
Section 13.2

Calculus on Vector Functions
As mentioned in the previous section, calculus on vector functions is a completely different

topic from the calculus of scalar valued functions. Although we can certainly discuss derivatives
and integrals of vector functions, these terms have a slightly different shade of meaning than they
do for scalar functions. In this section, we will establish the rules of calculus on vector functions.

Derivatives of Vector Functions
Derivatives of vector-valued functions are easy to evaluate. It only requires a straightforward

calculation to show that, as with limits, derivatives of vector functions may be evaluated component
by component.

However, before we look at a definition, let’s think about the meaning of ”derivative of a vector
function”. First of all, we know that the derivative of a function f is another function describing
the rate of change of f .

In this particular case, we are considering a vector valued function ⃗r(t); its derivative should

also be a vector valued function, describing the rate of change of ⃗r(t). Recall that, as t varies, the

tip of ⃗r(t) traces out a path in space:

In particular, ⃗r′(t) is a vector tangent to the curve traced out by ⃗r(t) at the parameter t:
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Definition 0.0.1. The vector function

⃗r(t) = f(t)⃗i+ g(t)⃗j + h(t)k⃗ = ⟨f(t), g(t), h(t)⟩

is differentiable at the point t if each of f(t), g(t) and h(t) are, and the derivative ⃗r′(t) is precisely

⃗r′(t) = f ′(t)⃗i+ g′(t)⃗j + h′(t)k⃗ = ⟨f ′(t), g′(t), h′(t)⟩.

We say that ⃗r(t) is differentiable if it is differentiable at each point in its domain.

As mentioned above, we can think of ⃗r′(t) as the function that gives tangent vectors to the curve

traced out by ⃗r(t). Since we often prefer unit vectors, we will define the unit tangent vector as the

unit vector pointing in the same direction as ⃗r′(t).

Definition 0.0.2. Given a differentiable vector function ⃗r(t), the unit tangent vector of ⃗r(t) is

T⃗ =
⃗r′(t)

| ⃗r′(t)|
.

Example
Given ⃗r(t) = t⃗i+ sin t⃗j + cos tk⃗, find ⃗r′(t) and T⃗ .

Differentiating components separately, we have

⃗r′(t) = (
d

dt
t)⃗i+ (

d

dt
sin t)⃗j + (

d

dt
cos t)k⃗

= i⃗+ cos t⃗j − sin tk⃗.

So the derivative is the vector function ⃗r′(t) = i⃗+ cos t⃗j − sin t.

Since T⃗ =
⃗r′(t)

| ⃗r′(t)|
, we need to calculate | ⃗r′(t)|:

| ⃗r′(t)| =
√

1 + sin2 t+ cos2 t

=
√
2.

So the unit tangent vector is given by

T⃗ =
1√
2
i⃗+

cos t√
2
j⃗ − sin t√

2
k⃗.

The curve traced out by r⃗t and three of its unit tangent vectors are graphed below:
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We often use vector valued functions to describe the motion of some object in space; if the
vector function ⃗r(t) traces out the path C of a particle as t → ∞, we call ⃗r(t) the position vector
for the particle.

Of course, derivatives have a special interpretation in this context. The derivative ⃗r′(t) is a
vector function tangent to the curve C. We write

⃗v(t) = ⃗r′(t)

and call ⃗v(t) the particle’s velocity vector. The velocity vector v⃗ always points in the direction
of the motion of the particle. The vector v⃗

|v⃗| is a unit vector pointing in the direction of the motion

of the particle. The magnitude (length) of the velocity vector, | ⃗v(t)|, is precisely the speed of the

particle. We write speed= | ⃗v(t)|.
If the derivative of ⃗v(t) exists, we write

⃗a(t) =
dv⃗

dt

and call ⃗a(t) the particle’s acceleration vector.

Rules for Differentiating Vector Functions
Most of the rules for differentiating scalar functions have an analogue in the world of vector

functions. In addition, since vector functions have two operations not available to scalar functions
(cross product and dot product). we will need extra differentiation rules to describe how these
vector operations interact with differentiation.

Theorem 3. Let u⃗ and v⃗ be differentiable vector functions of t; let C⃗ be a constant vector, and c
be a scalar. Let f be a differentiable scalar function.
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1. Constant Rule
d

dt
C⃗ = 0⃗

2. Scalar Multiple Rules
d

dt
(c ⃗u(t)) = c ⃗u′(t)

d

dt
(f(t) ⃗u(t)) = f(t) ⃗u′(t) + f ′(t) ⃗u(t)

3. Sum/Difference Rule
d

dt
( ⃗u(t)± ⃗v(t)) = ⃗u′(t)± ⃗v′(t)

4. Dot Product Rule
d

dt
( ⃗u(t) · ⃗v(t)) = ⃗u′(t) · ⃗v(t) + ⃗u(t) · ⃗v′(t)

5. Cross Product Rule
d

dt
( ⃗u(t)× ⃗v(t)) = ⃗u′(t)× ⃗v(t) + ⃗u(t)× ⃗v′(t)

6. Chain Rule
d

dt
u⃗(f(t)) = f ′(t)u⃗′(f(t))

Examples

With ⃗r(t) = t⃗i+ sin t⃗j + cos tk⃗ and f(t) = 3t3, find
d

dt
r⃗(f(t)).

We’ve already calculated the derivative ⃗r′(t) = i⃗+cos t⃗j−sin tk⃗. Since f ′(t) = 9t2, the derivative
of r⃗(f(t)) is given by

d

dt
⃗r(f(t)) = f ′(t)r⃗′(f(t))

= 9t2⃗i+ 9t2 cos(3t3)⃗j − 9t2 sin(3t3)k⃗).

Given the function ⃗r(t) = (2t⃗i+ sin t⃗j) · (3t2⃗i− k⃗), find
dr

dt
.

By the dot product rule, we know that the derivative may be calculated as follows:

dr

dt
=

d

dt
(2t⃗i+ sin t⃗j) · (3t2⃗i− k⃗) + (2t⃗i+ sin t⃗j) · ( d

dt
(3t2⃗i− k⃗))

= (2⃗i+ cos t⃗j) · (3t2⃗i− k⃗) + (2t⃗i+ sin t⃗j) · (6t⃗i)
= 6t2 + 12t2

= 18t2.

Alternatively, we could first evaluated the dot product, then differentiate. Since

⃗r(t) = (2t⃗i+ sin t⃗j) · (3t2⃗i− k⃗) = 6t3,
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we have

dr

dt
=

d

dt
6t3

= 18t2.

Regardless of the order, we end up with the same scalar function 18t2.

Vector Functions of Constant Length
As mentioned earlier, the derivative ⃗r′(t) of the vector function ⃗r(t) is a vector that is always

tangent to the curve traced out by ⃗r(t). In most cases, this does not say anything particularly

special about the geometric relationship between ⃗r′(t) and ⃗r(t). However, there is one case in
which the relationship is quite clear.

Suppose that the function ⃗r(t) has constant length; if this is the case, then the curve traced by
⃗r(t) lies on a sphere centered at the origin, with radius | ⃗r(t)|. For example, consider the function
⃗r(t) = cos t⃗i+ j⃗ + sin tk⃗; the length of the vector is

| ⃗r(t)| =
√

cos2 t+ 1 + sin2 t

=
√
1 + 1

=
√
2.

Since ⃗r(t) has constant length
√
2, the curve traced out by the tip of ⃗r(t) lies on a sphere of

radius
√
2:

Now the vector ⃗r′(t) is tangent to the curve as well as the sphere.
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From the picture, it appears that ⃗r(t) and ⃗r′(t) are orthogonal; indeed it is quite simple to prove

that this is true: suppose that ⃗r(t) = f(t)⃗i + g(t)⃗j + h(t)k⃗ has constant length | ⃗r(t)| = c. Let’s

calculate | ⃗r(t)| using the formula for length of a vector:

c = | ⃗r(t)| =
√

(f(t))2 + (g(t))2 + (h(t))2;

in particular,
c2 = | ⃗r(t)|2 = (f(t))2 + (g(t))2 + (h(t))2.

However, note that ⃗r(t) · ⃗r(t) is precisely

⃗r(t) · ⃗r(t) = (f(t)⃗i+ g(t)⃗j + h(t)k⃗) · (f(t)⃗i+ g(t)⃗j + h(t)k⃗)

= (f(t))2 + (g(t))2 + (h(t))2

= | ⃗r(t)|2.

So we have

d

dt
( ⃗r(t) · ⃗r(t)) =

d

dt
c2

(
d

dt
⃗r(t)) · ⃗r(t) + ⃗r(t) · ( d

dt
) ⃗r(t) = 0

2(
d

dt
⃗r(t)) · ⃗r(t) = 0

⃗r′(t) · ⃗r(t) = 0.

Since a pair of vectors is orthogonal precisely when their dot product is 0, we see that ⃗r(t) and

its derivative ⃗r′(t) are, in this case, orthogonal.

Note that this statement is only true when ⃗r(t) has constant length; otherwise, ⃗r(t) and ⃗r(t)
may not be orthogonal. We record the observation as a theorem:
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Theorem 0.0.3. If ⃗r(t) is a differentiable vector function of constant length, then

⃗r(t) · ⃗r′(t) = 0,

that is ⃗r(t) and ⃗r′(t) are orthogonal.

Integrals of Vector Functions
We now define integration on vector functions. As with scalar functions, we first define an-

tiderivatives and indefinite integrals:

Definition 0.0.4. If R⃗(t) is a vector function so that
d

dt
R⃗(t) = ⃗r(t), we say that R⃗(t) is an

antiderivative of ⃗r(t). If R⃗(t) is an antiderivative of ⃗r(t), then so is R⃗(t) + C⃗ for any constant

vector C⃗. The indefinite integral of the vector function ⃗r(t) with respect to t is the set of all

antiderivatives of ⃗r(t), denoted ∫
⃗r(t)dt = R⃗(t) + C⃗.

Notice in particular that the constant C⃗ is a constant vector, thus is of the form C⃗ = c1⃗i+c2j⃗+
c3k⃗ for some numbers c1, c2, and c3.

Evaluating the definite integral of a vector function is as straightforward as we would expect; as
with differentiating vector functions, we may integrate vector functions component by component.

Theorem 0.0.5. If ⃗r(t) = f(t)⃗i + g(t)⃗j + h(t)k⃗ is a vector function so that each of the scalar

functions f(t), g(t), and h(t) is integrable over [a, b], then ⃗r(t) is integrable over [a, b] as well. The

definite integral of ⃗r(t) over [a, b] is∫ b

a

⃗r(t)dt =

(∫ b

a
f(t)dt

)⃗
i+

(∫ b

a
g(t)dt

)
j⃗+

(∫ b

a
h(t)dt

)
k⃗.

Using the definitions above, we have:

Theorem 0.0.6. The Fundamental Theorem of Calculus for Vector Functions
If the vector function ⃗r(t) is continuous on the interval [a, b], and R⃗(t) is any antiderivative of

⃗r(t), then ∫ b

a

⃗r(t)dt = ⃗R(b)− ⃗R(a).

Example

The acceleration vector of a particle is given by ⃗a(t) = (sin t)⃗i − 2tk⃗. The particle’s velocity
vector at time t = 0 is given by ⟨3,−7, 2⟩ and its position at the same time is given by the vector
⟨1, 0, 0⟩. Find the particle’s velocity and position vectors.

Since ⃗v(t) is an antiderivative of ⃗a(t), we must integrate ⃗a(t) and use the initial conditions to

determine the exact value for ⃗v(t).
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By the previous theorem,

⃗v(t) =

∫
⃗a(t)dt

=

∫ (
(sin t)⃗i− 2tk⃗

)
dt

=

((∫
sin tdt

)⃗
i−

( ∫
2tdt

)
k⃗

)
dt

= − cos t⃗i− t2k⃗ + C⃗.

So ⃗v(t) = − cos t⃗i− t2k⃗ + C⃗. We need to determine the value for the vector C⃗. Since we know

that ⃗v(0) = ⟨3,−7, 2⟩, we have

⟨3,−7, 2⟩ = ⃗v(0)

= (− cos 0)⃗i− 0k⃗ + C⃗

= −⃗i+ C⃗.

Since 3⃗i− 7⃗j + 2k⃗ = −⃗i+ C⃗, we conclude that C⃗ = 4⃗i− 7⃗j + 2k⃗. So

⃗v(t) = − cos t⃗i− t2k⃗ + 4⃗i− 7⃗j + 2k⃗

= (4− cos t)⃗i− 7⃗j + (2− t2)k⃗.

We calculate ⃗r(t) similarly:

⃗r(t) =

∫
⃗v(t)dt

=

∫ (
(4− cos t)⃗i− 7⃗j + (2− t2)k⃗

)
dt

=
( ∫

4− cos tdt
)⃗
i−

( ∫
7dt

)⃗
j+

( ∫
2− t2dt

)
k⃗

= (4t− sin t)⃗i− 7t⃗j + (2t− 1

3
t3)k⃗ + D⃗.

Since ⃗r(0) = ⟨1, 0, 0⟩, we may again determine the constant vector:

⟨1, 0, 0⟩ = ⃗r(0)

= (− sin 0)⃗i− 0⃗j + 0k⃗ + D⃗

= D⃗.

So in this case, D⃗ = ⟨1, 0, 0⟩ = i⃗. Thus

⃗r(t) = (4t− sin t)⃗i− 7t⃗j + (2t− 1

3
t3)k⃗ + i⃗

= (1 + 4t− sin t)⃗i− 7t⃗j + (2t− 1

3
t3)k⃗.
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