Graph the curve \(r = 1 - \cos \theta \), \(0 \leq \theta \leq 2\pi \) in the \(r\theta \)-plane.

In the graph above, focus on the portion of the curve where \(0 \leq \theta \leq \frac{\pi}{2} \). Notice that, as \(\theta \) varies from 0 to \(2\pi \), \(r \) is increasing from 0 to 1. In particular, when \(\theta = 0 \), \(r = 0 \), and when \(\theta = \frac{\pi}{2} \), \(r = 1 \); so in the \(xy \) plane, the polar points \((0,0)\) and \((1, \frac{\pi}{2})\) should show up. In between \(\theta = 0 \) and \(\theta = \frac{\pi}{2} \), \(r \) is continuously increasing from 0 to 1, so the portion of the curve where \(0 \leq \theta \leq \frac{\pi}{2} \) is graphed below in the \(xy \)-plane:

Now examine the graph from the \(r\theta \)-plane graph on the interval \(\frac{\pi}{2} \leq \theta \leq \pi \). Notice that, as \(\theta \) increases from \(\frac{\pi}{2} \) to \(\pi \), \(r \) increases from 1 to 2. In particular, when \(\theta = \pi \), \(r = 2 \); so in the \(xy \) plane, the polar point \((2, \pi)\) should show up. In between \(\theta = \frac{\pi}{2} \) and \(\theta = \pi \), \(r \) is continuously increasing from 1 to 2, so the portion of the curve where \(\frac{\pi}{2} \leq \theta \leq \pi \) is graphed below:
Let’s look at the portion of the $r\theta$-plane graph on the interval $\pi \leq \theta \leq \frac{3\pi}{2}$. As θ increases from π to $\frac{3\pi}{2}$, r decreases from 2 to 1. When $\theta = \frac{3\pi}{2}$, $r = 1$; so in the xy plane, the polar point $(1, \frac{3\pi}{2})$ should show up. In between $\theta = \pi$ and $\theta = \frac{3\pi}{2}$, r is continuously decreasing from 2 to 1, so the portion of the curve where $\pi \leq \theta \leq \frac{3\pi}{2}$ is graphed below:

Finally, we need to look at the portion of the $r\theta$-plane graph on the interval $\frac{3\pi}{2} \leq \theta \leq 2\pi$. As θ increases from $\frac{3\pi}{2}$ to 2π, r decreases from 1 to 0. When $\theta = 2\pi$, $r = 0$; so in the xy plane, the polar point $(0, 2\pi)$ should show up. In between $\theta = \frac{3\pi}{2}$ and $\theta = 2\pi$, r is continuously decreasing from 1 to 0, so the portion of the curve from $\frac{3\pi}{2} \leq \theta \leq 2\pi$ is graphed below:
The entire curve is graphed below:
1. Graph the curve \(r = 1 + \sin \theta \) in the \(r\theta \)-plane.

2. Use the technique from the previous page to graph \(r = 1 + \sin \theta \) in the \(xy \)-plane.
Polar Graphs Worksheet

3. Graph the curve \(r = \cos(2\theta) \) in the \(r\theta \)-plane.

4. Translate your graph above to the \(xy \)-plane.