closed curve, while the second is not:

Figure 3: Closed Curve

Figure 4: Non-closed Curve

We can combine the two definitions, as indicated in the following example:
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Figure 5: Non-simple, Closed Curve

Figure 4 above is an example of a non-simple, non-closed curve; figure 3 is a simple, closed
curve; and figure 1 is a simple, non-closed curve.

A region R in space is connected if any two points in the region can be connected by a curve
that lies completely within R. For example, the first region below is connected, but the second
region is not:

A connected region R is simply connected if (roughly speaking) R has no holes; more precisely,
the region is simply connected if any loop drawn in R can be shrunk to a point without leaving R.
The first region below is simply connected, while the second region is not:
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In the previous section, we calculated the work done by a force in moving a particle along a
path C = r⃗(t) from t = a to t = b. One question that arises is this: how is work affected if we
choose to calculate it along a different path from t = a to t = b? For example, consider calculating
the work done in moving a particle from t = a to t = b along the two different curves in the vector
field below:

It appears that the work done along the red curve will probably be less than the work along
the blue curve. In general, it seems that there is probably no connection between the work done
along two curves that share starting and ending points.
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However, for select vector fields, a remarkable property holds: given points A and B in the field,
the work done in moving from A to B is constant, and does not depend on the choice of path from
A to B.

Definition 0.0.1. Suppose that F⃗ is a vector field on a region D in space, and let A and B be
points in D. If the work W =

∫ B
A F⃗ · dr⃗ done by F⃗ in moving a particle from A to B is not

dependent upon the path chosen between A and B, we say that F⃗ is a conservative vector field on
D, and that the integral

∫
F⃗ · dr⃗ is path independent in D.

The important question to ask here is this: Can we describe all of the vector fields that are
conservative fields? The answer turns out to be quite nice (we will state and discuss this in more
detail in Theorems 2 and 4): a vector field F⃗ is conservative if and only if it is the gradient field
for some scalar function f , i.e. ∇f = F⃗ . Accordingly, we have the following definition:

Definition 0.0.2. Suppose that F⃗ is a vector field on the region D in space. If there is a scalar
function f defined on D so that

∇f =
∂f

∂x
i⃗+

∂f

∂y
j⃗ +

∂f

∂z
k⃗ = F⃗ ,

we say that f is a potential function for F⃗ .

In a sense, F⃗ plays the role of the derivative of f . Likewise, there is a sense in which we can
think of f as an antiderivative of F⃗ . These ideas are not precise, since derivatives of scalar functions
are again scalar functions, but the idea should help you to remember (and correctly interpret) the
theorems to come.

The theorem below corresponds to the Fundamental Theorem of Calculus, which tells us how
to evaluate definite integrals of functions.

Theorem 2. The Fundamental Theorem for Line Integrals
Let ⃗r(t) be a vector function that traces out the smooth curve C joining points the terminal

points of ⃗r(a) and ⃗r(b) on a ≤ t ≤ b. Let f be a differentiable function that is the potential function
for the vector field F⃗ , i.e. ∇f = F⃗ on a domain containing C. Then

W =

∫
C
F⃗ · dr⃗ = f(r(b))− f(r(a)).

The theorem says that certain types of line integrals are quite similar to single-variable integrals;
if F⃗ has a potential function f (which we interpret as an antiderivative), then to evaluate the line

integral of F⃗ along the curve traced out by ⃗r(t) we merely need to plug in the bounds ⃗r(a) and ⃗r(b)

into f ; the integral is f( ⃗r(b))− f( ⃗r(a)), and there is no need to go through the tedium of actually
integrating.

Notice that the theorem does not apply to every vector field. If F⃗ is a vector field that does not
have a potential function, i.e. F⃗ is not a gradient field, then we cannot use the theorem, but must
make the calculation directly. We will record one more helpful theorem:

Theorem 4. Let F⃗ = Mi⃗ + Nj⃗ + P k⃗ be a vector field whose components M , N , and P are
continuous throughout an open connected region D in space. Then F⃗ is conservative if and only if
F⃗ is a gradient field for some differentiable scalar function f , i.e. ∇f = F⃗ .
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We have seen quite a few different statements that all amount to the same thing; for sake of
clarity, we record them below. The following statements are equivalent:

• F⃗ is a conservative vector field

• The integral W =
∫ B
A F⃗ · dr⃗ is independent of the path joining A and B

• F⃗ has a potential function f (i.e. ∇f = F⃗ )

• W =

∫
C
F⃗ · dr⃗ = f(B)− f(A)

• If C is a closed loop, then

∫
C
F⃗ · dr⃗ = 0.

Example

Let f(x, y, z) = ln(xyz), and let F⃗ = ∇f . Determine the work done by F⃗ in moving a particle
along a smooth curve joining the points (14 , 2, 2) and (1, e, 1).

Since F⃗ is the gradient field for f , i.e. F⃗ has a potential function, we know that F⃗ is a
conservative field. Thus by Theorem 2, we know that the work is

W =

∫
C
F⃗ · dr⃗ = f(B)− f(A).

So instead of finding F⃗ and evaluating an integral, we only need to calculate

f(1, e, 1)− f(
1

4
, 2, 2) = ln(1 · e · 1)− ln(

1

4
· 2 · 2) = ln e− ln 1 = 1.

Thus W = 1.

In practice, there are several different ways to show that a field is conservative. We could find
the potential function f for F⃗ , or we could show that the work integral for F⃗ is path independent.
However, the quickest way to determine if F⃗ is conservative is to use the following test; the first is
for vector fields in two dimensional space, the second for vector fields in three dimensional space:

Component Test for Conservative Fields

Let F⃗ = P (x, y)⃗i + Q(x, y)⃗j be a vector field on a region D, and assume that the component
functions P and Q have continuous first partial derivatives. Then F⃗ is conservative if and only if

∂P

∂y
=

∂Q

∂x
.

Let F⃗ = M(x, y, z)⃗i + N(x, y, z)⃗j + P (x, y, z)k⃗ be a vector field on a region D that is simply
connected, and assume that the component functions M , N , and P have continuous first partial
derivatives. Then F⃗ is conservative if and only if

∂P

∂y
=

∂N

∂z
,

∂M

∂z
=

∂P

∂x
, and

∂N

∂x
=

∂M

∂y
.
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Examples

Is the vector field F⃗ = 3x2 sin y⃗i− x2zj⃗ − sin yk⃗ conservative?

We simply need to check the conditions from the test: we haveM(x, y, z) = 3x2 sin y, N(x, y, z) =

−x2z, and P (x, y, z) = − sin y. Since
∂P

∂y
= − cos y and

∂N

∂z
= −x2, we automatically know that

the field is not conservative.

Given F⃗ (x, y, z) = y2⃗i + (2xy + e3z )⃗j + 3ye3zk⃗, show that the field is conservative and find a
potential function for F⃗ .

To show that the field is conservative, we need to check the partials. Since M = y2, N =
2xy + e3z, and P = 3ye3z, we have

∂P

∂y
= 3e3z =

∂N

∂z
,

∂M

∂z
= 0 =

∂P

∂x
, and

∂N

∂x
= 2y =

∂M

∂y
.

Thus the field is indeed conservative.
Finding a potential function amounts to working backwards; we already know the partials of f

with respect to x, y, and z; we can integrate (along with a few other steps) to determine the actual
value for f .

The potential function f(x, y, z) is a scalar function so that

∇f = F⃗ (x, y, z) = y2⃗i+ (2xy + e3z )⃗j + 3ye3zk⃗.

In particular,
∂f

∂x
= y2,

∂f

∂y
= 2xy + e3z, and

∂f

∂z
= 3ye3z.

To determine the actual value for f(x, y, z), let’s integrate each of the functions above. Keep
in mind that, when we differentiate f with respect to x, any term of f that does not contain an
x will go to 0; so when we go ”backwards” by integrating with respect to x, we will not be able
to recover the function g(y, z) that was killed by the differentiation; we will need to find a way to
recover it. Since ∂f

∂x = y2, we know that the integral of ∂f
∂x with respect to x is xy2 + g(y, z), i.e.

f(x, y, z) = xy2 + g(y, z).

Differentiating f with respect to y gives us

∂f

∂y
= 2xy +

∂

∂y
g(y, z);

note, however, that we determined above that

∂f

∂y
= 2xy + e3z.
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Now the partial derivatives with respect to y should match up, so

∂f

∂y
= 2xy +

∂

∂y
g(y, z) = 2xy + e3z,

and we see that
∂

∂y
g(y, z) = e3z.

Integrating this last term with respect to y, we see that g(y, z) = ye3z + h(z). Thus

f(x, y, z) = xy2 + g(y, z) = xy2 + ye3z + h(z).

Differentiating with respect to z, we see that

∂

∂z
f(x, y, z) = 3ye3z + h′(z);

but again, we already know that
∂f

∂z
= 3ye3z,

so we see that
3ye3z + h′(z) = 3ye3z.

Thus h′(z) = 0, which means h(z) = C for some constant C, and we have

f(x, y, z) = xy2 + ye3z + C.

This is the potential function for F⃗ .
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