
Section 14.1

Multivariate Functions
In this chapter, we will return to scalar functions; thus the functions that we consider will

output points in space as opposed to vectors. However, in contrast to the majority of functions
with which we worked in previous calculus classes, our functions will accept multiple arguments.

A function f(x) = y of one (independent) variable actually involves two variables, the input
x and output y. Since there are two variables, we may graph the function in two dimensions. A
two-variable function such as f(x, y) = z involves two independent variables, x and y, and the
dependent variable z. Thus a function of this form actually defines a surface in three dimensions.
The total number of variables (both independent and dependent) of f dictates the number of
physical dimensions needed to represent f ; for example, the function f(x, y, z) = w describes a
hypersurface in 4 dimensional space. We think of the input of a multivariate function as an ordered
list of numbers, which we call an n-tuple. For example, the list (1, 0,−π, 3) is a 4-tuple.

In order to discuss multivariate functions, we must have definitions for domain, range, etc.,
analogous to the case of a function of one variable:

Definition 0.0.1. Let D be a collection of n-tuples of real numbers of the form (x1, x2, . . . , xn).
A real-valued function f on n variables is a rule that assigns a unique real number to each n-tuple
from D; explicitly, we write

f(x1, x2, . . . , xn) = w.

The set D is the domain of f , and the set of all w values that f outputs is the range of f .
The number w is the dependent variable of f , and the numbers x1, x2, . . . , xn are the independent
variables.

For our purposes, when we are asked to calculate the domain of a function, we will assume that
the domain is the largest possible collection of n-tuples that can be used as inputs for f .

Examples:
Find the domain and range of the function f(x, y) =

√
1− x− y2.

To find the domain, we note that we must have 1− x− y2 ≥ 0. We can rewrite the inequality
as 1 − x ≥ y2 or x ≤ 1 − y2. The domain is the set of all points (x, y) so that x ≤ 1 − y2; this is
the region shaded in below on the xy plane:

Let’s embed the outline of the range in three dimensional space:
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The graph of the surface should lie above (or below) this domain.
The range is the set of all possible outputs; we cannot force f to output negatives, but we can

make f(x, y) = 0 by, for instance, choosing x = 0 and y = −1. However, there is no largest possible
value for f , since we may (for example) fix y = 0 and choose x to be any negative number. So the
range is [0,∞).

The function is graphed below:

Find the domain and range of the function f(x, y, z) = ln(25− x2 − y2 − z2).

We know that the natural log function only accepts non-negative inputs, so we must have
25− x2 − y2 − z2 > 0. We can write the domain as x2 + y2 + z2 < 25.

The largest possible value for the range occurs if we choose each of x, y, and z to be 0;
f(0, 0, 0) = ln 25. On the other hand, we can send f to −∞ by, for example, choosing y and z to
be 0, then allowing x to approach 5. Then 25− x2 − y2 − z2 approaches 0, which sends the natural
log function to −∞. So the range is (−∞, ln 25].

Find the domain and range of the function f(x, y) = e
√

x2+y2 .

Since x2 and y2 are always nonnegative, we may input any values we like for x and y into
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x2 + y2. In addition, et has domain all reals, so

√
x2 + y2 may take on any value we wish. So

the domain of f is the entire xy plane.
To determine the range, notice that the smallest value for

√
x2 + y2 is 0 (by choosing x = y = 0);

since et is increasing, f(0, 0) = 0 is the smallest possible value for f . On the other hand, by
increasing x or y appropriately, we may make the outputs of f as large as we like. Thus f has
domain [0,∞).

Graphing multivariate functions
For the obvious reasons, it is difficult to represent the graph of a function f(x, y) of two variables

in two dimensions, as f(x, y) represents a surface in space. However, we can use the ”level curves”
of the surface to help us understand the three dimensional shape of the function’s graph.

Definition 0.0.2. Given a function f of two variables and a constant c, a level curve at c of the
function f(x, y) is the set of all points (x, y) so that f(x, y) = c.

Level curves give us a way to represent a three-dimensional surface in two dimensions by ”flat-
tening” the surface, but retaining information about the function’s height (z values).

Topographical maps, such as the one below of Auburn’s campus, use level curves to do precisely
this; the lines on such a map represent points at the same height. If you were to pick a curve on
the map and walk along the ground following this curve, you would stay at the same elevation the
entire time.

We use the plot of the level curves of f to determine what the surface actually looks like. We
can think of ”stacking” the given curves at the right height, then connecting them to create the
surface.

Examples
The graph below shows the level curves for a function f(x, y):
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Use the level curves to draw a rough sketch of the surface.

We can ”stack” the curves at the right height to get a rough idea of what the surface looks like:

Connecting the curves gives us the surface below:
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Find the domain and range of the function f(x, y) =
√
x+ y. Graph 4 level curves of the

function and use the level curves to sketch a rough graph of the surface.

The domain of f(x, y) is the set of all points (x, y) so that x+ y > 0, i.e. so that −y < x. The
range is [0,∞).

The smallest value for which there is a level curve is z = 0, so we consider the curve given by√
x+ y = 0. This is the same as x+ y = 0, i.e. y = −x, the negative of the identity line. Let’s also

sketch the level curves for z = 2, z = 4, and z = 6; we get the curves y = 4 − x, y = 16 − x, and
y = 36− x, respectively:

In this case, the level curves are lines, which leads us to sketch the surface as follows:
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Find the domain and range of the function f(x, y) =
x2

9
+

y2

9
. Graph 4 level curves of the

function and use the level curves to sketch a rough graph of the surface.

The domain is all pairs (x, y) of real numbers; the range is [0,∞). Again, the smallest level

curve occurs when z = 0, so the corresponding curve is given by
x2

9
+

y2

9
= 0; the only point

satisfying this equation is (x, y) = (0, 0).

The level curve at z = 1 is given by
x2

9
+

y2

9
= 1 or x2 + y2 = 9, which is a circle of radius 3.

The level curve at z = 2 is
x2

9
+

y2

9
= 2 or x2 + y2 = 18, a circle of radius

√
18. The level curve at

z = 3 is given by
x2

9
+

y2

9
= 3 or x2 + y2 = 27, a circle of radius

√
27.

The level curves are graphed below:

This leads to the surface in the graph below (the level curves are included on the graph):
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Level Surfaces
Just as a function f(x, y) of two variables can be sliced into two-dimensional curves which we

”stack” in three dimensions to get the surface that forms the graph of f(x, y), a function f(x, y, z)
of three variables can be sliced into three dimensional surfaces which can be ”stacked” in four
dimensions to obtain the graph of f(x, y, z). Obviously, we cannot actually visualize f(x, y, z)
since it is a hypersurface in 4 dimensional space, but thinking of the process as analogous to the 3
dimensional case can help us to get a better feel for what occurs here.

For example, if f(x, y, z) = x3+ y2− z2, then some of the level surfaces are graphed below. For
f(x, y, z) = 0:

For f(x, y, z) = 1:
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For f(x, y, z) = 2:

For f(x, y, z) = 3:
Each level surface is just one slice of the actual surface defined by f(x, y, z). If we could ”stack”

the surfaces in 4 dimensions, we would be obtain the hypersurface f(x, y, z).
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