
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

A PSpace Algorithm for Acyclic Epistemic DL
ALCS5m

Jia Tao

Received: date / Accepted: date

Abstract We study the description language ALCS5m, a variant of ALCKm
and ALCS4m. It augments ALC by allowing multi-modal epistemic operators
over concept and role expressions. The epistemic operators are interpreted in
modal logic S5m. By examining design issues of the tableau algorithm specific
for ALCS5m, different from those for ALCKm and ALCS4m, we provide a
sound and complete tableau algorithm for deciding the satisfiability of an
ALCS5m knowledge base with an acyclic TBox, and further show how it can
be implemented in PSpace.

Keywords Epistemic Logic · Description Logic · ALC · Tableau Algorithm ·
PSpace

1 Introduction

Epistemic logic S5m has been viewed as most appropriate for many epistemic
applications [1] and Description Logics (DLs) [2] offer a powerful formalism for
representing and reasoning with knowledge in a broad range of applications.
Combining these two kinds of logics often yields more expressive logics for
complicated applications. For example, by extending DL ALCQI with a single
S5 modality in front of both concepts and roles, the resulting logic S5ALCQI is
able to reason about change by allowing to express the change of concepts and
roles over time [3]. Due to the expressivity of the language, the satisfiability of
S5ALCQI concepts with respect to general TBoxes is 2-ExpTime-complete.

In this article, we study the logic ALCS5m that extends the description
logic ALC by adding modal operators of the logic S5m. Given a knowledge
base Σ, one may study the following problems:

Jia Tao
Department of Computer Science, Lafayette College, Easton, PA, USA
E-mail: taoj@lafayette.edu



2

1. Knowledge base satisfiability: Σ is satisfiable if it has a model.
2. Concept satisfiability: a concept C is satisfiable with respect to Σ if there

is a model of Σ in which the interpretation of C is not empty.
3. Concept subsumption: a concept C is subsumed by a concept D with re-

spect to Σ if for every model of Σ the interpretation of C is a subset of
the interpretation of D.

4. Instance checking: an individual a is an instance of a concept C if the
assertion C(a) is satisfied in every model of Σ.

Since problems 2-4 can be reduced to the knowledge base satisfiability problem
in linear time [4], we focus on the knowledge base satisfiability problem for
ALCS5m, an extension of modalized description logics ALCKm and ALCS4m.
BothALCKm andALCS4m are sublanguages of KALC [5], a language obtained
by extending ALC with modal operators being used both inside concept ex-
pressions and in front of assertions and terminological axioms but not in front
of roles. Whereas the satisfiability problem for KALC is NExpTime-complete,
by considering only acyclic TBoxes and restricting modal operators to con-
cept expressions, we were able to provide a PSpace algorithm for ALCKm
instance checking problem. The PSpace result was further extended to the
case of ALCS4m, a variant of ALCKm that requires the multi-modal operators
to satisfy the Truth and Positive Introspection axioms [6].

We continue our study, extend the syntax of ALCKm and ALCS4m by
adding modalized roles, and interpret the syntax with the modal logic S5m.
The resulting language is termed ALCS5m and is intended to express epis-
temic statements. For instance, an ALCS5m concept �iStudent represents
all the individuals known to be students by agent i, assertion �iStudent(a)
should be thought of as individual a belonging to the concept �iStudent, i.e.,
agent i knows that a is a student, and assertion �ilives(Aria, PA) means
that agent i knows that Aria lives in Pennsylvania. We can also express state-
ments that are not tied to specific individuals. As an example, Student v
�i∃HasFriend.Student says that if an individual is a student, then agent i
knows that the individual has a friend who is a student. However, statements
that express knowledge of general rules such as “agent i knows that students
at Bryn Mawr College are female” which can be formulated as �i(Student u
BMC v Female) is not expressible in ALCS5m and will not be dealt with in
this article.

By modifying the sound and complete algorithms for deciding the satisfia-
bility of an ALCKm or ALCS4m knowledge base [6], we provide a sound and
complete algorithm for deciding the satisfiability of an ALCS5m knowledge
base with an acyclic TBox using a set of tableau expansion rules. Since acces-
sibility relations in S5m-models are equivalence relations, expansion rules [7,8,
5] have to be designed to syntactically enforce the symmetry property present
in S5m-models but not necessarily in S4m- or Km-models. Moreover, due
to the symmetry of S5m-models, which requires reasoning in both directions
over the accessibility relations, the PSpace implementation for ALCS5m is
much more involved and requires backtracking, which is completely unneces-



3

sary in the PSpace implementations for both ALCKm and ALCS4m tableau
algorithms (see [6]). For the tableau algorithm, backtracking means that as-
sertions need to be pushed not only down the constraint tree, but also up.
The inevitability of backtracking constitutes the main difficulty in a PSpace
implementation of the tableau algorithm for ALCS5m satisfiability problem
and requires special treatment.

This article is structured as follows. Section 2 introduces the syntax and
the semantics of ALCS5m. Section 3 presents issues in designing a tableau al-
gorithm specific to ALCS5m, motivates the solution, and provides a sound and
complete tableau algorithm for the satisfiability problem of ALCS5m. With
the guidance of the tableau algorithm, in Section 4, a PSpace implementation
that backtracks using a restart technique is given. Finally, Section 5 concludes
the paper.

2 Syntax and Semantics

Let NC , NR, NO and NE = {1, . . . ,m} denote the pairwise disjoint sets of
concept names, role names, individual names and agents, respectively, where
NC , NR and NO are countably infinite. The set of concepts C and the set of
roles R are recursively defined as follows:

C,D −→ A | > | ⊥ | ¬C | C uD | C tD | ∀R.C | ∃R.C | ♦iC | �iC
R −→ P | ♦iR | �iR

where A ∈ NC , > is the top symbol, ⊥ is the bottom symbol, C,D ∈ C, P ∈ NR,
R ∈ R and i ∈ NE . A concept is said to be of negation normal form (NNF)
if negation occurs only in front of concept names. It is well-known that any
concept can be rewritten into an equivalent negation normal form in linear
time [9].

An assertion is of the form C(a) or R(a, b) and a definition is of the form
A

.
= C where a, b ∈ NO, C ∈ C, R ∈ R and A ∈ NC . An ABox is a finite

set of assertions whose concepts and roles belong to the language ALCS5m.
A TBox contains a finite set of definitions. Moreover, we only consider acyclic
TBoxes where no defined concept has more than one definition and no concept
name refers to itself via a sequence of TBox definitions. TBoxes containing such
definitions are usually referred to as terminologies [2]. An ABox A and a TBox
T together form an ALCS5m knowledge base Σ = 〈A, T 〉. Given a knowledge
base Σ, a concept A ∈ NC is said to be primitive if it is not defined.

The semantics of ALCS5m language is defined by using Kripke struc-
tures [10]. A Kripke structure for m agents is a tuple M = 〈S, π, E1, ..., Em〉
where S is a set of states, Ei ⊆ S × S is the accessibility relation for agent i,
and, for each state s ∈ S, the function π(s) corresponds to an interpretation of
the description logic ALC that interprets the symbols in NC , NR, and NO in
a common non-empty (state-independent) domain ∆ [5,6] as follows: for each



4

a ∈ NO, each A ∈ NC , each P ∈ NR, C,D ∈ C, and R ∈ R,

>π(s) = ∆, (C tD)π(s) = Cπ(s) ∪Dπ(s),
⊥π(s) = ∅, (C uD)π(s) = Cπ(s) ∩Dπ(s),
aπ(s) ∈ ∆, (�iC)π(s) =

⋂
t∈Ei(s)C

π(t),

Aπ(s) ⊆ ∆, (♦iC)π(s) =
⋃
t∈Ei(s)C

π(t),

Pπ(s) ⊆ ∆×∆, (�iR)π(s) =
⋂
t∈Ei(s)R

π(t),

(¬C)π(s) = ∆ \ Cπ(s), (♦iR)π(s) =
⋃
t∈Ei(s)R

π(t),

(∀R.C)π(s) = {a ∈ ∆ | if (a, b) ∈ Rπ(s) for each b ∈ ∆, then b ∈ Cπ(s)},
(∃R.C)π(s) = {a ∈ ∆ | there is b ∈ ∆ such that (a, b) ∈ Rπ(s) and b ∈ Cπ(s)},

where Ei(s) = {t | (s, t) ∈ Ei}.
A (Kripke) world is a pair w = (M, s) where M is a Kripke structure and s

is a state in S. Same as in [6], we do not make the Unique Name Assumption
(UNA), i.e., we do not require that different names always refer to different
entities in a world.

M is reflexive (resp. transitive, symmetric) if for every i ∈ NE , the accessi-
bility relation Ei is reflexive (resp. transitive, symmetric). A Kripke structure
M is an S5m-structure if each Ei is reflexive, transitive and symmetric, i.e., an
equivalence relation.

Definition 1 For any world (M, s) where M is an S5m-structure and s is a
state, the satisfiability relation is defined as follows: for each a, b ∈ NO, each
A ∈ NC , each R ∈ R, and C,D ∈ C,

1. (M, s) � C(a) if aπ(s) ∈ Cπ(s),
2. (M, s) � R(a, b) if (aπ(s), bπ(s)) ∈ Rπ(s),
3. (M, s) � A

.
= C if Aπ(s) = Cπ(s).

A knowledge base Σ = 〈A, T 〉 is ALCS5m-satisfiable if there is a world w =
(M, s) such that w satisfies all the assertions in A and all the definitions in T
where M is an S5m-structure. A definition A

.
= C is valid in an S5m-structure

M = 〈S, π, E1, ..., Em〉, written as M � A
.
= C, if (M, s) � A

.
= C for every

s ∈ S. A TBox T is satisfied in an S5m-structure M, written as M � T , if
M � A

.
= C for every A

.
= C ∈ T .

3 Tableau Algorithm

Given an ALCS5m knowledge base Σ = 〈A, T 〉, our goal is to determine
whether or not it is ALCS5m-satisfiable. A constraint graph G = 〈V,E,L〉 is
used to construct such a model, where V is a set of nodes, E is a set of directed
edges including self-loops, and L is a function that labels each node n ∈ V with
a constraint system and each edge (n, n′) ∈ E with a nonempty subset of NE .
More specifically, L(n, n′) is a singleton when n 6= n′ and equals to the set NE
when n = n′. We build the constraint graph starting from a single node labeled
with the constraint system obtained from ABox A and then exhaustively apply



5

the expansion rules. Each assertion D(a) ∈ A is rewritten into a constraint
a : D′ and each R(a, b) ∈ A into a constraint (a, b) : R where D′ is the NNF
of D.

Given a constraint graph G, a node n ∈ V is said to be closed if constraint
system L(n) contains a clash, i.e., {a : ⊥} ⊆ L(n). G is said to be closed if
at least one of its nodes is closed. A constraint graph that is not closed is
open, and it is complete if no expansion rule applies. We denote the set of all
individual names that occur in G by OG (a subset of NO).

To build a model, in the case of ALCKm, it suffices for a constraint graph
to be a tree which we call a constraint tree. In the case of ALCS4m, since
accessibility relations of S4m-models are reflexive and transitive, a constraint
tree is built such that the corresponding constraint graph can be constructed
by only adding necessary edges to the tree without modifying any constraint
system (see Definition 6 in [6]). In both cases, since corresponding constraint
systems in the constraint tree and its constraint graph are the same, PSpace
implementations of tableau algorithms are achieved by working on the tree and
proceeding in a “depth-first” manner: namely, when creating a new constraint
system because of a ♦-constraint in a constraint system L(n), L(n) will be
explored before another ♦-constraint in L(n) is considered. Within each con-
straint system, after adding constraints about some new individual because of
an ∃-constraint, all constraints about this individual will be explored before
another ∃-constraint is considered.

Such interleaving of the expansion of the constraint systems facilitates a
PSpace implementation. Tableau algorithms for ALCKm and ALCS4m were
designed to avoid backtracking. Unfortunately, forALCS5m, since S5m-models
are symmetric, backtracking, i.e., adding some constraints from a constraint
system back to its predecessors, is unavoidable.

To address this problem, the expansion rule that deals with �-constraints
has to be modified to take predecessors into account in the case of ALCS5m.
With this modification, to obtain a PSpace implementation, we use a “restart”
technique [11]: if a constraint x : C is added to a constraint system L(n)
because of an application to a �-constraint, the whole subtree below the node n
is discarded and its construction is restarted. Due to the interleaving expansion
between ♦- and ∃-constraints, such a restart means that an individual x in a
constraint system L(n) may be created because of an ∃-constraint in a subtree
that does not currently exist (since the subtree is discarded). To ensure that
the reconstruction of the subtree below the node n creates the same individual
x for the same ∃-constraint, we keep track of the names of nodes on the tree
as well as each individual name associated with an ∃-constraint within each
node by using two one-to-one functions f♦ and f∃. Let NΣ be the set of all
the symbols appearing in Σ and OΣ be the set of individual names in Σ (a
subset of NO).

– Function f♦ maps each ♦-constraint in a node to a node that has never
been used before. For example, f♦((a, b):♦iR, n) = n′ means that n′ is the



6

name of the node created because of the constraint (a, b) : ♦iR ∈ L(n) on
the constraint tree.

– Function f∃ maps each ∃-constraint within each node to a distinct individ-
ual in NO \OΣ , i.e., for each constraint of the form a : ∃R.C in a constraint
system L(n), there is a unique individual x ∈ NO \ OΣ assigned to it. For
example, if the ∃-rule is applicable to a : ∃R.∃R.C ∈ L(n) for some n and
x1 = f∃(a : ∃R.∃R.C, n), then both (a, x1) : R and x1 : ∃R.C will be added
into L(n). Moreover, if x2 = f∃(x1 : ∃R.C, n), then (x1, x2) : R and x2 : C
will be added into L(n) too.

In a constraint graph, a node n is said to be an i-neighbor of another node n′

if i ∈ L(n, n′)∪L(n′, n). Expansion rules are listed in Figure 1. There are three
kinds of expansion rules: local expansion rules (L-rules) generate constraints
within a constraint system, global expansion rules (G-rules) add constraints
to the constraint systems associated with nodes that are accessible from the
current node, and terminological expansion rules (T -rules) add constraints to a
constraint system based on both the constraints within the constraint systems
and the TBox T .

Note that T -rules always expand the constraint system from the left-hand
side of a definition to the right-hand side. For example, if a : ¬A ∈ L(n), A

.
=

♦1C ∈ T , and n has a 1-neighbor n′ with a : C ∈ L(n′), following our left-
to-right approach, instead of adding a : A, we add a : �1¬C to L(n) and the
detection of the clash is relegated to the constraint system L(n′). This strat-
egy allows detection of potential clashes without fully expanding constraint
systems. Also note that to build a model for the knowledge base containing
an assertion of the form ∃R.C(a) which implies that an R-successor of indi-
vidual a belongs to C without specifying the individual, under the open world
assumption (OWA) in the absence of UNA, it is sufficient to use an individ-
ual name that has not yet been used in the constraint graph to denote this
unknown individual.

We denote by Λ the tableau algorithm which nondeterministically applies
the L, G, and T -rules until no further application is possible. In general, algo-
rithm Λ produces a constraint graph. Initially, the constraint graph G consists
of a single constraint system that contains only the individual names occur-
ring in Σ, i.e., OG = OΣ . With applications of expansion rules, new constraint
systems may be added. The function f♦ in the ♦-rule maps each ♦-constraint
in a constraint system to a unique node with which a new constraint system
is associated. Within each constraint system, new individual names may be
added to OG. The function f∃ in the ∃-rule maps each ∃-constraint to a unique
individual in NO \ OΣ .

In what follows, we show that the tableau algorithm Λ terminates.

Lemma 1 All executions of Λ on an ALCS5m knowledge base terminate.

Proof It suffices to show that the constraint graph that Λ creates contains
finitely many nodes and that each constraint system contains finitely many
constraints.



7

L-Rules:
u-rule If there is a node n with a : C1 u C2 ∈ L(n) and {a : C1, a : C2} * L(n),

then L(n) := L(n) ∪ {a : C1, a : C2};
t-rule If there is a node n with a : C1 t C2 ∈ L(n) and {a : C1, a : C2} ∩ L(n) = ∅,

then L(n) := L(n) ∪ {a : Ci} with i = 1 or i = 2;
∃-rule If there is a node n with a : ∃R.C ∈ L(n), no L-, T - or �-rule except ∃-rule

is applicable, and there is no b ∈ OG such that {(a, b) : R, b : C} ⊆ L(n),
then L(n) := L(n) ∪ {(a, c) : R, c : C} where c = f∃(a : ∃R.C, n);

∀-rule If there is a node n such that {a : ∀R.C, (a, b) : R} ⊆ L(n) and b : C /∈ L(n),
then L(n) := L(n) ∪ {b : C};

⊥-rule If there is a node n such that {a : C, a : ¬C} ⊆ L(n) and a : ⊥ /∈ L(n),
then L(n) := L(n) ∪ {a : ⊥};

G-Rules:
♦-rule If there is a node n with

(i) a : ♦iC ∈ L(n) and a : C /∈ L(n), no L-, T -, or �-rule is applicable,
and n has no i-neighbor l such that a : C ∈ L(l), then add a new i-neighbor
n′ of n with L(n′) := {a : C} where n′ = f♦(a : ♦iC, n),
and for each i-neighbor n′′ of n, let L(n′′, n′) := {i} and L(n′, n′′) := {i};

(ii) (a, b) : ♦iR ∈ L(n) and (a, b) :R /∈ L(n), no L-, T -, or �-rule is applicable,
and n has no i-neighbor l such that (a, b) : R ∈ L(l), then add a new
i-neighbor n′ of n with L(n′) := {(a, b) : R} where n′ = f♦((a, b) : ♦iR,n),
and for each i-neighbor n′′ of n, let L(n′′, n′) := {i} and L(n′, n′′) := {i};

�-rule If there is a node n with
(i) a : �iC ∈ L(n), no L- or T -rule is applicable and n has an i-neighbor n′

such that a : C /∈ L(n′), then L(n′) := L(n′) ∪ {a : C};
(ii) (a, b) : �iR ∈ L(n), no L- or T -rule is applicable and n has an i-neighbor n′

such that (a, b) : R /∈ L(n′), then L(n′) := L(n′) ∪ {(a, b) : R};

T -Rules:
T-rule If there is a node n with a : A ∈ L(n), A

.
= D ∈ T , and a : D /∈ L(n),

then L(n) := L(n) ∪ {a : D′} where D′ is the NNF of D;
N-rule If there is a node n with a : ¬A ∈ L(n), A

.
= D ∈ T , and a : D′ /∈ L(n),

then L(n) := L(n) ∪ {a : D′} where D′ is the NNF of ¬D.

Fig. 1 The Tableau Expansion Rules

Within each constraint system, local expansion rules only create constraints
that are subexpressions of the original constraints or ⊥. For each constraint,
since the TBox is acyclic, an expansion rule can only be applied at most once.
Therefore, each constraint system has finitely many constraints. It then follows
from the applicability of global expansion rules that the outdegree of each node
in the constraint graph is finite.

Since there are finitely many nodes in the constraint graph and each con-
straint system in the graph is also finite, tableau algorithm Λ terminates. ut

The next definition provides a formal interpretation of a constraint graph
G. The idea is that each constraint system is mapped to a state of M in which
all its assertions are satisfied and each labeled edge in G is mapped to the
corresponding accessibility relation.

Definition 2 Let G = 〈V,E,L〉 be a constraint graph, M = 〈S, π, E1, ..., Em〉
a Kripke structure, and σ a mapping from V to S. Then M satisfies G via σ



8

if, for all n, n′ ∈ V,
(1) i ∈ L(n, n′) =⇒ (σ(n), σ(n′)) ∈ Ei
(2) a : C ∈ L(n) =⇒ (M, σ(n)) � C(a)
(3) (a, b) : R ∈ L(n) =⇒ (M, σ(n)) � R(a, b)

M satisfies G, denoted by M  G, if there is a mapping σ such that M satisfies
G via σ. In this case we also say that M is a model of G. Note that if M  G,
then G is open.

Given an interpretation π and a finite set of symbols N ⊆ NC ∪NR ∪NO,
we define π restricted to N , denoted by π|N , to be the restriction of function
π to N . Let M = 〈S, π, E1, ..., Em〉 and M′ = 〈S, π′, E1, ..., Em〉 be two Kripke
structures, and NC ∪ NR ⊆ N2 ⊆ N1 be finite subsets of NC ∪ NR ∪ NO.
Then M′ is a semantic extension of M with respect to N2 if (π′|N1

)|N2
= π|N2

.
Note that M is a semantic extension of itself. The following theorem shows
the soundness of the expansion rules and its proof is given in Appendix A.

Theorem 1 Let M = 〈S, π, E1, ..., Em〉 be an S5m-structure and T an acyclic
TBox such that M � T . Let G be a constraint graph obtained using T , α an
L-, G-, or T -rule and Gα a constraint graph obtained by applying α to G. If
M  G via σ, then there exists a semantic extension Mα of M with respect to
NΣ∪OG such that Mα  Gα via σ′ (extension of σ) and Mα � T . Furthermore,
Mα  G.

The canonical interpretation defined below is used to build a model for a
constraint graph:

Definition 3 Let G = 〈V,E,L〉 be a constraint graph, T a simple acyclic
TBox. The canonical Kripke structure MG = 〈S, π, E1, ..., Em〉 for G with re-
spect to T is defined as follows:

– S := V,
– Ei := {e ∈ E | i ∈ L(e)}, for each 1 ≤ i ≤ m,
– ∆ := OG,
– for every n ∈ V,

– aπ(n) := a, for every a ∈ OG,
– Pπ(n) := {(a, b) | (a, b) : P ∈ L(n)}, if P ∈ NR,
– Aπ(n) := {a | a : A ∈ L(n)}, if A is primitive,
– Aπ(n) := {a | a : A ∈ L(n)} ∪Dπ(n), if A

.
= D ∈ T .

Note that, due to the acyclicity of the TBox T , the interpretation of concept
names is well defined in the canonical Kripke structure MG.

Lemma 2 Let T be a simple acyclic TBox and G an open complete constraint
graph with respect to local, global and terminological expansion rules. Then the
canonical Kripke structure MG for G with respect to T is an S5m-structure.

Proof It suffices to show that for each 1 ≤ i ≤ m, relation Ei is an equivalence
relation. Indeed, Ei is reflexive by the definition of function L. Since G is open
and complete, it follows from the definition of i-neighbor and the ♦-rule during
the construction of G that Ei is transitive and symmetric. ut



9

Based on Definition 3, we can build the canonical Kripke structure MG of
the constraint graph G. The rest of this section is dedicated to proving the
soundness and completeness of tableau algorithm Λ. That is, we show that G
is open and complete if and only if it has the canonical Kripke structure MG.
We first present two auxiliary lemmas that are involved.

Lemma 3 Let G be an open complete constraint graph with respect to local,
global and terminological expansion rules. Then for every R ∈ R and every
a, b ∈ ∆, if (a, b) : R ∈ L(n), then (MG, n) � R(a, b).

Proof We prove the lemma by induction on the structure of R. The base case
is when R ∈ NR. By Definition 3 and Definition 1, if (a, b) : R ∈ L(n), then
(MG, n) � R(a, b) for each R ∈ NR. For the induction step, there are two cases:

– R is of the form ♦iQ. Since G is complete, there exists n′ ∈ V such that
i ∈ L(n, n′) and (a, b) : Q ∈ L(n′). Since i ∈ L(n, n′) implies Ei(n, n′)
by Definition 3 and (a, b) : Q ∈ L(n′) implies (MG, n

′) � Q(a, b) by the
induction hypothesis, we have (MG, n) � ♦iQ(a, b).

– R is of the form �iQ. Since G is complete, then for every n′ ∈ V where
i ∈ L(n, n′), we have (a, b) : Q ∈ L(n′). Since i ∈ L(n, n′) implies Ei(n, n′)
by Definition 3 and (a, b) : Q ∈ L(n′) implies (MG, n

′) � Q(a, b) by the
induction hypothesis, we have (MG, n) � �iQ(a, b).

ut

The following auxiliary lemma specifically deals with negation. Its proof is
given in Appendix B.

Lemma 4 Let T be an acyclic TBox and G an open complete constraint graph
with respect to local, global and terminological expansion rules. Then for every
A ∈ NC and every a ∈ ∆, if a : ¬A ∈ L(n), then (MG, n) � ¬A(a).

Theorem 2 Let Σ = 〈A, T 〉 be an ALCS5m knowledge base where T is a
simple acyclic TBox, and let G be a constraint graph that is initialized as a
single node labeled with the constraint system obtained from A and complete
with respect to L-, G-, and T - rules. Then G is open if and only if MG  G
and MG � T .

Proof (⇐) If G is closed, then there does not exist a model that satisfies G.
This contradicts the assumption MG  G.

(⇒) Suppose that G is open and complete with respect to L-, G-, and T -
rules. By Definition 3, for every n, n′ ∈ V, if i ∈ L(n, n′), then Ei(n, n′). Thus,
by Definition 2 and Lemma 3, it suffices to show that a : C ∈ L(n) implies
(MG, n) � C(a) for each C ∈ C.

We prove the statement by induction on the structures of C. The base case
is when C ∈ NC . If C is primitive, then (MG, n) � C(a) by Definition 3 and
Definition 1. If C is not primitive, then there is a definition C

.
= D ∈ T , and

by Definition 3, Cπ(n) = {b | b : C ∈ L(n)}∪Dπ(n). Hence, (MG, n) � C(a) by
Definition 1.



10

With respect to the induction step, the most involved case is that of the
negation, which was dealt with in Lemma 4. The remaining cases, namely,
u,t,∃,∀,♦, and �, are proved below.

1. C is of the form B1 u B2. Since G is complete, {a : B1, a : B2} ⊆ L(n).
By the induction hypothesis, (MG, n) � B1(a) and (MG, n) � B2(a). Thus,
(MG, n) � B1 uB2(a). Therefore, (MG, n) � C(a).

2. C is of the form B1 tB2. Since G is complete, {a : B1, a : B2}∩L(n) 6= ∅.
By the induction hypothesis, (MG, n) � B1(a) or (MG, n) � B2(a). Thus,
(MG, n) � B1 tB2(a). Therefore, (MG, n) � C(a).

3. C is of the form ∃R.B. Since G is complete, there exists b such that
{(a, b) : R, b : B} ⊆ L(n). It follows from Lemma 3 and (a, b) : R ∈ L(n)
that (MG, n) � R(a, b). Furthermore, (MG, n) � B(b) by the induction
hypothesis. Therefore, (MG, n) � ∃R.B(a).

4. C is of the form ∀R.B. Since G is complete, for every b where (a, b) :
R ∈ L(n), we have b : B ∈ L(n). By Lemma 3, (a, b) : R ∈ L(n) implies
(MG, n) � R(a, b). By the induction hypothesis, b : B ∈ L(n) implies
(MG, n) � B(b). Therefore, (MG, n) � ∀R.B(a).

5. C is of the form ♦iB. Since G is complete, there exists n′ ∈ V such that
i ∈ L(n, n′) and a : B ∈ L(n′). By the induction hypothesis, (MG, n

′) �
B(a). Since i ∈ L(n, n′) implies Ei(n, n′), it follows that (MG, n) � ♦iB(a).

6. C is of the form �iB. Since G is complete, then for every n′ ∈ V where
i ∈ L(n, n′), we have a : B ∈ L(n′). Since i ∈ L(n, n′) implies Ei(n, n′)
and, by the induction hypothesis, a : B ∈ L(n′) implies (MG, n

′) � B(a),
we have (MG, n) � �iB(a).

We next show that T is valid in MG. Suppose that there is a node n and
a definition A

.
= D ∈ T such that (MG, n) 2 A .

= D. Since A is not primitive,
Aπ(n) := {a | a : A ∈ L(n)} ∪ Dπ(n). Hence, Dπ(n) ⊆ Aπ(n). Suppose that
Dπ(n) 6= Aπ(n). Then there is b ∈ OG such that b ∈ Aπ(n) and b /∈ Dπ(n). This
implies that b ∈ {a | a : A ∈ L(n)}. G being complete and b : A ∈ L(n) imply
that b : D ∈ L(n). We already showed that MG  G. Thus, (MG, n) � D(b) if
and only if b ∈ Dπ(n), which leads to a contradiction. It follows that for every
definition A

.
= D ∈ T and for every n ∈ V, we have (MG, n) � A

.
= D. ut

The next lemma helps design a PSpace implementation of tableau algo-
rithm Λ.

Lemma 5 Let G = 〈V,E,L〉 be an open and complete constraint graph and
MG the canonical Kripke structure for G. For every n ∈ V, if a : �iC ∈ L(n),
then for every i-neighbor n′ ∈ V of n, we have (MG, n

′) � �iC(a).

Proof Suppose that a : �iC ∈ L(n). Consider any i-neighbor n′ ∈ V of n. We
need to show that (MG, n

′) � �iC(a). Indeed, since G is open and complete,
for each i-neighbor v ∈ V of n, we have a : C ∈ L(v) and that v is also
an i-neighbor of n′. Thus, (MG, v) � C(a) by Theorem 2 and Definition 2.
Therefore, (MG, n

′) � �iC(a). ut



11

4 A PSpace implementation

In Section 3, our tableau algorithm Λ constructs a constraint graph. To have
a PSpace implementation of Λ, we need to construct a tree. The idea is to
proceed in a “depth-first” manner and only store the path between the root
of the tree and the current node (as well as the corresponding constraint
systems). By Lemma 5, all i-neighbors have the same set of �i-constraints.
However, during the construction, some i-neighbors may not be connected by
an edge directly. Therefore, we further extend the concept of i-neighbors to
i-ancestors and i-descendants.

In a constraint tree, if i ∈ L(n, n′), then n′ is an i-successor of n and n is
an i-predecessor of n′, i.e., n′ is directly accessible from node n for agent i. If
i ∈

⋂k−1
j=1 L(nj , nj+1) where k > 1, then we say that n1 is an i-ancestor of nk

and that nk is an i-descendant or n1. Note that a node n is an i-neighbor of
another node n′ if n is an i-ancestor or an i-descendant of n′.

As in the case of ALCKm and ALCS5m, the constraint tree is expanded
with two kinds of successors created by the expansion rules, successors of
individuals (with respect to roles) created because of the ∃-rule, and succes-
sors of a constraint system created because of the ♦-rule. Within each con-
straint system L(n), without carefully applying the tableau rules, the num-
ber of the constraints generated may be exponential in the size of input.
The set of constraints a : Ci, where Ci = ∃R.Ci1 u ∃R.Ci2 u ∀R.Ci+1 and
Cn = ∃R.Cn1 u ∃R.Cn2, provides such an example. Therefore, whenever the
∃-rule is applied to a constraint a : ∃R.D ∈ L(n), an R-successor of a,
say x, is created and an auxiliary constraint system Lx(n) is initialized as
{(a, x) : R, x : D}. Subsequently, constraints involving x are put in Lx(n).
When the ∃-rule is applied to another ∃-constraint, the space used for Lx(n)
will be reused. Note that since Lx(n) will be interpreted in the same world as
L(n), it is annotated with the same node n. Similarly, for any ♦-constraint in
L(n), an application of the ♦-rule creates a new node with a new constraint sys-
tem. That space will be reused for another constraint system created because
of another ♦-constraint in L(n). However, since the newly created constraint
system will be interpreted in a different world, it is denoted by L(n′) with a
different node name n′.

The algorithm ALCS5m-Sat (Algorithm 1) is an implementation of the
tableau algorithm Λ. Given an ALCS5m knowledge base Σ = 〈A, T 〉, the
algorithm calls the recursive function Sat(n, L(n), Aux) to decide whether
or not Σ is S5m-satisfiable. The main idea behind Sat(n, L(n), Aux) is to
restrict the order in which expansion rules are applied so as to maintain a
single path P of the constraint tree at all times during the execution of the
algorithm.

As mentioned before, backtracking is unavoidable (see the �-rule) and so
the “restart” technique [11] is employed: if x :�iC ∈ L(n) and x :C /∈ L(n′)
where n′ is an i-ancestor of n, then x : C will be added to L(n′), the whole
subtree below the node n′ is discarded, and the construction is restarted from
node n′. However, with such an approach, constraint x : C cannot be easily



12

passed down to the nodes which are both i-descendants of n′ and i-ancestors
of n. To ensure that constraint x : C is also added to these nodes, by Lemma 5,
instead of adding x : C when backtracking, we add constraint x : �iC. This
is implemented using a set B(n) that contains all the �-constraints in the
constraint system associated with node n, including the ones in the auxiliary
constraint system. That is, Bi(n) = {a :�iC ∈ L(n), (a, b) :�iR ∈ L(n) | i ∈
NE} and B(n) =

⋃
i Bi(n).

The individual x may have been created because of some ∃-constraint in
L(n′) where n′ is an i-descendant of n. The function f∃ that maps each ∃-
constraint in a constraint system to a distinct individual in NO\OΣ guarantees
that the reconstruction of subtree below the node n uses the same individual
x (as a witness) for the same ∃-constraint. As an example, suppose that con-
straint system L(n) contains a constraint a : �1∃R.(Au♦1¬A). By a sequence
of applications of the �-, ∃-, and u-rules (in order), {a :∃R.(Au♦1¬A), (a, x) :
R, x :A, x :♦1¬A} ⊆ L(n) where x is a new individual created by the ∃-rule.
Because of the constraint x : ♦1¬A, an application of the ♦-rule creates a new
node, say n′, with which the constraint system L(n′) is associated. By G-rules,
{a : ∃R.(A u ♦1¬A), x :¬A} ⊆ L(n′). Note that individual x was created be-
cause of constraint a : ∃R.(A u ♦1¬A) ∈ L(n). If the same individual x were
used for the same constraint in L(n′), an undesired clash would occur.

For subroutines of Algorithm 1 (Functions 2 and 3) to interact with con-
straint systems on path P easily, P is maintained as a global variable which
will be changed along with the execution. For every node n on P during the
execution, B(n) is kept globally and used by L(n) and all the auxiliary con-
straint systems associated with the node n. If a node n is removed from P,
so is B(n). Note that, however, if an auxiliary constraint system is removed,
set B(n) should be kept for L(n) (and other potential auxiliary constraint
systems) to use.

The function Sat(n,L(n), Aux) has three parameters. The first parameter
n denotes the node on path P at which the current function is working. The
second parameter is a constraint system associated with the current node. It
can be an auxiliary constraint system created by an application of the ∃-rule.
Whether it is an auxiliary constraint system or not is indicated by the third
parameter Aux. For any node n, since the set B(n) is shared by L(n) and
all the auxiliary constraint systems associated with the node n, it can only
be removed when a node n is removed from P. The parameter Aux is used to
check if B(n) and the node n need to be removed whenever a constraint system
is to be discarded (See function Sat lines 13-15 and 26-28 in Algorithm 1).

There are three kinds of return values of the function Sat: “satisfiable”,
“not satisfiable” and a node name. A node name is only returned because of
backtracking (see Line 16 of Function Sat). The outside while loop of function
Sat(n, L(n), Aux) in Algorithm 1 is used to restart the construction from the
current constraint system. Line 2 ensures that when restarted, the current
constraint system contains all the �-constraints, including the ones added by
some previous descendant that has been discarded.



13

Algorithm 1 ALCS5m-Sat(Σ)

Global variables: P, B(n) for each node n in P

ALCS5m-Sat(Σ) := Sat(n0,L(n0), False), where Σ = 〈A, T 〉, L(n0) is obtained from A,
and False implies that L(n0) is not an auxiliary constraint system.

P is initialized to be a constraint tree containing only node n0.
B(n0) is initialized to be {a : �kC ∈ L(n0), (a, b) : �kR ∈ L(n0) | k ∈ NE}.

Sat(n,L(n), Aux):

1: while true do
2: L(n) := L(n) ∪ B(n)
3: while an L- or T -rule, except for the ∃-rule, is applicable to L(n) do
4: apply the rule (if it is a t-rule, nondeterministically pick one choice), add the new

constraints to L(n), and update B(n) accordingly
5: end while
6: if L(n) contains a clash then
7: return “not satisfiable”
8: end if
9: if there is an i-ancestor n′ of n in G s.t. Bi(n) * Bi(n′) {/* backtrack */} then

10: let n′′ be the i-ancestor of n on P that is closest to the root of P s.t. Bi(n) * Bi(n′′)
11: B(n′′) := B(n′′) ∪ Bi(n)
12: discard L(n)
13: if Aux = False then
14: discard B(n); remove n and the corresponding edge from P
15: end if
16: return n′′

17: end if
18: result := EBranch(n,L(n))
19: if result = “satisfiable” then
20: result := DBranch(n,L(n))
21: end if
22: if result = n and Aux = False then
23: continue {/* restart, i.e., go to Line 1 */}
24: else
25: discard L(n)
26: if Aux = False then
27: discard B(n); remove n and the corresponding edge from P
28: end if
29: return result
30: end if
31: end while

Within each constraint system, before applying the ∃-rule or a global rule,
the algorithm ensures that all the other local and terminological rules are
applied and checks whether there is a clash (Lines 3-8). The algorithm then
checks whether the �-rule is applicable (Line 9). Since at this point the current
constraint system has no successor, if the �-rule is applicable to a constraint
a : �iC ∈ L(n), it will add a : C to some constraint system associated with
some i-ancestor n′ of n by adding a : �iC to L(n′) (see Lemma 5), which, in
turn, is implemented by adding all �-constraints in B(n) to B(n′). We choose
the farthest i-ancestor n′′ to which such a �i-constraint can be added. Then
we recursively remove the whole subtree of this ancestor n′′ (including the
nodes, edges and associated constraint systems). If no backtrack is needed, the



14

Function 2 EBranch(n,L(n))

1: E(n) := {a : ∃R.C ∈ L(n) | there is no b such that (a, b) : R, b : C ∈ L(n)}
2: while E(n) 6= ∅ do
3: pick one a : ∃R.C ∈ E(n) and let Lx(n) := {(a, x) : R, x : C}∪{x : D | x : D ∈ B(n)}

where x = f∃(a : ∃R.C, n)
4: while there is a : ∀R.E ∈ L(n) ∪ Lx(n) and x : E /∈ Lx(n) do
5: add x : E to Lx(n) and update B(n) accordingly
6: end while
7: result := Sat(n,Lx(n), T rue)
8: if result 6= “satisfiable” then
9: return result

10: else
11: E(n) := E(n) \ {a : ∃R.C}
12: end if
13: end while
14: return “satisfiable”

Function 3 DBranch(n,L(n))

1: D(n) := {a:♦iC ∈ L(n) | a:C /∈L(n) and n has no i-ancestor l in P with a:C ∈L(l)} ∪
{(a, b):♦iR ∈ L(n) | (a, b):R /∈ L(n) and n has no i-ancestor l in P with (a, b):R ∈ L(l)}

2: while D(n) 6= ∅ do
3: pick an assertion α ∈ D(n), add a new node n′ to P where n′ = f♦(α, n).
4: Let L(n, n′) := {i}.
5: if α is of the form a : ♦iC then
6: Let L(n′) := {a : C}.
7: else if α is of the form (a, b) : ♦iR then
8: Let L(n′) := {(a, b) : R}.
9: end if

10: B(n′) := B(n′) ∪ Bi(n)
11: result := Sat(n′,L(n′), False)
12: if result 6= “satisfiable” then
13: return result
14: else
15: D(n) := D(n) \ {α}
16: end if
17: end while
18: return “satisfiable”

algorithm expands the current node n. First, it deals with all the ∃-constraints
by calling function EBranch (Line 18) and then it deals with all the ♦-
constraints by calling function DBranch (Line 20).

The function EBranch (Function 2) gathers all the ∃-constraints in L(n)
that do not have a witness in the current constraint system. For each such
constraint a : ∃R.C, a witness, say x, is assigned by the global function f∃
and an auxiliary constraint system Lx(n) is created to work exclusively on
constraints related to x. Because of backtracking and the restart technique,
L(n) may already contain some constraints involving x. These constraints
are also added to Lx(n) (Function 2, Line 3). The ∀-rule is then applied ex-
haustively (Function 2, Lines 4-6). Next the algorithm works on the auxiliary
constraint system Lx(n). If Lx(n) is satisfiable (Function 2, Lines 7-12), an-
other ∃-constraint will be reusing the same space used by Lx(n). The function



15

DBranch (Function 3) works on all the ♦-constraints in the same way as the
function EBranch does.

Recall that among three types of return values, a node name is only re-
turned because of backtracking. After the function call EBranch in line 18, if
the return value is “satisfiable”, then we need to further evaluate ♦-constraints
by calling function DBranch (Lines 19-21). Thus, the return value of variable
“result” may be modified by function DBranch.

At this point (Line 22), if the return value of “result” is the name of the
current node which is not an auxiliary node, then the construction of the
constraint system of the current node is restarted. The program remains in
the outer while loop and goes back to Line 2 which is the restarting point.
Otherwise, there are following cases:

1) the return value of “result” is a node name that is not the current node n;
2) the return value of “result” is the current node name. But the node is an

auxiliary one;
3) the return value of “result” is “unsatisfiable”;
4) the return value of “result” is “satisfiable”.

In all of these cases, function Sat returns to the caller, and before it returns,
the space taken by the current constraint system is released for future use
(see Lines 24-30). In cases 1) and 2), the algorithm recursively returns until
it reaches a non-auxiliary constraint system whose name matches the return
value of “result”. Clearly, for each node, there is a non-auxiliary constraint sys-
tem. Since backtracking is checked before functions EBranch and DBranch
in the same constraint system, if there is no need for backtracking at all, the
result value will be either “satisfiable” or “not satisfiable” and function Sat
will certainly return (as opposed to remaining in the outer while loop) and
therefore Algorithm 1 terminates.

Next we show that the algorithm ALCS5m-Sat, an implementation of the
tableau algorithm Λ, runs in PSpace. For any execution of ALCS5m-Sat, a
single path P of the constraint tree is maintained. It suffices to show that on
path P, the number of nodes and the totally number of constraints in each con-
straint system are polynomially bounded by the number of constraints in the
initial constraint system at all times during the execution. Indeed, since the
TBox is acyclic and function f∃ uniquely assigns a witness for each ∃-constraint
in a constraint system, the depth of the (auxiliary) constraint systems created
because of the ∃-rule or ♦-rule is linearly bounded by the length of the con-
straints in the original constraint system. Moreover, in the same constraint
system, if the ∃-rule is applied to an ∃-constraint, it will not be applicable to
the same constraint unless the whole constraint system is reconstructed (see
Function 2, Line 11). Same situation applies to a ♦-constraint (see Function 3,
Line 9). For each auxiliary constraint system created by the ∃-rule or each
non-auxiliary constraint system created by the ♦-rule, before the algorithm
Sat returns, the constraint system is discarded so that the same space could
be reused (see Algorithm 1, Lines 25-29). In fact, every time before Sat re-
turns, the constraint system on which it was working will be discarded. If the



16

constraint system is not an auxiliary one, the set B(n) will be discarded and
the node n (that the constraint system belongs to) as well as the correspond-
ing edge will be removed from path P. When backtracking is needed, all the
(auxiliary/non-auxiliary) constraint systems will be recursively discarded to
the point where the backtracking reaches to the appropriate node on the path
P (see Algorithm 1, Lines 12-16 and Lines 24-30). It follows that the next
theorem is true.

Theorem 3 The ALCS5m acyclic knowledge base satisfiability problem can
be implemented in PSpace.

5 Conclusion

In this article, we have studied the epistemic description language ALCS5m
that extends ALCKm and ALCS4m with modalized roles, and provided a
sound and complete PSpace-implementable tableau algorithm for deciding the
satisfiability of an ALCS5m knowledge base with an acyclic TBox. The main
difficulty in transitioning from the PSpace results for ALCKm and ALCS4m
in [6] to the current results involves dealing with the issue of symmetry in
accessibility relations. Although the only difference between classical modal
logics S4m and S5m is the Negative Introspection axiom, a naive approach of
just adding a tableau expansion rule that corresponds to the Negative Intro-
spection axiom to the tableau algorithm for ALCS4m is not sufficient to yield
a sound and complete PSpace-implementable algorithm for ALCS5m sati-
fiability. Because of the symmetry of the (epistemic) accessibility relations,
backtracking is needed for ALCS5m tableau algorithm but not necessarily the
case in ALCS4m. The PSpace implementation of the tableau algorithm for
ALCS5m is also rather involved compared to that of the tableau algorithm for
ALCS4m due to backtracking.

6 Acknowledgments

I acknowledge with gratitude to anonymous reviewers who helped me greatly
in improving the quality of this article.

References

1. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider. The description logic handbook. Cambridge University Press New
York, NY, USA, 2007.

3. Alessandro Artale, Carsten Lutz, and David Toman. A description logic of change.
In International Joint Conferences on Artificial Intelligence (IJCAI), pages 218–223,
2007.



17

4. Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning in
terminological knowledge representation systems. JAIR, 1:109–138, 1993.

5. Carsten Lutz, Holger Sturm, Frank Wolter, and Michael Zakharyaschev. A tableau
decision algorithm for modalized ALC with constant domains. Studia Logica, 72(2):199–
232, 2002.

6. Jia Tao, Giora Slutzki, and Vasant Honavar. PSpace tableau algorithms for acyclic
modalized ALC. Journal of Automated Reasoning, 49:551–582, 2012.

7. Franz Baader and Armin Laux. Terminological logics with modal operators. In IJCAI
(1), pages 808–815, 1995.

8. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Werner Nutt, and Andrea
Schaerf. An epistemic operator for description logics. Artif. Intell., 100(1-2):225–274,
1998.

9. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with com-
plements. Artif. Intell., 48(1):1–26, 1991.

10. John-Jules Ch. Meyer and Wiebe Van Der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press, 2004.

11. Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt. Chapter 4 compu-
tational modal logic. Studies in Logic and Practical Reasoning, 3:181–245, 2007.

A Proof of Theorem 1

Theorem 1 Let M = 〈S, π, E1, ..., Em〉 be an S5m-structure and T an acyclic TBox such
that M � T . Let G be a constraint graph obtained using T , α an L-, G-, or T -rule and Gα a
constraint graph obtained by applying α to G. If M  G via σ, then there exists a semantic
extension Mα of M with respect to NΣ ∪ OG such that Mα  Gα via σ′ (extension of σ)
and Mα � T . Furthermore, Mα  G.

Proof Assume the hypotheses.

– If α is a u-rule, then there is a constraint a : C1 u C2 ∈ L(n) in G and {a : C1, a :
C2} * L(n). After applying u-rule, L(n) = L(n) ∪ {a : C1, a : C2}. Since M  G and
a : C1 u C2 ∈ L(n), by Definition 2, we have (M, σ(n)) � C1 u C2(a). It follows that

aπ(σ(n)) ∈ (C1 u C2)π(σ(n)), which means that aπ(σ(n)) ∈ C
π(σ(n))
1 and aπ(σ(n)) ∈

C
π(σ(n))
2 . Hence, (M, σ(n)) � C1(a) and (M, σ(n)) � C2(a). Thus, Gα obtained by

application of u-rule from G is satisfied by M via σ.

– If α is a t-rule, then there is a constraint a : C1 t C2 ∈ L(n) in G and {a : C1, a :
C2} ∩ L(n) = ∅. Since M  G and a : C1 t C2 ∈ L(n), by Definition 2, we have
(M, σ(n)) � C1 t C2(a) and therefore aπ(σ(n)) ∈ (C1 t C2)π(σ(n)). This means that

aπ(σ(n)) ∈ Cπ(σ(n))1 or aπ(σ(n)) ∈ Cπ(σ(n))2 . Hence, (M, σ(n)) satisfies C1(a) or C2(a)
(or both). It follows that t-rule can be applied in a way such that Gα is satisfied by M
via σ.

– If α is the ∃-rule, then there is a node n with a : ∃R.C ∈ L(n), no L-, T -, or �-rule except
the ∃-rule is applicable, and there is no b ∈ OG such that {(a, b) : R, b : C} ⊆ L(n). After
applying α, {(a, c) : R, c : C} ⊆ L(n) where c = f∃(a : ∃R.C, n). Since M  G, there must
exist an element d ∈ ∆ such that (aπ(σ(n)), d) ∈ Rπ(σ(n)) and d ∈ Cπ(σ(n)). Define the

interpretation π′ as π except for the individual c: cπ
′(σ(n)) = d. Let N1 = NΣ∪OG∪{c}

and N2 = NΣ ∪ OG. Then (π′|N1 )|N2 = π|N2 . Therefore, the resulting Gα is satisfied
by Mα via σ where Mα = 〈S, π′, E1, ..., Em〉 is a semantic extension of M with respect
to N2.

– If α is a ∀-rule, then there is a node n with {a : ∀R.C, (a, b) : R} ⊆ L(n) and b : C /∈ L(n).
Since M  G and a : ∀R.C ∈ L(n), by Definition 2, we have (M, σ(n)) � ∀R.C(a), which
means that for all d ∈ ∆, (aπ(σ(n)), d) ∈ Rπ(σ(n)) implies d ∈ Cπ(σ(n)). Moreover, (a, b) :
R ∈ L(n) implies (M, σ(n)) � R(a, b), which means (aπ(σ(n)), bπ(σ(n))) ∈ Rπ(σ(n)). After
applying the ∀-rule, b : C is added to L(n). The resulting Gα is satisfied by M via σ.



18

– If α is a ⊥-rule, then there is a node n such that {a : C, a : ¬C} ⊆ L(n) and a :
⊥ /∈ L(n). By Definition 2, a : C ∈ L(n) implies (M, σ(n)) � C(a), which means that
aπ(σ(n)) ∈ Cπ(σ(n)) = ∆ \ (¬C)π(σ(n)). Therefore, aπ(σ(n)) /∈ (¬C)π(σ(n)). However,
a : ¬C ∈ L(n) implies (M, σ(n)) � ¬C(a), which means that aπ(σ(n)) ∈ (¬C)π(σ(n)).
Hence, aπ(σ(n)) ∈ ∅ = ⊥π(σ(n)).

– If α is the ♦-rule, then there are two cases.
– There is a node n with a : ♦iC ∈ L(n), a : C /∈ L(n), no L-, T -, or �-rule is

applicable, and n has no i-neighbor l with a : C ∈ L(l). By Definition 2, a :
♦iC ∈ L(n) implies (M, σ(n)) � ♦iC(a). This means that there is a state s with
(σ(n), s) ∈ Ei and aπ(s) ∈ Cπ(s). After applying the ♦-rule, a new node n′ is added
to G with L(n′) = {a : C} where n′ = f♦(a : ♦iC, n) and L(n′, n′′) = {i} for each
i-neighbor n′ of n. Extend σ to σ′ such that σ′(n′) = s. Since M is an S5-structure,
(σ′(n′), σ(n′′)) = (s, σ(n′′)) ∈ Ei for each i-neighbor n′′ of n. Therefore, M satisfies
the resulting Gα via σ′.

– There is a node n with (a, b) : ♦iR ∈ L(n), (a, b) : R /∈ L(n), no L-, T -, or �-rule is
applicable, and n has no i-neighbor l with (a, b) : R ∈ L(l). The proof of this case
is similar to that of the previous case and is omitted.

– If α is the �-rule, then there are two cases.
– There are two nodes n and n′ with a : �iC ∈ L(n), n being an i-neighbor of n′ and
a : C /∈ L(n′). After the application, a : C ∈ L(n′). Since M  G and a : �iC ∈ L(n),
by Definition 2, we have (M, σ(n)) � �iC(a). Moreover, i ∈ L(n, n′) implies that
(σ(n), σ(n′)) ∈ Ei. Therefore, (M, σ(n′)) � C(a). It follows that M satisfies the
resulting Gα via σ.

– There are two nodes n and n′ with (a, b) : �iR ∈ L(n), n being an i-neighbor of n′

and (a, b) : R /∈ L(n′). The proof of this case is similar to that of the previous case
and is omitted.

– If α is a T-rule, then a : A ∈ L(n), A
.
= D ∈ T and a : D′ /∈ L(n) where D′ is

the NNF of D. After applying α, we have a : D′ ∈ L(n). Since M  G and M � T ,
aπ(σ(n)) ∈ Aπ(σ(n)) = (D′)π(σ(n)). Therefore, (M, σ(n)) � D′(a) and hence, M  Gα
via σ.

– If α is an N-rule, then a : ¬A ∈ L(n), A
.
= D ∈ T and a : D′ /∈ L(n) where D′ is

the NNF of ¬D. After applying the N-rule, a : D′ ∈ L(n). Since M  G and M � T ,
we have (M, σ(n)) � A

.
= D. It follows that aπ(σ(n)) ∈ (¬A)π(σ(n)) = (¬D)π(σ(n)) =

(D′)π(σ(n)). Thus, (M, σ(n)) � D′(a). Therefore, M  Gα via σ.

It follows that after the application of every expansion rule, the resulting constraint graph
Gα is satisfied by Mα which, except after applying an ∃-rule, is the same as M. When α is
an ∃-rule, Mα differs from M only in the interpretation of the newly picked individual name.
Therefore, T is valid in Mα. Moreover, since Mα is a semantic extension of M restricted to
NΣ ∪ OG, the constraint graph G is satisfied by Mα. ut

B Proof of Lemma 4

Lemma 4 Let T be an acyclic TBox and G an open complete constraint graph with respect
to local, global and terminological expansion rules. Then for every A ∈ NC and every a ∈ ∆,
a : ¬A ∈ L(n) implies (MG, n) � ¬A(a).

Proof There are two cases, and for both, since G is open, a : A /∈ L(n).

(1) When A is primitive, since G is open, a : ¬A ∈ L(n) implies a : A /∈ L(n). Then, a /∈
Aπ(n) by Definition 3. Thus, a ∈ (¬A)π(n). Therefore, (MG, n) � ¬A(a) by Theorem 1
and Definition 2.

(2) If A is not primitive, i.e., there is a definition A
.
= D ∈ T , we prove by induction on the

structure of D. For the base case where the concept names involved in D are primitive,
we have the following cases:
1. D is of the form ¬B where B is primitive. Since G is complete, a : B ∈ L(n). By

Definition 3, a ∈ Bπ(n) if and only if a /∈ (¬B)π(n). Since G is open, a : ¬A ∈ L(n)
implies a : A /∈ L(n). However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (¬B)π(n). This implies
a /∈ Aπ(n). Thus, a ∈ (¬A)π(n). Therefore, (MG, n) � ¬A(a).



19

2. D is of the form B1 u B2 where B1 and B2 are primitive. Since G is complete,
a : ¬B1 t ¬B2 ∈ L(n), and a : ¬B1 or a : ¬B2 is in L(n). W.l.o.g., suppose
a : ¬B1 ∈ L(n). Since G is open, a : B1 /∈ L(n). Because B1 is primitive, by

Definition 3, a /∈ Bπ(n)1 . Thus, a ∈ (¬B1)π(n), which implies that a /∈ (B1uB2)π(n).

However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (B1 u B2)π(n) and a : A /∈ L(n). Hence,
a /∈ Aπ(n). Thus, a ∈ (¬A)π(n). Therefore, (MG, n) � ¬A(a).

3. D is of the form B1 t B2 where B1 and B2 are primitive. Since G is complete,
a : ¬B1u¬B2 ∈ L(n) and {a : ¬B1, a : ¬B2} ⊆ L(n). Since G is open, a : B1 /∈ L(n)

and a : B2 /∈ L(n). Because B1 and B2 are primitive, by Definition 3, a /∈ Bπ(n)1

and a /∈ Bπ(n)2 . Thus, a /∈ (B1 t B2)π(n). However, Aπ(n) = {b | b : A ∈ L(n)} ∪
(B1 tB2)π(n) and a : A /∈ L(n). Hence, a /∈ Aπ(n). Thus, a ∈ (¬A)π(n). Therefore,
(MG, n) � ¬A(a).

4. D is of the form ∃R.B where B is primitive. Since G is complete, a : ∀R.¬B ∈ L(n)
and for every b, if (a, b) : R ∈ L(n), then b : ¬B ∈ L(n). Suppose (a, b) : R ∈
L(n). Since B is primitive and G is open, it follows that b /∈ Bπ(n). Moreover,
(a, b) ∈ Rπ(n) by Lemma 3 and Definition 1. Hence, for every b, (a, b) ∈ Rπ(n)

implies b /∈ Bπ(n). Thus, a ∈ (∀R.¬B)π(n) and therefore, a /∈ (∃R.B)π(n). However,
Aπ(n) = {c | c : A ∈ L(n)}∪ (∃R.B)π(n) and a : A /∈ L(n). Hence, a /∈ Aπ(n), which
is equivalent to a ∈ (¬A)π(n). Therefore, (MG, n) � ¬A(a).

5. D is of the form ∀R.B where B is primitive. Since G is complete, a : ∃R.¬B ∈ L(n)
and there exists b such that (a, b) : R ∈ L(n) and b : ¬B ∈ L(n). Since B is
primitive and G is open, we have b /∈ Bπ(n). By Lemma 3 and Definition 1, we
have (a, b) ∈ Rπ(n). Therefore, there exists b such that (a, b) ∈ Rπ(n) ∧ b /∈ Bπ(n).
Thus, a ∈ (∃R.¬B)π(n) and hence, a /∈ (∀R.B)π(n). However, Aπ(n) = {c | c : A ∈
L(n)} ∪ (∀R.B)π(n) and a : A /∈ L(n). Thus, a /∈ Aπ(n), which is equivalent to
a ∈ (¬A)π(n). Therefore, (MG, n) � ¬A(a).

6. D is of the form ♦iB where B is primitive. Since G is complete, a : �i¬B ∈ L(n) and
a : ¬B ∈ L(n′) for each n′ with i ∈ L(n, n′). Note that B is primitive and G is open.

Hence, a /∈ Bπ(n
′) whenever i ∈ L(n, n′). Thus, a ∈

⋂
n′∈Ei(n)

(¬B)π(n
′). Then,

a ∈ (�i¬B)π(n). Therefore, a /∈ (♦iB)π(n). However, Aπ(n) = {b | b : A ∈ L(n)} ∪
(♦iB)π(n) and a : A /∈ L(n). Hence, a /∈ Aπ(n). It follows that (MG, n) � ¬A(a).

7. D is of the form �iB where B is primitive. Since G is complete, we have a : ♦i¬B ∈
L(n) and there exists n′ such that i ∈ L(n, n′) and a : ¬B ∈ L(n′). Note that B is

primitive and G is open. Thus, a /∈ Bπ(n′). Hence, a ∈
⋃
n′∈Ei(n)

(¬B)π(n
′). Then,

a ∈ (♦i¬B)π(n). Therefore, a /∈ (�iB)π(n). However, Aπ(n) = {a | a : A ∈ L(n)} ∪
(�iB)π(n) and a : A /∈ L(n). Hence, a /∈ Aπ(n). It follows that (MG, n) � ¬A(a).

Note that for the first five cases, the correctness of the implication that if a : ¬A ∈
L(n), then (MG, n) � ¬A(a) depends on the fact that the constraint graph G has no
applicable local or terminological expansion rules. For the last two cases, the correctness
of the implication depends on the fact that G has no applicable global or terminological
expansion rules.
The induction step is similar to the corresponding base case, except that in the general
case, in order to show that a /∈ Dπ(n), we use the induction hypothesis rather than
relying on the fact that a concept name is primitive when the concept name occurring
in D is not primitive. ut


