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Abstract

The existence of a coalition strategy to achieve a goal does not necessarily
mean that the coalition has enough information to know how to follow the
strategy. Neither does it mean that the coalition knows that such a strategy
exists. The article studies an interplay between the distributed knowledge,
coalition strategies, and coalition “know-how” strategies. The main technical
result is a sound and complete trimodal logical system that describes the
properties of this interplay.

1. Introduction

An agent a comes to a fork in a road. There is a sign that says that one
of the two roads leads to prosperity, another to death. The agent must take
the fork, but she does not know which road leads where. Does the agent have
a strategy to get to prosperity? On one hand, since one of the roads leads
to prosperity, such a strategy clearly exists. We denote this fact by modal
formula Sap, where statement p is a claim of future prosperity. Furthermore,
agent a knows that such a strategy exists. We write this as KaSap. Yet, the
agent does not know what the strategy is and, thus, does not know how to use
the strategy. We denote this by ¬Hap, where know-how modality Ha expresses
the fact that agent a knows how to achieve the goal based on the information
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available to her. In this article we study the interplay between modality K,
representing knowledge, modality S, representing the existence of a strategy,
and modality H, representing the existence of a know-how strategy. Our main
result is a complete trimodal axiomatic system capturing properties of this
interplay.

1.1. Epistemic Transition Systems

In this article we use epistemic transition systems to capture knowledge
and strategic behavior. Informally, epistemic transition system is a directed
labeled graph supplemented by an indistinguishability relation on vertices.
For instance, our motivational example above can be captured by epistemic
transition system T1 depicted in Figure 1. In this system state w represents
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Figure 1: Epistemic transition system T1.

the prosperity and state w′ represents death. The original state is u, but it is
indistinguishable by the agent a from state v. Arrows on the diagram repre-
sent possible transitions between the states. Labels on the arrows represent
the choices that the agents make during the transition. For example, if in
state u agent chooses left (L) road, she will transition to the prosperity state
w and if she chooses right (R) road, she will transition to the death state w′.
In another epistemic state v, these roads lead the other way around. States
u and v are not distinguishable by agent a, which is shown by the dashed
line between these two states. In state u as well as state v the agent has a
strategy to transition to the state of prosperity: u  Sap and v  Sap. In the
case of state u this strategy is L, in the case of state v the strategy is R. Since
the agent cannot distinguish states u and v, in both of these states she does
not have a know-how strategy to reach prosperity: u 1 Hap and v 1 Hap. At
the same time, since formula Sap is satisfied in all states indistinguishable to
agent a from state u, we can claim that u  KaSap and, similarly, v  KaSap.
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Figure 2: Epistemic transition system T2.

As our second example, let us consider the epistemic transition system
T2 obtained from T1 by swapping labels on transitions from v to w and from
v to w′, see Figure 2. Although in system T2 agent a still cannot distinguish
states u and v, she has a know-how strategy from either of these states to
reach state w. We write this as u  Hap and v  Hap. The strategy is to
choose L. This strategy is know-how because it does not require to make
different choices in the states that the agent cannot distinguish.

1.2. Imperfect Recall

For the next example, we consider a transition system T3 obtained from
system T1 by adding a new epistemic state s. From state s, agent a can choose
label L to reach state u or choose label R to reach state v. Since proposition
q is satisfied in state u, agent a has a know-how strategy to transition from
state s to a state (namely, state u) where q is satisfied. Therefore, s  Haq.
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Figure 3: Epistemic transition system T3.

A more interesting question is whether s  HaHap is true. In other
words, does agent a know how to transition from state s to a state in which
she knows how to transition to another state in which p is satisfied? One
might think that such a strategy indeed exists: in state s agent a chooses
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label L to transition to state u. Since there is no transition labeled by L
that leads from state s to state v, upon ending the first transition the agent
would know that she is in state u, where she needs to choose label L to
transition to state w. This argument, however, is based on the assumption
that agent a has a perfect recall. Namely, agent a in state u remembers the
choice that she made in the previous state. We assume that the agents do
not have a perfect recall and that an epistemic state description captures
whatever memories the agent has in this state. In other words, in this article
we assume that the only knowledge that an agent possesses is the knowledge
captured by the indistinguishability relation on the epistemic states. Given
this assumption, upon reaching the state u (indistinguishable from state v)
agent a knows that there exists a choice that she can make to transition to
state in which p is satisfied: s  HaSap. However, she does not know which
choice (L or R) it is: s 1 HaHap.

1.3. Multiagent Setting
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Figure 4: Epistemic transition system T4.

So far, we have assumed that only agent a has an influence on which
transition the system takes. In transition system T4 depicted in Figure 4, we
introduce another agent b and assume both agents a and b have influence on
the transitions. In each state, the system takes the transition labeled D by
default unless there is a consensus of agents a and b to take the transition
labeled C. In such a setting, each agent has a strategy to transition system
from state u into state w by voting D, but neither of them alone has a strategy
to transition from state u to state w′ because such a transition requires the
consensus of both agents. Thus, u  Sap ∧ Sbp ∧ ¬Saq ∧ ¬Sbq. Additionally,
both agents know how to transition the system from state u into state w,
they just need to vote D. Therefore, u  Hap ∧ Hbp.

In Figure 5, we show a more complicated transition system obtained from
T1 by renaming label L to D and renaming label R to C. Same as in transition
system T4, we assume that there are two agents a and b voting on the system
transition. We also assume that agent a cannot distinguish states u and v
while agent b can. By default, the system takes the transition labeled D

4



p

D
C C

D

u v

w w'

a

C, D C, D

Figure 5: Epistemic transition system T5.

unless there is a consensus to take transition labeled C. As a result, agent a
has a strategy (namely, vote D) in state u to transition system to state w,
but because agent a cannot distinguish state u from state v, not only does
she not know how to do this, but she is not aware that such a strategy exists:
u  Sap ∧ ¬Hap ∧ ¬KaSap. Agent b, however, not only has a strategy to
transition the system from state u to state w, but also knows how to achieve
this: u  Hbp.

1.4. Coalitions

We have talked about strategies, know-hows, and knowledge of individ-
ual agents. In this article we consider knowledge, strategies, and know-how
strategies of coalitions. There are several forms of group knowledge that have
been studied before. The two most popular of them are common knowledge
and distributed knowledge [1]. Different contexts call for different forms of
group knowledge.

As illustrated in the famous Two Generals’ Problem [2, 3] where commu-
nication channels between the agents are unreliable, establishing a common
knowledge between agents might be essential for having a strategy.

In some settings, the distinction between common and distributed knowl-
edge is insignificant. For example, if members of a political fraction get to-
gether to share all their information and to develop a common strategy, then
the distributed knowledge of the members becomes the common knowledge
of the fraction during the in-person meeting.

Finally, in some other situations the distributed knowledge makes more
sense than the common knowledge. For example, if a panel of experts is
formed to develop a strategy, then this panel achieves the best result if it
relies on the combined knowledge of its members rather than on their common
knowledge.
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In this article we focus on distributed coalition knowledge and distributed-
know-how strategies. We leave the common knowledge for the future re-
search. Establishing distributed knowledge though communication between
agents might affect what is known by individual agents [4], but the commu-
nication between agents is out of the scope of this paper.

To illustrate how distributed knowledge of coalitions interacts with strate-
gies and know-hows, consider epistemic transition system T6 depicted in Fig-
ure 6. In this system, agents a and b cannot distinguish states u and v while
agents b and c cannot distinguish states v and u′. In every state, each of
agents a, b and c votes either L or R, and the system transitions according
to the majority vote. In such a setting, any coalition of two agents can fully
control the transitions of the system.
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Figure 6: Epistemic transition system T6.

For example, by both voting L, agents a and b form a coalition {a, b} that
forces the system to transition from state u to state w no matter how agent
c votes. Since proposition p is satisfied in state w, we write u  S{a,b}p, or
simply u  Sa,bp. Similarly, coalition {a, b} can vote R to force the system to
transition from state v to state w. Therefore, coalition {a, b} has strategies to
achieve p in states u and v, but the strategies are different. Since they cannot
distinguish states u and v, agents a and b know that they have a strategy
to achieve p, but they do not know how to achieve p. In our notations,
v  Sa,bp ∧ Ka,bSa,bp ∧ ¬Ha,bp.

On the other hand, although agents b and c cannot distinguish states v
and u′, by both voting R in either of states v and u′, they form a coalition
{b, c} that forces the system to transition to state w where p is satisfied.
Therefore, in any of states v and u′, they not only have a strategy to achieve
p, but also know that they have such a strategy, and more importantly, they
know how to achieve p, that is, v  Hb,cp.
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1.5. Nondeterministic Transitions

In all the examples that we have discussed so far, given any state in
a system, agents’ votes uniquely determine the transition of the system.
Our framework also allows nondeterministic transitions. Consider transition
system T7 depicted in Figure 7. In this system, there are two agents a and
b who can vote either C or D. If both agents vote C, then the system takes
one of the consensus transitions labeled with C. Otherwise, the system takes
the transition labeled with D. Note that there are two consensus transitions
starting from state u. Therefore, even if both agents vote C, they do not
have a strategy to achieve p, i.e., u 1 Sa,bp. However, they can achieve p∨ q.
Moreover, since all agents can distinguish all states, we have u  Ha,b(p∨ q).
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Figure 7: Epistemic transition system T7.

1.6. Universal Principles

In the examples above we focused on specific properties that were either
satisfied or not satisfied in particular states of epistemic transition systems
T1 through T7. In this article, we study properties that are satisfied in all
states of all epistemic transition systems. Our main result is a sound and
complete axiomatization of all such properties. We finish the introduction
with an informal discussion of these properties.

Properties of Single Modalities. Knowledge modality KC satisfies the axioms
of epistemic logic S5 with distributed knowledge. Both strategic modality
SC and know-how modality HC satisfy cooperation properties [5, 6]:

SC(ϕ→ ψ)→ (SDϕ→ SC∪Dψ), where C ∩D = ∅, (1)

HC(ϕ→ ψ)→ (HDϕ→ HC∪Dψ), where C ∩D = ∅. (2)

They also satisfy monotonicity properties

SCϕ→ SDϕ, where C ⊆ D,

HCϕ→ HDϕ, where C ⊆ D.
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The two monotonicity properties are not among the axioms of our logical
system because, as we show in Lemma 5 and Lemma 3, they are derivable.

Properties of Interplay. Note that w  HCϕ means that coalition C has the
same strategy to achieve ϕ in all epistemic states indistinguishable by the
coalition from state w. Hence, the following principle is universally true:

HCϕ→ KCHCϕ. (3)

Similarly, w  ¬HCϕ means that coalition C does not have the same strategy
to achieve ϕ in all epistemic states indistinguishable by the coalition from
state w. Thus,

¬HCϕ→ KC¬HCϕ. (4)

We call properties (3) and (4) strategic positive introspection and strategic
negative introspection, respectively. The strategic negative introspection is
one of our axioms. Just as how the positive introspection principle follows
from the rest of the axioms in S5 (see Lemma 14), the strategic positive
introspection principle is also derivable (see Lemma 1).

Whenever a coalition knows how to achieve something, there should exist
a strategy for the coalition to achieve. In our notation,

HCϕ→ SCϕ. (5)

We call this formula strategic truth property and it is one of the axioms of
our logical system.

The last two axioms of our logical system deal with empty coalitions.
First of all, if formula K∅ϕ is satisfied in an epistemic state of our transition
system, then formula ϕ must be satisfied in every state of this system. Thus,
even empty coalition has a trivial strategy to achieve ϕ:

K∅ϕ→ H∅ϕ. (6)

We call this property empty coalition principle. In this article we assume
that an epistemic transition system never halts. That is, in every state of
the system no matter what the outcome of the vote is, there is always a next
state for this vote. This restriction on the transition systems yields property

¬SC⊥. (7)

8



that we call nontermination principle.
Let us now turn to the most interesting and perhaps most unexpected

property of interplay. Note that S∅ϕ means that an empty coalition has a
strategy to achieve ϕ. Since the empty coalition has no members, nobody has
to vote in a particular way. Statement ϕ is guaranteed to happen anyway.
Thus, statement S∅ϕ simply means that statement ϕ is unavoidably satisfied
after any single transition.
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Figure 8: Epistemic transition system T8.

For example, consider an epistemic transition system depicted in Figure 8.
As in some of our earlier examples, this system has agents a and b who
vote either C or D. If both agents vote C, then the system takes one of the
consensus transitions labeled with C. Otherwise, the system takes the default
transition labeled with D. Note that in state v it is guaranteed that statement
p will happen after a single transition. Thus, v  S∅p. At the same time,
neither agent a nor agent b knows about this because they cannot distinguish
state v from states u and u′ respectively. Thus, v  ¬KaS∅p ∧ ¬KbS∅p.

In the same transition system T8, agents a and b together can distinguish
state v from states u and u′. Thus, v  Ka,bS∅p. In general, statement
KCS∅ϕ means that not only ϕ is unavoidable, but coalition C knows about
it. Thus, coalition C has a know-how strategy to achieve ϕ:

KCS∅ϕ→ HCϕ.

In fact, the coalition would achieve the result no matter which strategy it
uses. Coalition C can even use a strategy that simultaneously achieves an-
other result in addition to ϕ:

KCS∅ϕ ∧ HCψ → HC(ϕ ∧ ψ).

In our logical system we use an equivalent form of the above principle that
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is stated using only implication:

HC(ϕ→ ψ)→ (KCS∅ϕ→ HCψ). (8)

We call this property epistemic determinicity principle. Properties (1), (2),
(4), (5), (6), (7), and (8), together with axioms of epistemic logic S5 with
distributed knowledge and propositional tautologies constitute the axioms of
our sound and complete logical system.

1.7. Literature Review

Logics of coalition power were developed by Marc Pauly [5, 6], who also
proved the completeness of the basic logic of coalition power. Pauly’s ap-
proach has been widely studied in the literature [7, 8, 9, 10, 11, 12, 13]. An
alternative logical system was proposed by More and Naumov [14].

Alur, Henzinger, and Kupferman introduced Alternating-Time Temporal
Logic (ATL) that combines temporal and coalition modalities [15]. Van der
Hoek and Wooldridge proposed to combine ATL with epistemic modality
to form Alternating-Time Temporal Epistemic Logic [16]. Goranko and van
Drimmelen [17] gave a complete axiomatization of ATL. Decidability and
model checking problems for ATL-like systems has also been widely stud-
ied [18, 19, 20].

Ågotnes and Alechina proposed a complete logical system that combines
the coalition power and epistemic modalities [21]. Since this system does
not have epistemic requirements on strategies, it does not contain any ax-
ioms describing the interplay of these modalities. In the extended version
of this work they added a complete axiomatization of an interplay between
knowledge and know-how modalities [22].

Know-how strategies were studied before under different names. While
Jamroga and Ågotnes talked about “knowledge to identify and execute a
strategy” [23], Jamroga and van der Hoek discussed “difference between an
agent knowing that he has a suitable strategy and knowing the strategy
itself” [24]. Van Benthem called such strategies “uniform” [25]. Wang gave
a complete axiomatization of “knowing how” as a binary modality [26, 27],
but his logical system does not include the knowledge modality.

In [28], we investigated coalition strategies to enforce a condition indefi-
nitely. Such strategies are similar to “goal maintenance” strategies in Pauly’s
“extended coalition logic” [5, p. 80]. We focused on “executable” and “ver-
ifiable” strategies. Using the language of the current article, executability
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means that a coalition remains “in the know-how” throughout the execu-
tion of the strategy. Verifiability means that the coalition can verify that
the enforced condition remains true. In the notations of the current article,
the existence of a verifiable strategy could be expressed as SCKCϕ. In [28],
we provided a complete logical system that describes the interplay between
the modality representing the existence of an “executable” and “verifiable”
coalition strategy to enforce and the modality representing knowledge. This
system can prove principles similar to the strategic positive introspection (3)
and the strategic negative introspection (4) mentioned above. A similar com-
plete logical system in a single-agent setting for strategies to achieve a goal
in multiple steps rather than to maintain a goal is developed by Fervari,
Herzig, Li, and Wang [29]. In a more recent work, we described the interplay
between modalities K and H in the perfect recall setting in [30]. Properties
of second-order know-how, when a coalition knows how another coalition can
do it, are discussed in [31].

In the current article, we combine know-how modality H with strategic
modality S and epistemic modality K. In other words, we combine two sep-
arate logical systems given in [22]: one for knowledge and coalition power
modalities and the other for knowledge and know-how modalities, into a
single logical system. While doing this, we generalize the setting from the
individual knowledge to the distributive knowledge and discover a new ax-
iom, epistemic determinicity principle, not present in [22]. The proof of the
completeness theorem in the current article is significantly more challenging
than those in [22, 28, 29]. It employs new techniques that construct pairs
of maximal consistent sets in “harmony” and in “complete harmony”. See
Section 6.3 and Section 6.4 for details. An extended abstract of this article,
without proofs, appeared as [32].

1.8. Outline

This article is organized as follows. In Section 2 we introduce formal
syntax and semantics of our logical system. In Section 3 we list axioms and
inference rules of the system. Section 4 provides examples of formal proofs in
our logical systems. Proofs of the soundness and the completeness are given
in Section 5 and Section 6 respectively. Section 7 concludes the article.

The key part of the proof of the completeness is the construction of a
pair of sets in complete harmony. We discuss the intuition behind this con-
struction and introduce the notion of harmony in Section 6.3. The notion of
complete harmony is introduced in Section 6.4.
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2. Syntax and Semantics

In this section we present the formal syntax and semantics of our logical
system given a fixed finite set of agents A. Epistemic transition system could
be thought of as a Kripke model of modal logic S5 with distributed knowledge
to which we add transitions controlled by a vote aggregation mechanism.
Examples of vote aggregation mechanisms that we have considered in the
introduction are the consensus/default mechanism and the majority vote
mechanism. Unlike the introductory examples, in the general definition below
we assume that at different states the mechanism might use different rules for
vote aggregation. The only restriction on the mechanism that we introduce is
that there should be at least one possible transition that the system can take
no matter what the votes are. In other words, we assume that the system
can never halt.

For any set of votes V , by V A we mean the set of all functions from set
A to set V . Alternatively, the set V A could be thought of as a set of tuples
of elements of V indexed by elements of A.

Definition 1. A tuple (W, {∼a}a∈A, V,M, π) is called an epistemic transi-
tion system, where

1. W is a set of epistemic states,

2. ∼a is an indistinguishability equivalence relation on W for each a ∈ A,

3. V is a nonempty set called “domain of choices”,

4. M ⊆ W ×V A×W is an aggregation mechanism where for each w ∈ W
and each s ∈ V A, there is w′ ∈ W such that (w, s, w′) ∈M ,

5. π is a function that maps propositional variables into subsets of W .

Epistemic transition systems are very similar to concurrent game struc-
tures, the semantics of ATL [15], with two notable differences. First, in
concurrent game structures, the domain of choices depends on the state and
on the agent. On the other hand, we assume a uniform domain of choices for
all states and all agents. This difference is insignificant because all domains
of choices in a concurrent game structure could be replaced with their union
if the aggregation mechanism is modified to interpret the additional choices
as alternative names for the original choices. Second, unlike the transition
function in the concurrent game structures, our aggregation mechanism al-
lows to capture nondeterministic transitions. This difference is significant
because restricting semantics to only deterministic transitions would require

12



additional axioms. For example, property SAϕ∨SA¬ϕ, where A is the coali-
tion of all agents, is universally true in deterministic epistemic transition
systems, but is not true in some nondeterministic systems.

Definition 2. A coalition is a subset of A.

Note that a coalition is always finite due to our assumption that the
set of all agents A is finite. Informally, we say that two epistemic states
are indistinguishable by a coalition C if they are indistinguishable by every
member of the coalition. Formally, coalition indistinguishability is defined as
follows:

Definition 3. For any epistemic states w1, w2 ∈ W and any coalition C, let
w1 ∼C w2 if w1 ∼a w2 for each agent a ∈ C.

Corollary 1. Relation ∼C is an equivalence relation on the set of states W
for each coalition C.

By a strategy profile {sa}a∈C of a coalition C we mean a tuple that
specifies vote sa ∈ V of each member a ∈ C. Since such a tuple can also be
viewed as a function from set C to set V , we denote the set of all strategy
profiles of a coalition C by V C :

Definition 4. Any tuple {sa}a∈C ∈ V C is called a strategy profile of coalition
C.

In addition to a fixed finite set of agents A we also assume a fixed count-
able set of propositional variables. We use the assumption that this set is
countable in the proof of Lemma 21. The language Φ of our formal logical
system is specified in the next definition.

Definition 5. Let Φ be the minimal set of formulae such that

1. p ∈ Φ for each propositional variable p,

2. ¬ϕ, ϕ→ ψ ∈ Φ for all formulae ϕ, ψ ∈ Φ,

3. KCϕ, SCϕ,HCϕ ∈ Φ for each coalition C and each ϕ ∈ Φ.
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In other words, language Φ is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ→ ϕ | KCϕ | SCϕ | HCϕ.

By ⊥ we denote the negation of a tautology. For example, we can assume
that ⊥ is ¬(p→ p) for some fixed propositional variable p.

According to Definition 1, a mechanism specifies the transition that a
system might take for any strategy profile of the set of all agents A. It is
sometimes convenient to consider transitions that are consistent with a given
strategy profile s of a give coalition C ⊆ A. We write w →s u if a transition
from state w to state u is consistent with strategy profile s. The formal
definition is below.

Definition 6. For any epistemic states w, u ∈ W , any coalition C, and any
strategy profile s = {sa}a∈C ∈ V C, we write w →s u if (w, s′, u) ∈ M for
some strategy profile s′ = {s′a}a∈A ∈ V A such that s′a = sa for each a ∈ C.

Corollary 2. Let s be the unique strategy profile of the empty coalition ∅,
if there are a coalition C and a strategy profile s′ of coalition C such that
w →s′ u, then w →s u.

The next definition is the key definition of this article. It formally specifies
the meaning of the three modalities in our logical system.

Definition 7. For any epistemic state w ∈ W of a transition system (W, {∼a

}a∈A, V,M, π) and any formula ϕ ∈ Φ, let relation w  ϕ be defined as follows

1. w  p if w ∈ π(p) where p is a propositional variable,

2. w  ¬ϕ if w 1 ϕ,

3. w  ϕ→ ψ if w 1 ϕ or w  ψ,

4. w  KCϕ if w′  ϕ for each w′ ∈ W such that w ∼C w
′,

5. w  SCϕ if there is a strategy profile s ∈ V C such that w →s w
′ implies

w′  ϕ for every w′ ∈ W ,

6. w  HCϕ if there is a strategy profile s ∈ V C such that w ∼C w′ and
w′ →s w

′′ imply w′′  ϕ for all w′, w′′ ∈ W .

Note that item 6 of this definition is requiring the strategy s to work in all
states w′ such that w ∼C w

′. That is, the strategy s should work in all states
indistinguishable from the current state w by the whole coalition. Informally,
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it means that we require the whole coalition C to know distributively that
strategy s will succeed. Alternatively, one might require this to be known
to each individual member of this coalition C. In the latter case, item 6 of
Definition 7 would be stated as

6.′ w  HCϕ when there is a strategy profile s ∈ V C such that for each
a ∈ C, each w′ ∈ W and each w′′ ∈ W , if w ∼a w

′ and w′ →s w
′′, then

w′′  ϕ.

This alternative, individual knowledge-based, definition of coalition know-
how is used in logic ATL∗ [33]. Yet another alternative [28, 29] is to require
that after execution of know-how strategy to achieve ϕ the coalition would
know that ϕ is indeed true:

6.′′ w  HCϕ if there is a strategy profile s ∈ V C such that w ∼C w′,
w′ →s w

′′, and w′′ ∼C w
′′′ imply w′′′  ϕ for all w′, w′′, w′′′ ∈ W .

This definition yields axiom HCϕ→ HCKCϕ, which is present in [28, 29]. In
our current setting, this axiom is not valid. However, it would be valid under
the assumption of perfect recall by nonempty coalitions [30].

3. Axioms

In additional to propositional tautologies in language Φ, our logical sys-
tem consists of the following axioms.

1. Truth: KCϕ→ ϕ,

2. Negative Introspection: ¬KCϕ→ KC¬KCϕ,

3. Distributivity: KC(ϕ→ ψ)→ (KCϕ→ KCψ),

4. Monotonicity: KCϕ→ KDϕ, if C ⊆ D,

5. Cooperation: SC(ϕ→ ψ)→ (SDϕ→ SC∪Dψ), where C ∩D = ∅.

6. Strategic Negative Introspection: ¬HCϕ→ KC¬HCϕ,

7. Epistemic Cooperation: HC(ϕ→ ψ)→ (HDϕ→ HC∪Dψ),
where C ∩D = ∅,

8. Strategic Truth: HCϕ→ SCϕ,

9. Epistemic Determinicity: HC(ϕ→ ψ)→ (KCS∅ϕ→ HCψ),

10. Empty Coalition: K∅ϕ→ H∅ϕ,

11. Nontermination: ¬SC⊥.
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We have discussed the informal meaning of these axioms in the introduction.
In Section 5 we formally prove the soundness of these axioms with respect
to the semantics from Definition 7.

We write ` ϕ if formula ϕ is provable from the axioms of our logical system
using Necessitation, Strategic Necessitation, and Modus Ponens inference
rules:

ϕ

KCϕ

ϕ

HCϕ

ϕ, ϕ→ ψ

ψ
.

We write X ` ϕ if formula ϕ is provable from the theorems of our logical
system and a set of additional axioms X using only Modus Ponens inference
rule.

4. Derivation Examples

In this section we give examples of formal derivations in our logical sys-
tem. In Lemma 1 we prove the strategic positive introspection principle (3)
discussed in the introduction. The proof is similar to the proof of the epis-
temic positive introspection principle in Lemma 14.

Lemma 1. ` HCϕ→ KCHCϕ.

Proof. Note that formula ¬HCϕ → KC¬HCϕ is an instance of Strategic
Negative Introspection axiom. Thus, ` ¬KC¬HCϕ → HCϕ by the law of
contrapositive in the propositional logic. Hence, ` KC(¬KC¬HCϕ → HCϕ)
by Necessitation inference rule. Thus, by Distributivity axiom and Modus
Ponens inference rule,

` KC¬KC¬HCϕ→ KCHCϕ. (9)

At the same time, KC¬HCϕ → ¬HCϕ is an instance of Truth axiom.
Thus, ` HCϕ → ¬KC¬HCϕ by contraposition. Hence, taking into ac-
count the following instance of Negative Introspection axiom ¬KC¬HCϕ →
KC¬KC¬HCϕ, one can conclude that ` HCϕ → KC¬KC¬HCϕ. The latter,
together with statement (9), implies the statement of the lemma by the laws
of propositional reasoning. �

In the next example, we show that the existence of a know-how strategy
by a coalition implies that the coalition has a distributed knowledge of the
existence of a strategy.
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Lemma 2. ` HCϕ→ KCSCϕ.

Proof. By Strategic Truth axiom, ` HCϕ→ SCϕ. Hence, ` KC(HCϕ→ SCϕ)
by Necessitation inference rule. Thus, ` KCHCϕ→ KCSCϕ by Distributivity
axiom and Modus Ponens inference rule. At the same time, ` HCϕ→ KCHCϕ
by Lemma 1. Therefore, ` HCϕ→ KCSCϕ by the laws of propositional rea-
soning. �

The next lemma shows that the existence of a know-how strategy by
a sub-coalition implies the existence of a know-how strategy by the entire
coalition.

Lemma 3. ` HCϕ→ HDϕ, where C ⊆ D.

Proof. Note that ϕ→ ϕ is a propositional tautology. Thus, ` ϕ→ ϕ. Hence,
` HD\C(ϕ→ ϕ) by Strategic Necessitation inference rule. At the same time,
by Epistemic Cooperation axiom, ` HD\C(ϕ → ϕ) → (HCϕ → HDϕ) due
to the assumption C ⊆ D. Therefore, ` HCϕ → HDϕ by Modus Ponens
inference rule. �

Although our logical system has three modalities, the system contains
necessitation inference rules only for two of them. The lemma below shows
that the necessitation rule for the third modality is derivable.

Lemma 4. For each finite C ⊆ A, inference rule
ϕ

SCϕ
is derivable in our

logical system.

Proof. Assumption ` ϕ implies ` HCϕ by Strategic Necessitation inference
rule. Hence, ` SCϕ by Strategic Truth axiom and Modus Ponens inference
rule. �

The next result is a counterpart of Lemma 3. It states that the existence
of a strategy by a sub-coalition implies the existence of a strategy by the
entire coalition.

Lemma 5. ` SCϕ→ SDϕ, where C ⊆ D.

Proof. Note that ϕ → ϕ is a propositional tautology. Thus, ` ϕ → ϕ.
Hence, ` SD\C(ϕ → ϕ) by Lemma 4. At the same time, by Cooperation
axiom, ` SD\C(ϕ → ϕ) → (SCϕ → SDϕ) due to the assumption C ⊆ D.
Therefore, ` SCϕ→ SDϕ by Modus Ponens inference rule. �
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5. Soundness

In this section we prove the soundness of our logical system. The proof of
the soundness of multiagent S5 axioms and inference rules is standard. Below
we show the soundness of each of the remaining axioms and the Strategic
Necessitation inference rule as a separate lemma. The soundness theorem for
the whole logical system is stated at the end of this section as Theorem 1.

Lemma 6. If w  SC(ϕ→ ψ), w  SDϕ, and C∩D = ∅, then w  SC∪Dψ.

Proof. Suppose that w  SC(ϕ → ψ). Then, by Definition 7, there is a
strategy profile s1 = {s1a}a∈C ∈ V C such that w′  ϕ → ψ for each w′ ∈ W
where w →s1 w

′. Similarly, assumption w  SDϕ implies that there is a
strategy s2 = {s2a}a∈D ∈ V D such that w′  ϕ for each w′ ∈ W where
w →s2 w

′. Let strategy profile s = {sa}a∈C∪D be defined as follows:

sa =

{
s1a, if a ∈ C,
s2a, if a ∈ D.

Strategy profile s is well-defined due to the assumption C ∩ D = ∅ of the
lemma.

Consider any epistemic state w′ ∈ W such that w →s w
′. By Definition 7,

it suffices to show that w′  ψ. Indeed, assumption w →s w
′, by Definition 6,

implies that w →s1 w
′ and w →s2 w

′. Thus, w′  ϕ→ ψ and w′  ϕ by the
choice of strategies s1 and s2. Therefore, w′  ψ by Definition 7. �

Lemma 7. If w  ¬HCϕ, then w  KC¬HCϕ.

Proof. Consider any epistemic state u ∈ W such that w ∼C u. By Def-
inition 7, it suffices to show that u 1 HCϕ. Assume the opposite. Thus,
u  HCϕ. Then, again by Definition 7, there is a strategy profile s ∈ V C

where u′′  ϕ for all u′, u′′ ∈ W such that u ∼C u
′ and u′ →s u

′′. Recall that
w ∼C u. Thus, by Corollary 1, u′′  ϕ for all u′, u′′ ∈ W such that w ∼C u′

and u′ →s u
′′. Therefore, w  HCϕ, by Definition 7. The latter contradicts

the assumption of the lemma. �

Lemma 8. If w  HC(ϕ→ ψ), w  HDϕ, and C∩D = ∅, then w  HC∪Dψ.
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Proof. Suppose that w  HC(ϕ → ψ). Thus, by Definition 7, there is a
strategy profile s1 = {s1a}a∈C ∈ V C such that w′′  ϕ → ψ for all epistemic
states w′, w′′ where w ∼C w

′ and w′ →s1 w
′′. Similarly, assumption w  HDϕ

implies that there is a strategy s2 = {s2a}a∈D ∈ V D such that w′′  ϕ for all
w′, w′′ where w ∼D w′ and w′ →s2 w

′′. Let strategy profile s = {sa}a∈C∪D be
defined as follows:

sa =

{
s1a, if a ∈ C,
s2a, if a ∈ D.

Strategy profile s is well-defined due to the assumption C ∩ D = ∅ of the
lemma.

Consider any epistemic states w′, w′′ ∈ W such that w ∼C∪D w′ and
w′ →s w

′′. By Definition 7, it suffices to show that w′′  ψ. Indeed, by
Definition 3 assumption w ∼C∪D w′ implies that w ∼C w′ and w ∼D w′. At
the same time, by Definition 6, assumption w′ →s w

′′ implies that w′ →s1 w
′′

and w′ →s2 w
′′. Thus, w′′  ϕ → ψ and w′′  ϕ by the choice of strategies

s1 and s2. Therefore, w′′  ψ by Definition 7. �

Lemma 9. If w  HCϕ, then w  SCϕ.

Proof. Suppose that w  HCϕ. Thus, by Definition 7, there is a strategy
profile s ∈ V C such that w′′  ϕ for all epistemic states w′, w′′ ∈ W , where
w ∼C w′ and w′ →s w

′′. By Corollary 1, w ∼C w. Hence, w′′  ϕ for each
epistemic state w′′ ∈ W , where w →s w

′′. Therefore, w  SCϕ by Defini-
tion 7. �

Lemma 10. If w  HC(ϕ→ ψ) and w  KCS∅ϕ, then w  HCψ.

Proof. Suppose that w  HC(ϕ → ψ). Thus, by Definition 7, there is a
strategy profile s ∈ V C such that w′′  ϕ → ψ for all epistemic states
w′, w′′ ∈ W where w ∼C w

′ and w′ →s w
′′.

Consider any epistemic states w′0, w
′′
0 ∈ W such that w ∼C w

′
0 and w′0 →s

w′′0 . By Definition 7, it suffices to show that w′′0  ψ.
Indeed, by Definition 7, the assumption w  KCS∅ϕ together with w ∼C

w′0 imply that w′0  S∅ϕ. Hence, by Definition 7, there is a strategy profile
s′ of empty coalition ∅ such that w′′  ϕ for each w′′ where w′0 →s′ w

′′.
Thus, w′′0  ϕ due to Corollary 2 and w′0 →s w

′′
0 . By the choice of strategy
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profile s, statements w ∼C w
′
0 and w′0 →s w

′′
0 imply w′′0  ϕ→ ψ. Finally, by

Definition 7, statements w′′0  ϕ→ ψ and w′′0  ϕ imply that w′′0  ψ. �

Lemma 11. If w  K∅ϕ, then w  H∅ϕ.

Proof. Let s = {sa}a∈∅ be the empty strategy profile. Consider any epis-
temic states w′, w′′ ∈ W such that w ∼∅ w

′ and w′ →s w
′′. By Definition 7,

it suffices to show that w′′  ϕ. Indeed w ∼∅ w
′′ by Definition 3. Therefore,

w′′  ϕ by assumption w  K∅ϕ and Definition 7. �

Lemma 12. w 1 SC⊥.

Proof. Suppose that w  SC⊥. Thus, by Definition 7, there is a strategy
profile s = {sa}a∈A ∈ V C such that u  ⊥ for each u ∈ W where w →s u.

Note that by Definition 1, the domain of choices V is not empty. Thus,
strategy profile s can be extended to a strategy profile s′ = {s′a}a∈A ∈ V A
such that s′a = sa for each a ∈ C.

By Definition 1, there must exist a state w′ ∈ W such that (w, s′, w′) ∈M .
Hence, w →s w

′ by Definition 6. Therefore, w′  ⊥ by the choice of strategy
s, which contradicts Definition 7. �

Lemma 13. If w  ϕ for any epistemic state w ∈ W of an epistemic tran-
sition system (W, {∼a}a∈A, V,M, π), then w  SCϕ for every epistemic state
w ∈ W .

Proof. By Definition 1, set V is not empty. Let v ∈ V . Consider strategy
profile s = {sa}a∈C of coalition C such that sa = v for each s ∈ C. Note that
w′  ϕ for each w′ ∈ W due to the assumption of the lemma. Therefore,
w  SCϕ by Definition 7. �

Taken together, the lemmas above imply the soundness theorem for our
logical system stated below.

Theorem 1. If ` ϕ, then w  ϕ for each epistemic state w ∈ W of each
epistemic transition system (W, {∼a}a∈A, V,M, π). 2
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6. Completeness

This section is dedicated to the proof of the following completeness the-
orem for our logical system.

Theorem 2 (completeness). If w  ϕ for each epistemic state w of each
epistemic transition system, then ` ϕ.

6.1. Positive Introspection

The proof of Theorem 2 is divided into several parts. In this section we
prove the positive introspection principle for distributed knowledge modality
from the rest of modality K axioms in our logical system. This is a well-
known result that we reproduce to keep the presentation self-sufficient. The
positive introspection principle is used later in the proof of the completeness.

Lemma 14. ` KCϕ→ KCKCϕ.

Proof. Formula ¬KCϕ → KC¬KCϕ is an instance of Negative Introspection
axiom. Thus, ` ¬KC¬KCϕ→ KCϕ by the law of contrapositive in the propo-
sitional logic. Hence, ` KC(¬KC¬KCϕ → KCϕ) by Necessitation inference
rule. Thus, by Distributivity axiom and Modus Ponens inference rule,

` KC¬KC¬KCϕ→ KCKCϕ. (10)

At the same time, KC¬KCϕ → ¬KCϕ is an instance of Truth axiom.
Thus, ` KCϕ → ¬KC¬KCϕ by contraposition. Hence, taking into ac-
count the following instance of Negative Introspection axiom ¬KC¬KCϕ →
KC¬KC¬KCϕ, one can conclude that ` KCϕ → KC¬KC¬KCϕ. The latter,
together with statement (10), implies the statement of the lemma by the laws
of propositional reasoning. �

6.2. Consistent Sets of Formulae

As usual, we call a set X ⊆ Φ consistent if X 0 ⊥. We refer to set
X as maximal consistent if it is maximal among consistent subsets of Φ.
The proof of the completeness consists in constructing a canonical model
in which states are maximal consistent sets. This is a standard technique in
modal logic that we modified significantly to work in the setting of our logical
system. The standard way to apply this technique to a modal operator 2 is
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to create a “child” state w′ such that ¬ψ ∈ w′ for each “parent” state w where
¬2ψ ∈ w. In the simplest case when 2 is a distributed knowledge modality
KC , the standard technique requires no modification and the construction of
a “child” state is based on the following lemma:

Lemma 15. For any consistent set of formulae X, any formula ¬KCψ ∈ X,
and any formulae KCϕ1, . . . ,KCϕn ∈ X, the set of formulae {¬ψ, ϕ1, . . . , ϕn}
is consistent.

Proof. Assume the opposite. Then, ϕ1, . . . , ϕn ` ψ. Thus, by the deduction
theorem for propositional logic applied n times,

` ϕ1 → (ϕ2 → . . . (ϕn → ψ) . . . ).

Hence, by Necessitation inference rule,

` KC(ϕ1 → (ϕ2 → . . . (ϕn → ψ) . . . )).

By Distributivity axiom and Modus Ponens inference rule,

KCϕ1 ` KC(ϕ2 → . . . (ϕn → ψ) . . . ).

By repeating the last step (n− 1) times,

KCϕ1, . . . ,KCϕn ` KCψ.

Hence, X ` KCψ by the choice of formula KCϕ1, . . . ,KCϕn, which contradicts
the consistency of the set X due to the assumption ¬KCψ ∈ X. �

If 2 is the modality SC , then the standard technique needs to be modified.
Namely, while ¬SCψ ∈ w means that coalition C can not achieve goal ψ, its
pairwise disjoint sub-coalitions D1, . . . , Dn ⊆ C might still achieve their own
goals ϕ1, . . . , ϕn. An equivalent of Lemma 15 for modality SC is the following
statement.

Lemma 16. For any consistent set of formulae X, and any subsets D1, . . . , Dn

of a coalition C, any formula ¬SCψ ∈ X, and any SD1ϕ1, . . . , SDnϕn ∈ X, if
Di∩Dj = ∅ for all integers i, j ≤ n such that i 6= j, then the set of formulae
{¬ψ, ϕ1, . . . , ϕn} is consistent.
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Proof. Suppose that ϕ1, ϕ2, . . . , ϕn ` ψ. Hence, by the deduction theorem for
propositional logic applied n times,

` ϕ1 → (ϕ2 → (. . . (ϕn → ψ) . . . )).

Then, ` S∅(ϕ1 → (ϕ2 → (. . . (ϕn → ψ) . . . ))) by Lemma 4. Hence, by
Cooperation axiom and Modus Ponens inference rule,

` SD1ϕ1 → S∅∪D1(ϕ2 → (. . . (ϕn → ψ) . . . )).

In other words,

` SD1ϕ1 → SD1(ϕ2 → (. . . (ϕn → ψ) . . . )).

Then, by Modus Ponens inference rule,

SD1ϕ1 ` SD1(ϕ2 → (. . . (ϕn → ψ) . . . )).

By Cooperation axiom and Modus Ponens inference rule,

SD1ϕ1 ` SD2ϕ2 → SD1∪D2(. . . (ϕn → ψ) . . . ).

Again, by Modus Ponens inference rule,

SD1ϕ1, SD2ϕ2 ` SD1∪D2(. . . (ϕn → ψ) . . . ).

By repeating the previous steps n− 2 times,

SD1ϕ1, SD2ϕ2, . . . , SDnϕn ` SD1∪D2∪···∪Dnψ.

Recall that SD1ϕ1, SD2ϕ2, . . . , SDnϕn ∈ X by the assumption of the lemma.
Thus, X ` SD1∪D2∪···∪Dnψ. Therefore, X ` SCψ by Lemma 5. Since the set
X is consistent, the latter contradicts the assumption ¬SCψ ∈ X of the
lemma. �

6.3. Harmony

If 2 is the modality HC , then the standard technique needs even more
significant modification. Namely, as it follows from Definition 7, assumption
¬HCψ ∈ w requires us, for each strategy profile of coalition C, to create not
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a single child of parent w, but two different children referred in Definition 7
as states w′ and w′′, see Figure 9. Child w′ is a state of the system indistin-
guishable from state w by coalition C. Child w′′ is a state such that ¬ψ ∈ w′′
and coalition C cannot prevent the system to transition from w′ to w′′.

w'
w

C 

w''

Figure 9: States w′ and w′ are maximal consistent sets of formulae in complete harmony.

One might think that states w′ and w′′ could be constructed in order: first
state w′ and then state w′′. It appears, however, that such an approach does
not work because it does not guarantee that ¬ψ ∈ w′′. To solve the issue, we
construct states w′ and w′′ simultaneously. While constructing states w′ and
w′′ as maximal consistent sets of formulae, it is important to maintain two
relations between sets w′ and w′′ that we call “to be in harmony” and “to be
in complete harmony”. In this section we define harmony relation and prove
its basic properties. The next section is dedicated to the complete harmony
relation.

Even though according to Definition 5 the language of our logical system
only includes propositional connectives ¬ and→, other connectives, including
conjunction ∧, can be defined in the standard way. By ∧Y we mean the
conjunction of a finite set of formulae Y . If set Y is a singleton, then ∧Y
represents the single element of set Y . If set Y is empty, then ∧Y is defined
to be any propositional tautology.

Definition 8. Pair (X, Y ) of sets of formulae is in harmony if X 0 S∅¬∧Y ′
for each finite set Y ′ ⊆ Y .

Lemma 17. If pair (X, Y ) is in harmony, then set X is consistent.

Proof. If set X is not consistent, then any formula can be derived from it.
In particular, X ` S∅¬ ∧ ∅. Therefore, pair (X, Y ) is not in harmony by
Definition 8. �

Lemma 18. If pair (X, Y ) is in harmony, then set Y is consistent.
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Proof. Suppose that Y is inconsistent. Then, there is a finite set Y ′ ⊆ Y
such that ` ¬ ∧ Y ′. Hence, ` S∅¬ ∧ Y ′ by Lemma 4. Thus, X ` S∅¬ ∧ Y ′.
Therefore, by Definition 8, pair (X, Y ) is not in harmony. �

Lemma 19. For any ϕ ∈ Φ, if pair (X, Y ) is in harmony, then either pair
(X ∪ {¬S∅ϕ}, Y ) or pair (X, Y ∪ {ϕ}) is in harmony.

Proof. Suppose that neither pair (X ∪ {¬S∅ϕ}, Y ) nor pair (X, Y ∪ {ϕ})
is in harmony. Then, by Definition 8, there are finite sets Y1 ⊆ Y and
Y2 ⊆ Y ∪ {ϕ} such that

X,¬S∅ϕ ` S∅¬ ∧ Y1 (11)

and
X ` S∅¬ ∧ Y2. (12)

Formula ¬ ∧ Y1 → ¬((∧Y1) ∧ (∧(Y2 \ {ϕ}))) is a propositional tautol-
ogy. Thus, ` S∅(¬ ∧ Y1 → ¬((∧Y1) ∧ (∧(Y2 \ {ϕ})))) by Lemma 4. Then,
by Cooperation axiom, statement (11), and Modus Ponens inference rule,
X,¬S∅ϕ ` S∅∪∅¬((∧Y1) ∧ (∧(Y2 \ {ϕ}))). In other words,

X,¬S∅ϕ ` S∅¬((∧Y1) ∧ (∧(Y2 \ {ϕ}))). (13)

Finally, formula ¬ ∧ Y2 → (ϕ → ¬((∧Y1) ∧ (∧(Y2 \ {ϕ})))) is also a
propositional tautology. Thus, by Lemma 4,

` S∅(¬ ∧ Y2 → (ϕ→ ¬((∧Y1) ∧ (∧(Y2 \ {ϕ}))))).

Then, by Cooperation axiom, statement (12), and Modus Ponens inference
rule, X ` S∅(ϕ → ¬((∧Y1) ∧ (∧(Y2 \ {ϕ})))). Thus, by Cooperation axiom
and Modus Ponens inference rule,

X ` S∅ϕ→ S∅¬((∧Y1) ∧ (∧(Y2 \ {ϕ}))).

By Modus Ponens inference rule,

X, S∅ϕ ` S∅¬((∧Y1) ∧ (∧(Y2 \ {ϕ}))).

Hence, X ` S∅¬((∧Y1) ∧ (∧(Y2 \ {ϕ}))) by statement (13) and the laws of
propositional reasoning. Recall that Y1 and Y2 \{ϕ} are subsets of Y . There-

25



fore, pair (X, Y ) is not in harmony by Definition 8. �

The next lemma is an equivalent of Lemma 15 and Lemma 16 for modality
HC . The lemma is stated in terms of an arbitrary function f : C → Φ. This
lemma will be used in the proof of Lemma 30 for a specific function definable
only in the context of the proof of Lemma 30.

Lemma 20. For any consistent set of formulae X, any formula ¬HCψ ∈ X,
and any function f : C → Φ, pair (Y, Z) is in harmony, where

Y = {ϕ | KCϕ ∈ X}, and

Z = {¬ψ} ∪ {χ | ∃D ⊆ C (HDχ ∈ X ∧ ∀a ∈ D (f(a) = χ))}.

Proof. Suppose that pair (Y, Z) is not in harmony. Thus, by Definition 8,
there is a finite Z ′ ⊆ Z such that Y ` S∅¬∧Z ′. Since a derivation uses only
finitely many assumptions, there are formulae KCϕ1,KCϕ2 . . . ,KCϕn ∈ X
such that

ϕ1, ϕ2 . . . , ϕn ` S∅¬ ∧ Z ′.

Then, by the deduction theorem for propositional logic applied n times,

` ϕ1 → (ϕ2 → (· · · → (ϕn → S∅¬ ∧ Z ′) . . . )).

Hence, by Necessitation inference rule,

` KC(ϕ1 → (ϕ2 → (· · · → (ϕn → S∅¬ ∧ Z ′) . . . ))).

Then, by Distributivity axiom and Modus Ponens inference rule,

` KCϕ1 → KC(ϕ2 → (· · · → (ϕn → S∅¬ ∧ Z ′) . . . )).

Thus, by Modus Ponens inference rule,

KCϕ1 ` KC(ϕ2 → (· · · → (ϕn → S∅¬ ∧ Z ′) . . . )).

By repeating the previous two steps (n− 1) times,

KCϕ1,KCϕ2 . . . ,KCϕn ` KCS∅¬ ∧ Z ′.
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Hence, by the choice of formulae KCϕ1,KCϕ2, . . . ,KCϕn,

X ` KCS∅¬ ∧ Z ′. (14)

Since set Z ′ is a subset of set Z, by the choice of set Z, there must exist
formulae HD1χ1, . . . ,HDnχn ∈ X such that D1, . . . , Dn ⊆ C,

∀i ≤ n ∀a ∈ Di (f(a) = χi), (15)

and the following formula is a tautology, even if ¬ψ /∈ Z ′:

χ1 → (χ2 → . . . (χn → (¬ψ → ∧Z ′)) . . . ). (16)

Without loss of generality, we can assume that formulae χ1, . . . , χn are pair-
wise distinct.

Claim 1. Di ∩Dj = ∅ for each i, j ≤ n such that i 6= j.

Proof of Claim. Suppose the opposite. Then, there is a ∈ Di∩Dj. Thus,
χi = f(a) = χj by statement (15). This contradicts the assumption that
formulae χ1, . . . , χn are pairwise distinct. 2

Since formula (16) is a propositional tautology, by the law of contraposi-
tive, the following formula is also a propositional tautology:

χ1 → (χ2 → . . . (χn → (¬ ∧ Z ′ → ψ)) . . . ).

Thus, by Strategic Necessitation inference rule,

` H∅(χ1 → (χ2 → . . . (χn → (¬ ∧ Z ′ → ψ)) . . . )).

Hence, by Epistemic Cooperation axiom and Modus Ponens inference rule,

` HD1χ1 → H∅∪D1(χ2 → . . . (χn → (¬ ∧ Z ′ → ψ)) . . . ).

Then, by Modus Ponens inference rule,

HD1χ1 ` HD1(χ2 → . . . (χn → (¬ ∧ Z ′ → ψ)) . . . ).

By Epistemic Cooperation axiom, Claim 1, and Modus Ponens inference rule,

HD1χ1 ` HD2χ2 → HD1∪D2(. . . (χn → (¬ ∧ Z ′ → ψ)) . . . ).
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By Modus Ponens inference rule,

HD1χ1,HD2χ2 ` HD1∪D2(. . . (χn → (¬ ∧ Z ′ → ψ)) . . . ).

By repeating the previous two steps (n− 2) times,

HD1χ1,HD2χ2, . . . ,HDnχn ` HD1∪D2∪···∪Dn(¬ ∧ Z ′ → ψ).

Recall that HD1χ1,HD2χ2, . . . ,HDnχn ∈ X by the choice of HD1χ1, . . . ,
HDnχn. Thus, X ` HD1∪D2∪···∪Dn(¬∧Z ′ → ψ). Hence, because D1, . . . , Dn ⊆
C, by Lemma 3, X ` HC(¬ ∧ Z ′ → ψ). Then, X ` HCψ by Epistemic De-
terminicity axiom and statement (14). Since the set X is consistent, this
contradicts the assumption ¬HCψ ∈ X of the lemma. �

6.4. Complete Harmony

Definition 9. A pair in harmony (X, Y ) is in complete harmony if for each
ϕ ∈ Φ either ¬S∅ϕ ∈ X or ϕ ∈ Y .

Lemma 21. For each pair in harmony (X, Y ), there is a pair in complete
harmony (X ′, Y ′) such that X ⊆ X ′ and Y ⊆ Y ′.

Proof. Recall that the set of agent A is finite and the set of propositional
variables is countable. Thus, the set of all formulae Φ is also countable. Let
ϕ1, ϕ2, . . . be an enumeration of all formulae in Φ. We define two chains of
sets X1 ⊆ X2 ⊆ . . . and Y1 ⊆ Y2 ⊆ . . . such that pair (Xn, Yn) is in harmony
for each n ≥ 1. These two chains are defined recursively as follows:

1. X1 = X and Y1 = Y ,

2. if pair (Xn, Yn) is in harmony, then, by Lemma 19, either pair (Xn ∪
{¬S∅ϕn}, Yn) or pair (Xn, Yn ∪ {ϕn}) is in harmony. Let (Xn+1, Yn+1)
be (Xn ∪ {¬S∅ϕn}, Yn) in the former case and (Xn, Yn ∪ {ϕn}) in the
latter case.

Let X ′ =
⋃

nXn and Y ′ =
⋃

n Yn. Note that X = X1 ⊆ X ′ and Y = Y1 ⊆ Y ′.
We next show that pair (X ′, Y ′) is in harmony. Suppose the opposite.

Then, by Definition 8, there is a finite set Y ′′ ⊆ Y ′ such that X ′ ` S∅¬∧Y ′′.
Since a deduction uses only finitely many assumptions, there must exist
n1 ≥ 1 such that

Xn1 ` S∅¬ ∧ Y ′′. (17)
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At the same time, since set Y ′′ is finite, there must exist n2 ≥ 1 such that
Y ′′ ⊆ Yn2 . Let n = max{n1, n2}. Note that ¬ ∧ Y ′′ → ¬ ∧ Yn is a tautology
because Y ′′ ⊆ Yn2 ⊆ Yn. Thus, ` S∅(¬ ∧ Y ′′ → ¬ ∧ Yn) by Lemma 4. Then,
` S∅¬∧Y ′′ → S∅¬∧Yn by Cooperation axiom and Modus Ponens inference
rule. Hence, Xn1 ` S∅¬ ∧ Yn due to statement (17). Thus, Xn ` S∅¬ ∧ Yn,
because Xn1 ⊆ Xn. Then, pair (Xn, Yn) is not in harmony, which contradicts
the choice of pair (Xn, Yn). Therefore, pair (X ′, Y ′) is in harmony.

We finally show that pair (X ′, Y ′) is in complete harmony. Indeed, con-
sider any ϕ ∈ Φ. Since ϕ1, ϕ2, . . . is an enumeration of all formulae in Φ,
there must exist k ≥ 1 such that ϕ = ϕk. Then, by the choice of pair
(Xk+1, Yk+1), either ¬S∅ϕ = ¬S∅ϕk ∈ Xk+1 ⊆ X ′ or ϕ = ϕk ∈ Yk+1 ⊆ Y ′.
Therefore, pair (X ′, Y ′) is in complete harmony. �

6.5. Canonical Epistemic Transition System

In this section we fix a maximal consistent set of formulae X0 and define
a canonical epistemic transition system ETS(X0) = (W, {∼a}a∈A, V,M, π).

The standard technique for proving the completeness of S5 modal logic
consists in defining states of a Kripke model as maximal consistent sets of
formulae and specifying that relation s1 ∼a s2 holds if sets s1 and s2 have
the same formulae of the form Kaϕ. This approach, however, does not work
directly in the case of distributed knowledge version of S5. Indeed, in the
latter case, if s1 ∼a s2 and s1 ∼b s2, then we need sets s1 and s2 to share
not only formulae of the form Kaϕ and of the form Kbϕ, but also of the
form K{a,b}ϕ. A näıve way to achieve this is to require states s1 and s2 to
share formulae of form K{a,b}ϕ each time when need s1 ∼a s2 and s1 ∼b s2
both to be true. To achieve this, we define a canonical model, called the
canonical epistemic transition system, as a graph whose nodes are labeled
with maximal consistent sets and whose edges are labeled with coalitions. If
nodes s1 and s2 are connected by an edge labeled with coalition C, then we
require maximal consistent sets associated with nodes s1 and s2 to share all
formulae of the form KDϕ, where D ⊆ C. In fact, as we will see later, it
suffices just to share formulae of the form KCϕ.

Note, however, that the graph construction does not solve our problems
completely. Indeed, let us suppose that the graph, see Figure 10, in addition
to nodes s1 and s2, has nodes u and v such that edges (s1, u) and (u, s2)
are labeled with single-element coalition {a} and edges (s1, v) and (v, s2) are
labeled with single-element coalition {b}. Thus, on one hand sets s1 and
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s1 s2
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{b} {b}

{a}{a}

Figure 10: The graph construction.

s2 share Kaϕ formulae (through set u) and Kbϕ formulae (through state v),
but they do not, generally speaking, share formulae of the form K{a,b}ϕ. On
the other hand, we need them to share formulae K{a,b}ϕ because s1 ∼a s2
and s1 ∼b s2. More generally, such a situation happens if the graph has
two distinctive paths between nodes s1 and s2: edges along one path are
labeled with coalitions containing agent a and edges along the other path are
labeled with coalitions containing agent b. To avoid this situation, it suffices
to guarantee that the canonical models use trees instead of arbitrary graphs.
We achieve this by adopting the “unravelling” technique [34].

Although in the informal discussion above we talked about states as the
nodes of the tree, in the “unravelling” construction it is mathematically more
elegant to assume that states are paths that lead to the node from the root
of the tree. For the sake of simplicity, we still like to informally think about
states as the nodes. For example, see Figure 11, we talk about state X2

rather than state X0, {a, c}, X1, {a}, X2.

Definition 10. The set of epistemic states W consists of all finite sequences
X0, C1, X1, C2, . . . , Cn, Xn, such that

1. n ≥ 0,

2. Xi is a maximal consistent subset of Φ for each i ≥ 1,

3. Ci is a coalition for each i ≥ 1,

4. {ϕ | KCi
ϕ ∈ Xi−1} ⊆ Xi for each i ≥ 1.

We say that two nodes of the tree are indistinguishable to an agent a if
every edge along the unique path connecting these two nodes is labeled with
a coalition containing agent a. For example, in Figure 11, nodes X3 (tech-
nically, state X0, {a, b, c}, X3) and node X2 are indistinguishable to agent a
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{a} {b,c}

Figure 11: A Fragment of the Canonical Epistemic Transition System

because a ∈ {a, b, c}. At the same time, nodes X3 and X4 are distinguish-
able to agent a because edge between nodes X1 and X4 is not labeled with
a. However, nodes X3 and X4 are indistinguishable to agent c.

Definition 11. For any state w = X0, C1, X1, C2, . . . , Cn, Xn and any state
w′ = X0, C

′
1, X

′
1, C

′
2, . . . , C

′
m, X

′
m, let w ∼a w

′ if there is an integer k such
that

1. 0 ≤ k ≤ min{n,m},
2. Xi = X ′i for each i such that 1 ≤ i ≤ k,

3. Ci = C ′i for each i such that 1 ≤ i ≤ k,

4. a ∈ Ci for each i such that k < i ≤ n,

5. a ∈ C ′i for each i such that k < i ≤ m.

Lemma 22. Relation ∼a is an equivalence relation on set W for each a ∈ A.

Proof. Relation “connected by a path labeled with agent a” is a reflexive,
symmetric, and transitive relation on nodes of an arbitrary labeled graph. �

For any state w = X0, C1, X1, C2, . . . , Cn, Xn, by hd(w) we denote the set
Xn. The abbreviation hd stands for “head”.

Lemma 23. For any w = X0, C1, X1, C2, . . . , Cn, Xn ∈ W and any integer
k ≤ n, if KCϕ ∈ Xn and C ⊆ Ci for each integer i such that k < i ≤ n, then
KCϕ ∈ Xk.

Proof. Suppose that there is k ≤ n such that KCϕ /∈ Xk. Let m be the
maximal such k. Note that m < n due to the assumption KCϕ ∈ Xn of the
lemma. Thus, m < m+ 1 ≤ n.
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Assumption KCϕ /∈ Xm implies ¬KCϕ ∈ Xm due to the maximality of
the set Xm. Hence, Xm ` KC¬KCϕ by Negative Introspection axiom. Thus,
Xm ` KCm+1¬KCϕ by the Monotonicity axiom and the assumption C ⊆ Cm+1

of the lemma (recall that m + 1 ≤ n). Then, KCm+1¬KCϕ ∈ Xm due to the
maximality of the set Xm. Hence, ¬KCϕ ∈ Xm+1 by Definition 10. Thus,
KCϕ /∈ Xm+1 due to the consistency of the set Xm+1, which is a contradiction
with the choice of integer m. �

Lemma 24. For any w = X0, C1, X1, C2, . . . , Cn, Xn ∈ W and any integer
k ≤ n, if KCϕ ∈ Xk and C ⊆ Ci for each integer i such that k < i ≤ n, then
ϕ ∈ Xn.

Proof. We prove the lemma by induction on the distance between n and k.
In the base case n = k. Then the assumption KCϕ ∈ Xn implies Xn ` ϕ by
Truth axiom. Therefore, ϕ ∈ Xn due to the maximality of set Xn.

Suppose that k < n. Assumption KCϕ ∈ Xk implies Xk ` KCKCϕ by
Lemma 14. Thus, Xk ` KCk+1

KCϕ by the Monotonicity axiom, the condition
k < n of the inductive step, and the assumption C ⊆ Ck+1 of the lemma.
Then, KCk+1

KCϕ ∈ Xk by the maximality of set Xk. Hence, KCϕ ∈ Xk+1 by
Definition 10. Therefore, ϕ ∈ Xn by the induction hypothesis. �

Lemma 25. If KCϕ ∈ hd(w) and w ∼C w
′, then ϕ ∈ hd(w′).

Proof. The statement follows from Lemma 23, Lemma 24, and Definition 11
because there is a unique path between any two nodes in a tree. �

At the beginning of Section 6.2, we discussed that if a parent node con-
tains a modal formula ¬2ψ, then it must have a child node containing for-
mula ¬ψ. Lemma 15 in Section 6.2 provides a foundation for constructing
such a child node for modality KC . The proof of the next lemma describes
the construction of the child node for this modality.

Lemma 26. If KCϕ /∈ hd(w), then there is an epistemic state w′ ∈ W such
that w ∼C w

′ and ϕ /∈ hd(w′).

Proof. Assumption KCϕ /∈ hd(w) implies that ¬KCϕ ∈ hd(w) due to
the maximality of the set hd(w). Thus, by Lemma 15, set Y0 = {¬ϕ} ∪
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{ψ | KCψ ∈ hd(w)} is consistent. Let Y be a maximal consistent extension
of set Y0 and w′ be sequence w,C, Y . In other words, sequence w′ is an
extension of sequence w by two additional elements: C and Y . Note that
w′ ∈ W due to Definition 10 and the choice of set Y0. Furthermore, w ∼C w

′

by Definition 11. To finish the proof, we need to show that ϕ /∈ hd(w′).
Indeed, ¬ϕ ∈ Y0 ⊆ Y = hd(w′) by the choice of Y0. Therefore, ϕ /∈ hd(w′)
due to the consistency of the set hd(w′). �

In the next two definitions we specify the domain of votes and the vote
aggregation mechanism of the canonical transition system. Informally, a vote
(ϕ,w) of each agent consists of two components: the actual vote ϕ and a key
w. The actual vote ϕ is a formula from Φ in support of what the agent
votes. Recall that the agent does not know in which exact state the system
is, she only knows the equivalence class of this state with respect to the
indistinguishability relation. The key w is the agent’s guess of the epistemic
state where the system is. Informally, agent’s vote has more power to force
the formula to be satisfied in the next state if she guesses the current state
correctly.

Although each agent is free to vote for any formula she likes, the vote
aggregation mechanism would grant agent’s wish only under certain circum-
stances. Namely, if the system is in state w and set hd(w) contains formula
SCϕ, then the mechanism guarantees that formula ϕ is satisfied in the next
state as long as each member of coalition C votes for formula ϕ and correctly
guesses the current epistemic state. In other words, in order for formula ϕ
to be guaranteed in the next state all members of the coalition C must cast
vote (ϕ,w). This means that if SCϕ ∈ hd(w), then coalition C has a strat-
egy to force ϕ in the next state. Since the strategy requires each member
of the coalition to guess correctly the current state, such a strategy is not a
know-how strategy.

The vote aggregation mechanism is more forgiving if the epistemic state w
contains formula HCϕ. In this case the mechanism guarantees that formula ϕ
is satisfied in the next state if all members of the coalition vote for formula ϕ;
it does not matter if they guess the current state correctly or not. This means
that if HCϕ ∈ hd(w), then coalition C has a know-how strategy to force ϕ in
the next state. The strategy consists in each member of the coalition voting
for formula ϕ and specifying an arbitrary epistemic state as the key.

Formal definitions of the domain of choices and of the vote aggregation
mechanism in the canonical epistemic transition system are given below.
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Definition 12. The domain of choices V is Φ×W .

For any pair u = (x, y), let pr1(u) = x and pr2(u) = y.

Definition 13. The mechanism M of the canonical model is the set of all
tuples (w, {sa}a∈A, w′) such that for each formula ϕ ∈ Φ and each coalition
C,

1. if SCϕ ∈ hd(w) and sa = (ϕ,w) for each a ∈ C, then ϕ ∈ hd(w′), and

2. if HCϕ ∈ hd(w) and pr1(sa) = ϕ for each a ∈ C, then ϕ ∈ hd(w′).

The next two lemmas prove that the vote aggregation mechanism specified
in Definition 13 acts as discussed in the informal description given earlier.

Lemma 27. Let w,w′ ∈ W be epistemic states, SCϕ ∈ hd(w) be a formula,
and s = {sa}a∈C be a strategy profile of coalition C. If w →s w

′ and sa =
(ϕ,w) for each a ∈ C, then ϕ ∈ hd(w′).

Proof. Suppose that w →s w
′. Thus, by Definition 6, there is a strategy pro-

file s′ = {s′a}a∈A ∈ V A such that s′a = sa for each a ∈ C and (w, s′, w′) ∈M .
Therefore, ϕ ∈ hd(w′) by Definition 13 and the assumption sa = (ϕ,w) for
each a ∈ C. �

Lemma 28. Let w,w′, w′′ ∈ W be epistemic states, HCϕ ∈ hd(w) be a for-
mula, and s = {sa}a∈C be a strategy profile of coalition C. If w ∼C w′,
w′ →s w

′′, and pr1(sa) = ϕ for each a ∈ C, then ϕ ∈ hd(w′′).

Proof. Suppose that HCϕ ∈ hd(w). Thus, hd(w) ` KCHCϕ by Lemma 1.
Hence, KCHCϕ ∈ hd(w) due to the maximality of the set hd(w). Thus,
HCϕ ∈ hd(w′) by Lemma 25 and the assumption w ∼C w′. By Definition 6,
assumption w′ →s w

′′ implies that there is a strategy profile s′ = {s′a}a∈A
such that s′a = sa for each a ∈ C and (w′, s′, w′′) ∈ M . Since HCϕ ∈ hd(w′),
pr1(s

′
a) = pr1(sa) = ϕ for each a ∈ C, and (w′, s′, w′′) ∈ M , we have

ϕ ∈ hd(w′′) by Definition 13. �

The lemma below provides a construction of a child node for modality
SC . Although the proof follows the outline of the proof of Lemma 26 for
modality KC , it is significantly more involved because of the need to show
that a transition from a parent node to a child node satisfies the constraints
of the vote aggregation mechanism from Definition 13.
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Lemma 29. For any epistemic state w ∈ W , any formula ¬SCψ ∈ hd(w),
and any strategy profile s = {sa}a∈C ∈ V C, there is a state w′ ∈ W such that
w →s w

′ and ψ /∈ hd(w′).

Proof. Let Y0 be the following set of formulae

{¬ψ} ∪ {ϕ | ∃D ⊆ C(SDϕ ∈ hd(w) ∧ ∀a ∈ D(pr1(sa) = ϕ))}.

We first show that set Y0 is consistent. Suppose the opposite. Thus, there
must exist formulae ϕ1, . . . , ϕn ∈ Y0 and subsets D1, . . . , Dn ⊆ C such that
(i) SDi

ϕi ∈ hd(w) for each integer i ≤ n, (ii) pr1(sa) = ϕi for each i ≤ n and
each a ∈ Di, and (iii) set {¬ψ, ϕ1, . . . , ϕn} is inconsistent. Without loss of
generality we can assume that formulae ϕ1, . . . , ϕn are pairwise distinct.

Claim 2. Sets Di and Dj are disjoint for each i 6= j.

Proof of Claim. Assume that d ∈ Di ∩ Dj, then pr1(sd) = ϕi and
pr1(sd) = ϕj. Hence, ϕi = ϕj, which contradicts the assumption that formu-
lae ϕ1, . . . , ϕn are pairwise distinct. Therefore, sets Di and Dj are disjoint
for each i 6= j. 2

By Lemma 16, it follows from Claim 2 that set Y0 is consistent. Let Y
be any maximal consistent extension of Y0 and w′ be the sequence w,∅, Y .
In other words, w′ is an extension of sequence w by two additional elements:
∅ and Y .

Claim 3. w′ ∈ W .

Proof of Claim. By Definition 10, it suffices to show that, for each formula
ϕ ∈ Φ, if K∅ϕ ∈ hd(w), then ϕ ∈ Y . Indeed, suppose that K∅ϕ ∈ hd(w).
Thus, hd(w) ` H∅ϕ by Empty Coalition axiom. Hence, hd(w) ` S∅ϕ by
Strategic Truth axiom. Then, S∅ϕ ∈ hd(w) due to the maximality of set
hd(w). Therefore, ϕ ∈ Y0 ⊆ Y by the choice of sets Y0 and Y . 2

Let > be any propositional tautology. For example, > could be formula
ψ → ψ. Define strategy profile s′ = {s′a}a∈A as follows

s′a =

{
sa, if a ∈ C,
(>, w), otherwise.

(18)

Claim 4. For any formula ϕ ∈ Φ and any D ⊆ A, if SDϕ ∈ hd(w) and
s′a = (ϕ,w) for each a ∈ D, then ϕ ∈ hd(w′).
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Proof of Claim. Consider any formula ϕ ∈ Φ and any set D ⊆ A such
that SDϕ ∈ hd(w) and s′a = (ϕ,w) for each agent a ∈ D. We need to show
that ϕ ∈ hd(w′).
Case 1: D ⊆ C. In this case, sa = s′a = (ϕ,w) for each a ∈ D by defini-
tion (18). Thus, ϕ ∈ Y0 ⊆ Y = hd(w′) by the choice of set Y0.
Case 2: There is a0 ∈ D such that a0 /∈ C. Then, s′a0 = (>, w) by def-
inition (18). Note that s′a0 = (ϕ,w) by the choice of the set D. Thus,
(>, w) = (ϕ,w). Hence, formula ϕ is the tautology >. Therefore, ϕ ∈ hd(w′)
because set hd(w′) is maximal. 2

Claim 5. For any formula ϕ ∈ Φ and any D ⊆ A, if HDϕ ∈ hd(w) and
pr1(s

′
a) = ϕ for each a ∈ D, then ϕ ∈ hd(w′).

Proof of Claim. Consider any formula ϕ ∈ Φ and any set D ⊆ A such
that HDϕ ∈ hd(w) and pr1(s

′
a) = ϕ for each agent a ∈ D. We need to show

that ϕ ∈ hd(w′).
Case 1: D ⊆ C. In this case, pr1(sa) = pr1(s

′
a) = ϕ for each agent a ∈ D by

definition (18) and the choice of set D. Thus, ϕ ∈ Y0 ⊆ Y = hd(w′) by the
choice of set Y0.
Case 2: There is agent a0 ∈ D such that a0 /∈ C. Then, s′a0 = (>, w) by
definition (18). Note that pr1(s

′
a0

) = ϕ by the choice of set D. Thus, > = ϕ.
Hence, formula ϕ is the tautology >. Therefore, ϕ ∈ hd(w′) because set
hd(w′) is maximal. 2

By Definition 13, Claim 4 and Claim 5 together imply that (w, s′, w′) ∈
M . Hence, w →s w

′ by Definition 6 and definition (18). To finish the proof
of the lemma, note that ψ /∈ hd(w′) because set hd(w′) is consistent and
¬ψ ∈ Y0 ⊆ Y = hd(w′). �

The next lemma shows the construction of a child node for modality
HC . The proof is similar to the proof of Lemma 29 except that, instead
of constructing a single child node, we construct two sibling nodes that are
in complete harmony. The intuition was discussed at the beginning of Sec-
tion 6.3.

Lemma 30. For any state w ∈ W , any formula ¬HCψ ∈ hd(w), and any
strategy profile s = {sa}a∈C ∈ V C, there are epistemic states w′, w′′ ∈ W
such that ψ /∈ hd(w′′), w ∼C w

′, and w′ →s w
′′.
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Proof. By Definition 12, for each a ∈ C, vote sa is a pair. Let

Y = {ϕ | KCϕ ∈ hd(w)}, and

Z = {¬ψ} ∪ {ϕ | ∃D ⊆ C (HDϕ ∈ hd(w) ∧ ∀a ∈ D (pr1(sa) = ϕ))}.

By Lemma 20 where f(x) = pr1(sx), pair (Y, Z) is in harmony. By Lemma 21,
there is a pair (Y ′, Z ′) in complete harmony such that Y ⊆ Y ′ and Z ⊆ Z ′.
By Lemma 17 and Lemma 18, sets Y ′ and Z ′ are consistent. Let Y ′′ and Z ′′

be maximal consistent extensions of sets Y ′ and Z ′, respectively.
Recall that set A is finite. Thus, set C ⊆ A is also finite. Let integer n be

the cardinality of set C. Consider (n+ 1) sequences w1, w2, . . . , wn+1, where
sequence wk is an extension of sequence w that adds 2k additional elements:

w1 = w,C, Y ′′

w2 = w,C, Y ′′, C, Y ′′

w3 = w,C, Y ′′, C, Y ′′, C, Y ′′

. . .

wn+1 = w,C, Y ′′, . . . , C, Y ′′︸ ︷︷ ︸
2(n+1) elements

.

Claim 6. wk ∈ W for each k ≤ n+ 1.

Proof of Claim. We prove the claim by induction on integer k.
Base Case: By Definition 10, it suffices to show that if KCϕ ∈ hd(w), then
ϕ ∈ hd(w1). Indeed, if KCϕ ∈ hd(w), then ϕ ∈ Y by the choice of set Y .
Therefore, ϕ ∈ Y ⊆ Y ′ ⊆ Y ′′ = hd(w1).
Induction Step: By Definition 10, it suffices to show that if KCϕ ∈ hd(wk),
then ϕ ∈ hd(wk+1) for each k ≥ 1. In other words, we need to prove that if
KCϕ ∈ Y ′′, then ϕ ∈ Y ′′, which follows from Truth axiom and the maximality
of set Y ′′. 2

By the pigeonhole principle, there is i0 ≤ n such that pr2(sa) 6= wi0 for
all a ∈ C. Let w′ be epistemic state wi0 . Thus,

pr2(sa) 6= w′ for each a ∈ C. (19)

Let w′′ be the sequence w,∅, Z ′′. In other words, sequence w′′ is an
extension of sequence w by two additional elements: ∅ and Z ′′. Finally, let
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strategy profile s′ = {s′a}a∈A be defined as follows

s′a =

{
sa, if a ∈ C,
(>, w′), otherwise.

(20)

Claim 7. w′′ ∈ W .

Proof of Claim. By Definition 10, it suffices to show that if K∅ϕ ∈ hd(w),
then ϕ ∈ hd(w′′) for each formula ϕ ∈ Φ. Indeed, by Empty Coalition axiom,
assumption K∅ϕ ∈ hd(w) implies that hd(w) ` H∅ϕ. Hence, H∅ϕ ∈ hd(w)
by the maximality of the set hd(w). Thus, ϕ ∈ Z by the choice of set Z.
Therefore, ϕ ∈ Z ⊆ Z ′ ⊆ Z ′′ = hd(w′′). 2

Claim 8. w ∼C w
′.

Proof of Claim. By Definition 11, w ∼C wi for each integer i ≤ n+ 1. In
particular, w ∼C wi0 = w′. 2

Claim 9. ψ /∈ hd(w′′).

Proof of Claim. Note that ¬ψ ∈ Z by the choice of set Z. Thus,
¬ψ ∈ Z ⊆ Z ′ ⊆ Z ′′ = hd(w′′). Therefore, ψ /∈ hd(w′′) due to the consistency
of the set hd(w′′). 2

Claim 10. Let ϕ be a formula in Φ and D be a subset of A. If SDϕ ∈ hd(w′)
and s′a = (ϕ,w′) for each a ∈ D, then ϕ ∈ hd(w′′).

Proof of Claim. Note that either set D is empty or it contains an element
a0. In the latter case, element a0 either belongs or does not belong to set C.
Case I: D = ∅. Recall that pair (Y ′, Z ′) is in complete harmony. Thus, by
Definition 9, either ¬S∅ϕ ∈ Y ′ ⊆ Y ′′ = hd(w′) or ϕ ∈ Z ′ ⊆ Z ′′ = hd(w′′).
Assumption SDϕ ∈ hd(w′) implies that ¬S∅ϕ /∈ hd(w′) due to the consistency
of the set hd(w′) and the assumption D = ∅ of the case. Therefore, ϕ ∈
hd(w′′).
Case II: there is an element a0 ∈ C ∩D. Thus, a0 ∈ C. Hence, pr2(sa0) 6= w′

by inequality (19). Then, sa0 6= (ϕ,w′). Thus, s′a0 6= (ϕ,w′) by defini-
tion (20). Recall that a0 ∈ C ∩ D ⊆ D. This contradicts the assumption
that s′a = (ϕ,w′) for each a ∈ D.
Case III: there is an element a0 ∈ D \ C. Thus, s′a0 = (>, w′) by defini-
tion (20). At the same time, s′a0 = (ϕ,w′) by the second assumption of
the claim. Hence, formula ϕ is the propositional tautology >. Therefore,
ϕ ∈ hd(w′′) due to the maximality of the set hd(w′′). 2
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Claim 11. Let ϕ be a formula in Φ and D be a subset of A. If HDϕ ∈ hd(w′)
and pr1(s

′
a) = ϕ for each a ∈ D, then ϕ ∈ hd(w′′).

Proof of Claim.
Case I: D ⊆ C. Suppose that pr1(s

′
a) = ϕ for each a ∈ D and HDϕ ∈ hd(w′).

Thus, ϕ ∈ Z by the choice of set Z. Therefore, ϕ ∈ Z ⊆ Z ′ ⊆ Z ′′ = hd(w′′).
Case II: D * C. Consider any a0 ∈ D \ C. Note that s′a0 = (>, w′) by
definition (20). At the same time, pr1(s

′
aa) = ϕ by the second assumption

of the claim. Hence, formula ϕ is the propositional tautology >. Therefore,
ϕ ∈ hd(w′′) due to the maximality of the set hd(w′′). 2

Claim 10 and Claim 11, by Definition 13, imply that (w′, {s′a}a∈A, w′′) ∈
M . Thus, w′ →s w

′′ by Definition 6 and definition (20). This together with
Claim 6, Claim 7, Claim 8, and Claim 9 completes the proof of the lemma. �

Definition 14. π(p) = {w ∈ W | p ∈ hd(w)}.

This concludes the definition of tuple (W, {∼a}a∈A, V,M, π).

Lemma 31. Tuple (W, {∼a}a∈A, V,M, π) is an epistemic transition system.

Proof. By Definition 1, it suffices to show that for each w ∈ W and each
s ∈ V A there is w′ ∈ W such that (w, s, w′) ∈M .

Recall that set A is finite. Thus, ` ¬SA⊥ by Nontermination axiom.
Hence, ¬SA⊥ ∈ hd(w). By Lemma 29, there is w′ ∈ W such that w →s w

′.
Therefore, (w, s, w′) ∈M by Definition 6. �

Lemma 32. w  ϕ iff ϕ ∈ hd(w) for each epistemic state w ∈ W and each
formula ϕ ∈ Φ.

Proof. We prove the lemma by induction on the structural complexity of
formula ϕ. If formula ϕ is a propositional variable, then the required follows
from Definition 7 and Definition 14. The cases of formula ϕ being a nega-
tion or an implication follow from Definition 7, and the maximality and the
consistency of the set hd(w) in the standard way.

Let formula ϕ have the form KCψ.
(⇒) Suppose that KCψ /∈ hd(w). Then, by Lemma 26, there is w′ ∈ W such
that w ∼C w′ and ψ /∈ hd(w′). Hence, w′ 1 ψ by the induction hypothesis.
Therefore, w 1 KCψ by Definition 7.
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(⇐) Assume that KCψ ∈ hd(w). Consider any w′ ∈ W such that w ∼C w′.
By Definition 7, it suffices to show that w′  ψ. Indeed, ψ ∈ hd(w′) by
Lemma 25. Therefore, by the induction hypothesis, w′  ψ.

Let formula ϕ have the form SCψ.
(⇒) Suppose that SCψ /∈ hd(w). Then, ¬SCψ ∈ hd(w) due to the maximality
of the set hd(w). Hence, by Lemma 29, for any strategy profile s ∈ V C , there
is an epistemic state w′ ∈ W such that w →s w

′ and ψ /∈ hd(w′). Thus, by
the induction hypothesis, for any strategy profile s ∈ V C , there is a state
w′ ∈ W such that w →s w

′ and w′ 1 ψ. Then, w 1 SCψ by Definition 7.
(⇐) Assume that SCψ ∈ hd(w). Consider strategy profile s = {sa}a∈C ∈ V C

such that sa = (ψ,w) for each a ∈ C. By Lemma 27, for any epistemic state
w′ ∈ W , if w →s w

′, then ψ ∈ hd(w′). Hence, by the induction hypothesis,
for any epistemic state w′ ∈ W , if w →s w

′, then w′  ψ. Therefore, w  SCψ
by Definition 7.

Finally, let formula ϕ have the form HCψ.
(⇒) Suppose that HCψ /∈ hd(w). Then, ¬HCψ ∈ hd(w) due to the maximal-
ity of the set hd(w). Hence, by Lemma 30, for any strategy profile s ∈ V C ,
there are epistemic states w′, w′′ ∈ W such that w ∼C w′, w′ →s w

′′, and
ψ /∈ hd(w′′). Thus, w′′ 1 ψ by the induction hypothesis. Therefore, w 1 HCψ
by Definition 7.
(⇐) Assume that HCψ ∈ hd(w). Consider a strategy profile s = {sa}a∈C ∈
V C such that sa = (ψ,w) for each a ∈ C. By Lemma 28, for all epistemic
states w′, w′′ ∈ W , if w ∼C w′, and w′ →s w

′′, then ψ ∈ hd(w′′). Hence, by
the induction hypothesis, w′′  ψ. Therefore, w  HCψ by Definition 7. �

6.6. Completeness: the Final Step

To finish the proof of Theorem 2 stated at the beginning of Section 6,
suppose that 0 ϕ. Let X0 be any maximal consistent subset of set Φ such
that ¬ϕ ∈ X0. Consider the canonical epistemic transition system ETS(X0)
defined in Section 6.5. Let w be the single-element sequence X0. Note that
w ∈ W by Definition 10. Thus, w  ¬ϕ by Lemma 32. Therefore, w 1 ϕ by
Definition 7.

Note that Theorem 2 can be stated an proven in a slightly more general
form known as string completeness theorem:

Theorem 3 (strong completeness). For any (possibly infinite) set of for-
mulae X ⊆ Φ and any formula ϕ ∈ Φ, if X 0 ϕ, then there is an epistemic
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state w of an epistemic transition system such that w  χ for each formula
χ ∈ X and w 1 ϕ.

The proof of Theorem 3 is identical to the proof of Theorem 2 except for X0

must be a maximal consistent extension of set X ∪ {¬ϕ}.

7. Conclusion

We proposed a sound and complete logic system that captures an in-
terplay between the distributed knowledge, coalition strategies, and how-to
strategies. This article is an extended version of our previous conference pa-
per [32], which contained the same results, but did not include the proofs of
the soundness and the completeness. The completeness proof is significantly
different from standard proofs of completeness in modal logic because of the
peculiarity of know-how modality H. According to item 6 of Definition 7, if
w 1 HCϕ, then there are two epistemic states w′ and w′′ that satisfy cur-
tain conditions (while in the case of S5 and most of other standard modal
logics, only one state w′ is required in a similar situation). Furthermore,
the states w′ and w′′ had to be constructed simultaneously because of the
inter-dependency between them imposed by Definition 7. To achieve this, we
developed a new technique that we call “harmony”. This technique is one
of the main contributions of this article. In our upcoming paper [31], this
technique is adapted and refined for second-order know-how strategies.

In the future work we hope to explore know-how strategies of nonho-
mogeneous coalitions in which different members contribute differently to
the goals of the coalition. For example, “incognito” members of a coalition
might contribute only by sharing information, while “open” members also
contribute by voting. It would also be interesting to investigate the compu-
tational complexity of this logic and alternative inference frameworks such
as modal and description logics to design tableau algorithms for automated
reasoning. Another direction may be the consideration of different types of
coalition knowledge, such as common knowledge. Finally, one could study
the interplay of knowledge and coalition power in a logic where strategies are
first class citizen.
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