Section 7.2

Advanced Integration Techniques: Trigonometric Integrals

We will use the following identities quite often in this section; you would do well to memorize
them.

sin2r — 1—c02s(23:) cos? r — 1+cos(2x) (1)
cos(2r) =1 — 2sin’x cos(2r) = 2cos?x — 1
sec?x =1+ tan’x csc?x =1+ cot’x

When attempting to integrate a function built up from trigonometric functions, there are of-
ten many different possibilities for choosing an integration technique. For example, we can solve
[ sinz cos zdzx using the u-substitution u = cosz. The same substitution could be used to find
[ tan zdz if we note that tanz = S2£_ We can use integration by parts to solve [ sin(5z) cos(3z)dz.
However, there are many other trigonometric functions whose integrals can not be evaluated so eas-
ily. In this section, we will look at multiple techniques for handling integrals of several different

types of trig functions.

Integrals of the form [ sin” zcos™z
To integrate a function of the form [ sin™ z cos™ z, we will use one of the two following methods:
1. if both the powers m and n are even, rewrite both trig functions using the identities in (1)

2. Otherwise, we will rewrite the function so that only one power of sin x (or one power of cos x)
appears; this will allow us to make a helpful substitution:

(a) If m =2k + 1 is odd, then rewrite

sin™ z = sin?* ! ¢ = (sinz)(sin? x) = (sinz)(sin® z)* = (sinz)(1 — cos? z)*,

then use the u-substitution ©v = cos z.
(b) If n =2k + 1 is odd, then rewrite

cos™ & = cos? ! & = (cos x)(cos® x) = (cos z)(cos® x)* = (cosz)(1 — sin® z)F,

then use the u-substitution v = sin x.

Examples:
Find [ cos®(2x)dz.

Since cos(2z) has an odd power, let’s rewrite
cos®(2z) = cos(2x) cos?(2z) = cos(2x)(1 — sin®(2z)).

Then
/0083(2x)dm = /cos(2x)(1 — sin?(2x))dz.
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We will need the substitution u = sin(2z) so that du = 2 cos(2z)dz. Now we can finish the problem:

/ cos®(2z)dx = / cos(2z)(1 — sin?(2x))dx

1
=3 / 1 —u%du using the substitution u = sin(2z)
1 1,
1 1
L. 1 .3
=3 sin(2x) — g sin (2z) + C.

Find [ sin®z cos® zdz.
Since both trig functions have odd powers, we will rewrite one of them using the Pythagorean
identity. Let’s try
sin® z cos® z = sin® x cos? z cos x
= sin® z(cos® )% cos =
= sin® z(1 — sin® z)? cos z.
As in the previous example, we can use a simple u-substitution to finish the problem. Set
u = sinz so that du = cos xdx. Then

/sin3 z(1 — sin® z)? cos vdx = /u3(1 —u?)?du
= [ w31 - 2u® + u')du

u® — 2u® +u"du

——

1 2 1
:*U4_8U6+§u8+0

1 1
= —si 4x—§sin6x+§sin8x+6‘.

—

W

Find [ cos?(2x)dz.

Since there are no odd powers in this function, we will rewrite cos?(2z) = H%S(M) using the
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equation in (1). Then the integral calculation is fairly routine:

1 4
/0082(2aj)dm:/—i_c;)s(x)dx
1
= 2/1 + cos(4x)dx

1 1
= 5(3: + 1 sin(4zx)) + C using the substitution u = 4x
P N EXe
= 5+ gsin(de :

Evaluate [ cos? z sin® zda.
Since both the powers of cosx and sinx are even, we will write

1 2
cos’z = 2t coster) C;S( @)

2
1 — cos(2x)
()

2
1 (2 1-— 2
—|—cos x )( C(;S( 1:)) I

1 + cos(2x) ) (1 — 2cos(2z) + cosz(2x)>d
x

and

sin z = (sin” z)?

Then

/COS2 rsin® zdx =

4

/ 1 — 2cos(2z) + cos?(2x) + cos(2z) — 2 cos®(2z) + cos®(2x)dx
/1 — cos(2x) — cos*(2z) + cos®(2z)dx

1
(m B sin 2z — /c032(21:)d93 + /0033(2x)> dx.

We have already showed that

1 1
/0082(2:1:)d3: =5 + 3 sin(4z) + C

and

1 1
/cos3(2:r:)d;r =3 sin(2x) — 6 sin®(2x) 4 C,

so finally we have

1 1 1 1 1 1
/cos2 zsin? zdr = 3 <x —5 sin 2z — 2% 3 sin(4z) + B sin(2x) — 6 sin3(2x)> +C.
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Integrating powers of tanz, secx, cscx, and cotx
To integrate powers of the other trig functions, we will often need to use u-substitution or integration

by parts together with the pythagorean identities; if possible, we will need to take advantage of the

fact that % tan x = sec? x, % sec’ z = sec x tan x, % cscx = — csc x cot x, and % cotx = — csc? .

Example:

Evaluate [ csc! zdz.
Writing csc* x = (csc? z)(csc? z) = (1 +cot? z)(csc? ) is advantageous, as it will allow us to use

the substitution ©v = cot x:

/csc4 xdx = /(1 + cot? ) (csc? x)dx

=— /(1 + u?)du using u = cotz and — du = csc? zdx

13
=—u—-u+C
u 3’LL

1
:—cotx—gcotsx—kc.

Eliminating square roots
If the function we wish to integrate involves the square root of some trigonometric function, we
may be able to eliminate the root by using the pythagorean identities or the identities from (1).

Examples:
Evaluate [ y/cosy + 1dy

The identity cos? 2 = H%S(%) can help us here. Setting y = 2z, so that x = ¥, the identity

becomes cos?(¥) = % We would like to replace the quantity cosy+ 1; solving for this quantity

in the above identity, we have cosy + 1 = 2 cos?( £). So we may rewrite the integral as

/ Veos(y) + Lda — / ,/2cos2<g>dy
—/ﬂcos@)dy

= 2\/§sin<g) + C.

Find [ Vesc? 6 — 1d6.
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Since csc? @ — 1 = cot? 0, let’s rewrite

/\/ csc2h — 1df = /\/COt2 0do

= /cot 0de.

. cos . . . oL . .
Since cot § = nd’ we can integrate the function using a substitution; setting u = sin 6 so that
sin

du = cos 0df, we have

/ vese2 0 — 1do = /cot 0do

cosf

= do

/ sin 0

1

= /du
U

=Inu+C

= In(sinf) + C.

A brief aside

We have not yet learned how to evaluate [ seczdz, and as we will need to know this integral
in future sections, let’s go ahead and compute it. It turns out that the best way to evaluate the
integral is by using Mathemagic: note that sec x can be rewritten as

secx + tanx sec? r + secrtan x
secr = secx =
secx + tanx secx 4+ tanx

This may seem pointless, but it will actually allow us to use a basic substitution to evaluate
the integral. Setting u = secx + tanz so that du = sec x tan z + sec? z, we have

sec? r + secz tan
sec xdxr = dzx
secx + tanx

1
:/du

u
=In|ul+C
=In|secx + tanz| + C.




