Three-Dimensional Coordinate Systems

The plane is a two-dimensional coordinate system in the sense that any point in the plane can be uniquely described using two coordinates (usually x and y, but we have also seen polar coordinates ρ and θ). In this chapter, we will look at spaces with an extra dimension; in particular, a point in 3 -space needs 3 coordinates to uniquely describe its location.

In the three-dimensional Cartesian coordinate system (or rectangular coordinate system), the coordinates x, y, and z are measured against three mutually perpendicular axes.

The points $(2,2,-1)$ and $(0,-1,2)$ are graphed below in 3 -space:

We determine the positive part of each axis using the right-hand rule; with the thumb of your right hand pointing upwards and your index finger perpendicular to your thumb, curl your remaining fingers in towards your palm; your index finger points in the direction of the positive part of the x axis and your remaining fingers will curl through the positive parts of the y axis; your thumb points in the direction of the positive part of the z axis.

The axes define the three coordinate planes: the $x y$ plane is the set of all points so that $z=0$ (and this equation defines the plane); the $y z$ plane is defined by the equation $x=0$; likewise, the $x z$ plane is defined by $y=0$. The three planes all intersect in one point, the origin (located at $(0,0,0)$), and divide 3 space into 8 octants (similar to the 4 quadrants in 2 dimensions). The octant in which all three coordinates are positive is called the first octant.

You can think of the room you're sitting in as a three dimensional coordinate system; let the origin be the front left-hand bottom corner of the room. Then you are sitting in the first octant of the coordinate system.

Examples

Find the set of all points in 3 space satisfying $x=y$ and $z=4$.
The set of all points where $z=4$ is the plane perpendicular to the $x y$ plane at a height of 4 :

Although all of the points on the plane satisfy $z=4$, it is clear that many of the points do not satisfy $x=y$, so we need to restrict our attention to the points graphed in red below:

The set of points described by $x=y$ and $z=4$ is the identity line in the plane parallel to the $x y$ plane.

Write a description for the set of all points in the plane passing through $(1,1,2)$ parallel to the $x z$ plane.

The point set is graphed below:

The y value of any point on this plane must be 1 , but the x and z coordinates may take on any values. So the equation $y=1$ describes the plane.

Find the set of all points in 3 space satisfying $z \leq 0, x>y$.
Since $z \leq 0$, we can ignore the set of all points above the $x y$ plane. In 2 -space, the set of points where $x>y$ is the set of points lying below the identity line:

Section 12.1

In 3 -space, the picture is similar; with the restriction that $z \leq 0$, the graph includes all of the points in the $x y$ plane so that $x>y$, as well as all of the points under this half-plane:

Most two-dimensional constructions have three-dimensional analogues. For instance, we can calculate the distance between a pair of points in 3-space using a nearly identical formula to what we used to calculate the distance between points in 2 -space:

Theorem 0.0.1. The distance between a pair of points $p_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
D\left(p_{1}, p_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} .
$$

For example, the distance between $p_{1}=(3,1,2)$ and $p_{2}=(3,5,-1)$ is

$$
D\left(p_{1}, p_{2}\right)=\sqrt{(3-3)^{2}+(5-1)^{2}+(-1-2)^{2}}=\sqrt{16+0+9}=\sqrt{25}=5
$$

So p_{1} and p_{2} are 5 units apart.

With p_{1} as above, consider the set of all points p_{n} that satisfy $D\left(p_{1}, p_{n}\right)=5$, i.e. the set of all points that lie 5 units from p_{1}. This set forms the surface of a sphere centered at p_{1} :

The sphere has radius 5 .
In general, the standard equation for a sphere centered at $p_{0}=(h, k, l)$ with radius r is given by

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2} .
$$

Example:

Show that the equation $x^{2}+y^{2}+z^{2}-2 x+6 z=3$ defines a sphere by putting it into standard form.

In order to put the equation in standard form, we will need to use the method of completing the squares.

Reminder: Completing the Square

To complete the square in $x^{2}+a x=c$ where a and c are constants, divide the coefficient a of x by 2 and square the resulting term to get $\frac{a^{2}}{4}$. Then add $\frac{a^{2}}{4}$ to both sides of the equation: we now have $x^{2}+a x+\frac{a^{2}}{4}=c+\frac{a^{2}}{4}$. This equation now has a perfect square on the left-hand side, which we rewrite as $\left(x+\frac{a}{2}\right)^{2}=c+\frac{a^{2}}{4}$.

Returning to our original problem, we will complete the squares for each variable. Let's start with the x terms:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}-2 x+6 z & =3 \\
x^{2}-2 x+y^{2}+z^{2}+6 z & =3 \\
x^{2}-2 x+1+y^{2}+z^{2}+6 z & =3+1 \\
(x-1)^{2}+y^{2}+z^{2}+6 z & =4 .
\end{aligned}
$$

The only term involving the variable y is already a perfect square, which we rewrite in standard form:

$$
(x-1)^{2}+(y-0)^{2}+z^{2}+6 z=4
$$

Finally, we handle the $z \mathrm{~s}$:

$$
\begin{aligned}
(x-1)^{2}+(y-0)^{2}+z^{2}+6 z & =4 \\
(x-1)^{2}+(y-0)^{2}+z^{2}+6 z+9 & =4+9 \\
(x-1)^{2}+(y-0)^{2}+(z+3)^{2} & =13
\end{aligned}
$$

The equation above is that of a sphere centered at $(1,0,-3)$ with radius $\sqrt{13}$.

Using the sphere in the example above,

1. The set of all points satisfying $(x-1)^{2}+(y-0)^{2}+(z+3)^{2}=13$ is the surface of the sphere.
2. The set of all points satisfying $(x-1)^{2}+(y-0)^{2}+(z+3)^{2}<13$ is the interior of the sphere.
3. The set of all points satisfying $(x-1)^{2}+(y-0)^{2}+(z+3)^{2} \geq 13$ is the surface and exterior of the sphere.
