
Section 12.1

Three-Dimensional Coordinate Systems
The plane is a two-dimensional coordinate system in the sense that any point in the plane can be

uniquely described using two coordinates (usually x and y, but we have also seen polar coordinates
ρ and θ). In this chapter, we will look at spaces with an extra dimension; in particular, a point in
3-space needs 3 coordinates to uniquely describe its location.

In the three-dimensional Cartesian coordinate system (or rectangular coordinate system), the
coordinates x, y, and z are measured against three mutually perpendicular axes.

The points (2, 2,−1) and (0,−1, 2) are graphed below in 3-space:

We determine the positive part of each axis using the right-hand rule; with the thumb of
your right hand pointing upwards and your index finger perpendicular to your thumb, curl your
remaining fingers in towards your palm; your index finger points in the direction of the positive
part of the x axis and your remaining fingers will curl through the positive parts of the y axis; your
thumb points in the direction of the positive part of the z axis.

The axes define the three coordinate planes: the xy plane is the set of all points so that z = 0
(and this equation defines the plane); the yz plane is defined by the equation x = 0; likewise, the
xz plane is defined by y = 0. The three planes all intersect in one point, the origin (located at
(0, 0, 0)), and divide 3 space into 8 octants (similar to the 4 quadrants in 2 dimensions). The
octant in which all three coordinates are positive is called the first octant.
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You can think of the room you’re sitting in as a three dimensional coordinate system; let the
origin be the front left-hand bottom corner of the room. Then you are sitting in the first octant of
the coordinate system.

Examples
Find the set of all points in 3 space satisfying x = y and z = 4.

The set of all points where z = 4 is the plane perpendicular to the xy plane at a height of 4:

Although all of the points on the plane satisfy z = 4, it is clear that many of the points do not
satisfy x = y, so we need to restrict our attention to the points graphed in red below:
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The set of points described by x = y and z = 4 is the identity line in the plane parallel to the
xy plane.

Write a description for the set of all points in the plane passing through (1, 1, 2) parallel to the
xz plane.

The point set is graphed below:

The y value of any point on this plane must be 1, but the x and z coordinates may take on any
values. So the equation y = 1 describes the plane.

Find the set of all points in 3 space satisfying z ≤ 0, x > y.

Since z ≤ 0, we can ignore the set of all points above the xy plane. In 2-space, the set of points
where x > y is the set of points lying below the identity line:
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In 3-space, the picture is similar; with the restriction that z ≤ 0, the graph includes all of the points
in the xy plane so that x > y, as well as all of the points under this half-plane:

Most two-dimensional constructions have three-dimensional analogues. For instance, we can
calculate the distance between a pair of points in 3-space using a nearly identical formula to what
we used to calculate the distance between points in 2-space:

Theorem 0.0.1. The distance between a pair of points p1 = (x1, y1, z1) and p2 = (x2, y2, z2) is
given by

D(p1, p2) =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

For example, the distance between p1 = (3, 1, 2) and p2 = (3, 5,−1) is

D(p1, p2) =
√

(3− 3)2 + (5− 1)2 + (−1− 2)2 =
√
16 + 0 + 9 =

√
25 = 5.

So p1 and p2 are 5 units apart.

With p1 as above, consider the set of all points pn that satisfy D(p1, pn) = 5, i.e. the set of all
points that lie 5 units from p1. This set forms the surface of a sphere centered at p1:
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The sphere has radius 5.
In general, the standard equation for a sphere centered at p0 = (h, k, l) with radius r is

given by
(x− h)2 + (y − k)2 + (z − l)2 = r2.

Example:
Show that the equation x2 + y2 + z2 − 2x+ 6z = 3 defines a sphere by putting it into standard

form.

In order to put the equation in standard form, we will need to use the method of completing
the squares.

Reminder: Completing the Square
To complete the square in x2+ ax = c where a and c are constants, divide the coefficient a of x

by 2 and square the resulting term to get a2

4 . Then add a2

4 to both sides of the equation: we now

have x2 + ax + a2

4 = c + a2

4 . This equation now has a perfect square on the left-hand side, which

we rewrite as (x+ a
2 )

2 = c+ a2

4 .

Returning to our original problem, we will complete the squares for each variable. Let’s start
with the x terms:
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x2 + y2 + z2 − 2x+ 6z = 3

x2 − 2x+ y2 + z2 + 6z = 3

x2 − 2x+ 1 + y2 + z2 + 6z = 3 + 1

(x− 1)2 + y2 + z2 + 6z = 4.

The only term involving the variable y is already a perfect square, which we rewrite in standard
form:

(x− 1)2 + (y − 0)2 + z2 + 6z = 4.

Finally, we handle the zs:

(x− 1)2 + (y − 0)2 + z2 + 6z = 4

(x− 1)2 + (y − 0)2 + z2 + 6z + 9 = 4 + 9

(x− 1)2 + (y − 0)2 + (z + 3)2 = 13.

The equation above is that of a sphere centered at (1, 0,−3) with radius
√
13.

Using the sphere in the example above,

1. The set of all points satisfying (x− 1)2 +(y− 0)2 +(z+3)2 = 13 is the surface of the sphere.

2. The set of all points satisfying (x− 1)2+(y− 0)2+(z+3)2 < 13 is the interior of the sphere.

3. The set of all points satisfying (x− 1)2 + (y − 0)2 + (z + 3)2 ≥ 13 is the surface and exterior
of the sphere.
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