
Knowledge in Communication Networks

Pavel G. Naumov⋆ Jia Tao∗

January 28, 2016

Abstract

The article investigates epistemic properties of information flow under
communication protocols with a given topological structure of the commu-
nication network. The main result is a sound and complete logical system
that describes all such properties. The system consists of a variation of
the multi-agent epistemic logic S5 extended by a new network-specific
Gateway axiom.

1 Introduction

In this article we study epistemic properties of communication protocols. Con-
sider, for example, a protocol P1 between agents p, q, u, and v. Under this
protocol, agent p communicates to agent q a message over a secure commu-
nication channel m. Next, agent q must communicate the same message over
insecure channels to agent u. To achieve this, agent q chooses a random one-
time encryption pad (“key”) and computes a ciphertext as a bit-wise sum of the
message and the key modulo 2. Agent q then sends the key and the ciphertext
to agent u over insecure channels k and c accordingly. Finally, agent u, upon re-
ceiving the key and the ciphertext, computes a bit-wise sum of these two strings
modulo 2 and communicates the result over a secure channel m′ to agent v.

01001

11001

c

01001

p q u v
m

k

10000 m'

Figure 1: Run r1 of protocol P1.

⋆ Department of Computer Science, Illinois Wesleyan University, Bloomington, Illinois,
the United States, pavel@pavelnaumov.com

∗ Department of Computer Science, The College of New Jersey, Ewing, New Jersey, the
United States, taoj@tcnj.edu

1

A run of a protocol is an assignment of values to all communication channels
that satisfy the restrictions imposed by the protocol. An example of a run r1
of protocol P1 is depicted in Figure 1. Note that for any run satisfying the
restrictions of P1, the value of channel m is the same as the value of channel
m′. Thus, any outside observer who can eavesdrop on channel m under run r1
would be able to learn that channel m′ has a value of 01001 on this run. Using
epistemic modal logic notations1, we write this as

r1 ⊩ 2m(m′ = 01001).

At the same time, since there is no connection between the values of the
ciphertext c and the original message m, an external observer eavesdropping on
channel c would not be able to deduce the value of channel m′:

r1 ⊩ ¬2c(m
′ = 01001). (1)

Similarly,
r1 ⊩ ¬2k(m

′ = 01001). (2)

We now consider a variation of protocol P1 that we call P2. Under the
second protocol agents q and u are allowed to make a mistake in at most one bit
during the encryption and the decryption stages respectively. In other words,
the Hamming distance between the value of channel c and the bit-wise sum
of values of channels m and k is no more than one. Similarly, the Hamming
distance between the value of channel m′ and the bit-wise sum of values of
channels c and k is no more than one. An example of a run r2 of protocol P2 is
depicted on Figure 2.

01001

11001

c

11101

p q u v
m

k

10100 m'

Figure 2: Run r2 of protocol P2.

Note that run r1 is also a valid run of protocol P2. Thus, an external observer
eavesdropping on channel m on run r2 is not able to distinguish run r2 from
run r1. Hence, such an observer would not be able to conclude that the value
of m′ is 11101. Therefore, under protocol P2,

r2 ⊩ ¬2m(m′ = 11101).

At the same time, an external observer eavesdropping on channel m on run r2
of protocol P2 should be able to conclude that the value of channel m′ is not

1Similarly to Kane and Naumov [1], we interpret modality 2m as “any outside observer
who can eavesdrop on channel m knows that . . . ”, instead of more traditional “agent m knows
that . . . ” [2].

2

01110 because the Hamming distance between 01001 and 01110 is three and,
according to the restrictions of protocol P2, errors could be introduced in at
most two bits during the encryption and the decryption stages combined:

r2 ⊩ 2m(m′ ̸= 01110).

We now consider another variation of protocol P1 that we call P3, see Fig-
ure 3. The original messagem in this protocol is first encrypted into a cyphertext
c using a key k, then it is recovered as m′, then again encrypted and recovered
as m′′. A single bit-error could be introduced by each encryption and decryp-
tion stage. Thus, the Hamming distance between strings m and m′′ could be at
most four. Figure 3 shows a possible run r3 of this protocol.

01001
11001

c

11101
11011

c'

11000

p q u v s tm
k

10100 m'
k'

00111 m''

Figure 3: Run r3 of protocol P3.

An external observer eavesdropping on channel m on run r3 under P3 would
not be able to know the exact value of m′. However, it would know that the
value of channel m′ is at a Hamming distance no more than two from the value
of m. Note that the Hamming distance between the value of m and the string
10110 is five. Thus, due to the triangle inequality, the observer would be able
to conclude that the Hamming distance between the value of m′ and the string
10110 is at least three. Based on this, the observer would be able to conclude
that any other observer eavesdropping on channelm′ should know that the value
of m′′ is not equal to 10110:

r3 ⊩ 2m2m′(m′′ ̸= 10110).

So far we have discussed epistemic properties of individual runs. A property
which is true on one run does not have to be true on another. For example, the
above formula 2m2m′(m′′ ̸= 10110) is not true on any run in which the value of
channel m is 10110. However, a similar property is true on all runs of protocol
P3:

(m = 01001) → 2m2m′(m′′ ̸= 10110). (3)

Another property true for all runs of protocol P3 is

2m′(m ̸= 00000) → 2m′(m′′ ̸= 00000). (4)

Indeed, the assumption 2m′(m ̸= 00000) tells us that an observer of channel
m′ on the current run can conclude that m ̸= 00000. Since at most two mis-
takes can be introduced between channels m and m′, we can conclude that the

3

message that the observer sees on channel m′ contains at least three digits of 1.
Therefore, for a similar reason, this observer will conclude that m′′ ̸= 00000.

A property true for all runs of one protocol does not have to be true for all
runs of some other protocols. For example, property (3) is false under protocol
where up to two bits could be corrupted during each encryption and each de-
cryption stage. Property (4) is not true under a protocol where agents q and u,
unlike agents s and t, are not allowed to make mistakes.

In this article we study epistemic properties common to all protocols that
have the same topological structure2 of communication networks. Consider, for
example, property

2m(m′′ ̸= 00000) → 2m′(m′′ ̸= 00000). (5)

We will see later in this article that this property is true for each protocol
where, as in Figure 3, communication between channels m and m′′ happens
only through channel m′.

The above formula (5) involves inequality. Neither inequality nor equality
is a part of the language of our system. We only allow propositional symbols
as atomic statements. An example of an epistemic property common to all
protocols with the network topology depicted in Figure 3 expressible in our
language is: 2m2m′′φ→ 2m′2m′′φ. (6)

Informally, this property states that if any observer eavesdropping on channel
m is able to deduce that any other observer eavesdropping on channel m′′ can
conclude that some property φ is true, then the same deduction can be made
by any observer eavesdropping on channel m′ on the same run. This property,
as shown in Example 3, is a special case of our Gateway axiom. We prove the
soundness of Gateway axiom with respect to a formally defined semantics in
Section 6.

Another, perhaps surprising, example of a property common to all protocols
with the network topology depicted in Figure 3 is:

2m′(2mφ ∨ 2m′′ψ) → 2m′2mφ ∨ 2m′2m′′ψ. (7)

Generally speaking, the knowledge of a disjunction of two formulas does not
imply the knowledge of either of the two disjuncts. The above formula, however,
states that this is true when the disjunct talks about the knowledge of observers
located on different sides of channel m′. In Section 5, we prove a more general
form of property (7).

An epistemic logic for reasoning about communication graphs was proposed
by Pacuit and Parikh [3]. Their language consists of two different modalities:
an epistemic modality Ka labeled by an agent a and a modality 2 interpreted
as “after any sequence of communications under the given protocol it is true
that”. They discussed logical principles specific to a given network topology

2As we formally define in the next section, the topological structure of a communication
network is an undirected graph with multiple edges.

4

and even gave, in the introduction, a principle similar to our Gateway axiom.
However, they did not provide a complete axiomatization of their logical system
for a specific topology, even though they proved its decidability.

Kane and Naumov [1] proposed a similar logical system whose language
contains only epistemic modality. They eliminated modality “after any sequence
of communications” by assuming that all statements refer to the final knowledge
after the communication. In this simplified setting they have been able to prove
completeness theorem, but only for the case of linear communication networks.

This article extends Kane and Naumov’s work from linear communication
chains to arbitrary connected graphs. The logical system introduced in [1]
contained two principles capturing topology of linear communication chains:
Gateway axiom and Disjunction axiom, similar to properties (6) and (7) above.
The more general version of Gateway axiom described in the current article no
longer requires Disjunction property as a separate axiom. Instead, we prove
this property from the more general version of Gateway axiom in Lemma 2.
More importantly, the proof of the completeness theorem for non-linear graphs
is completely different from the proof of completeness for linear communication
chains. In the case of the proof of completeness for linear communication chains,
if an observer of channel m knows certain information about channel m′, then
it is enough to simply pass this information along the interval between channels
m and m′. However, the same technique does not apply to non-linear graphs.
As we have demonstrated with protocol P1 and properties (1) and (2), in non-
linear graphs an observer of channel m might know certain information about
channel m′ without anyone between them knowing this information. To be able
to prove completeness for non-linear graphs we introduce a new network flow
construction described in Section 7.

An applied value of the result in this article is in providing a uniform protocol
design procedure for communication networks. Namely, suppose that one needs
to design a protocol for a network that satisfies security conditions φ1,. . . , φn

expressed in our modal language. Assume additionally that the physical layout
(topological structure) of the network is given and can not be changed. In
such a setting, the protocol designer should be able to either (i) derive formula∧

i≤n φi → ⊥ in our logical system and, thus, prove that the specification of
the protocol can not be met, or (ii) use the construction from our proof of
completeness to produce a protocol that satisfies each of the desired conditions
φ1,. . . , φn.

Tao, Slutzki, and Honavar [4] introduced a conceptual logical framework for
answering queries without revealing secrecy to multiple querying agents where
there is a set of secrets that need to be protected against each of these agents.
The communication between agents is modeled using a graph. The focus of
their work is on a privacy-preserving algorithm, not on an axiomatic system.

This article is also related to the works on information flow on graphs [5,
6, 7, 8, 9, 10], that study properties of nondeducibility, functional dependency,
common knowledge, and fault tolerance predicates. Unlike those works, this
article is using a modal language.

The article is organized as follows. Section 2 introduces relevant terminology

5

from graph theory. Section 3 defines the formal syntax and the semantics for
our logical system, which is introduced in Section 4. Section 5 illustrates our
logical system by giving several examples of formal proofs in this system. Some
of these examples are used later in the proof of completeness. The soundness
of the system is established in Section 6. The rest of the article is dedicated
to the proof of completeness in Section 7. The proof starts with an informal
discussion of a network flow protocol. It continues to formalize the network
flow protocol as a canonical communication protocol over the graph. Finally,
multiple instances of the canonical protocol are aggregated together to show the
completeness of the logical system. Section 8 concludes the article.

2 Graph Theory Preliminaries

We study epistemic properties common to all protocols with the same topology
of a channel network. Under such a protocol, multiple messages can be sent
over the same channel. A value of a channel is the set of all messages communi-
cated through the channel, possibly in both directions. We specify the network
topology as an undirected graph in which vertices represent agents and edges
represent communication channels between agents. In this section we introduce
graph terminology used throughout the rest of the article.

Graph (V,E) contains a set of vertices V and a set of edges E with an
incidence relation between them. We allow loops and multiple edges between
the same pair of vertices. We write e ∈ Edge(v0, v1) to state that edge e ∈ E is
one of (possibly multiple) edges between vertices v0 ∈ V and v1 ∈ V . By Inc(v)
we denote the set of all edges incident to vertex v ∈ V . By Inc(e) we denote the
set consisting of the two ends of edge e ∈ E. For example, Inc(q) = {m, k, c}
and Inc(k) = {q, u} in Figure 3.

Let e ∈ E be an edge of a graph (V,E) incident to a vertex v ∈ V . If edge
e is removed from the graph, remaining graph (V,E \ {e}) might have up to
two connected components. By Cv

-e we denote the connected component of the
graph (V,E \ {e}) that contains vertex v. Note that in some cases component
Cv
-e might be equal to the entire graph (V,E \ {e}). For the graph in Figure 3,

component Cu
-m′ consists of vertices p, q, and u as well as edges m, k, and c.

For the same graph, component Cu
-k contains all vertices of the original graph

and all edges of that graph except for edge k.
A path is a sequence e0, v1, e1, . . . , vk, ek such that k ≥ 0, e0, . . . , ek are dis-

tinct edges, and v1, . . . , vk are distinct vertices of the graph such that ei, ei+1 ∈
Inc(vi+1) for each 0 ≤ i < k. In Figure 3, sequence k, u,m′, v, c′ and one-
element sequence c are both examples of paths. A circular path is defined
similarly except for edges e0 and ek being the same.

Definition 1 Edge g is a gateway between sets of edges A and B of a graph
if each path that starts with an edge in set A and ends with an edge in set B
contains the edge g.

6

For example, edge m′ is a gateway between sets of edges {m, k} and {k′, c′} in
Figure 3. Note that in the above definition edge g can belong to either or both
of the sets A and B. In Figure 3, edge k is a gateway between singleton set {k}
and set {m,m′′}.

3 Syntax and Semantics

In this section we define the language and the formal semantics of our logical
system. These definitions presuppose a fixed signature of the communication
network.

Definition 2 A signature Sig is an arbitrary triple Sig = (V,E, {Pe}e∈E),
such that (V,E) is a connected graph and {Pe}e∈E is a family of disjoint sets
of propositions.

Informally, propositions in set Pe are atomic statements about values of the
communication channel e.

Different connected components of a disconnected graph can not exchange
any information between them, so, for the sake of simplicity, we have chosen to
restrict our system to connected graphs.

We next define the language of our logical system.

Definition 3 For every signature Sig, let Φ(Sig) be the minimal set of formulas
such that

1. ⊥ ∈ Φ(Sig),

2. Pe ⊆ Φ(Sig) for every e ∈ E,

3. if φ,ψ ∈ Φ(Sig), then φ→ ψ ∈ Φ(Sig),

4. if e ∈ E and φ ∈ Φ(Sig), then 2eφ ∈ Φ(Sig).

We assume that connectives ¬, ∧, and ∨ are defined through → and ⊥ in the
usual way.

Informally, a protocol is specified by giving a range of values3 for each edge
(“communication channel”) and establishing dependencies between the values
of the edges. These dependencies are “enforced” by vertices (“agents”), and,
thus, each such condition only involves edges incident to a vertex. For this
reason we refer to these conditions as “local”. For example, for protocol P1 in
the introduction, the local condition enforced by vertex q is c = m ⊕ k, where
m⊕k is a bit-wise exclusive or of binary strings transmitted over channelsm and
k. For protocols P2 and P3, the local condition at vertex q is h(c,m ⊕ k) ≤ 1,
where h(·, ·) denotes the Hamming distance between any two binary strings of
the same length. The local condition for vertex p under all three of the above

3Each value represents the collection of all messages sent through the channel on a given
run.

7

protocols is the constant true. In the formal definition below, a local condition
is treated not as a Boolean function but rather as a set of tuples on which this
function is true.

Recall that each atomic proposition p in set Pe is viewed as proposition
“about” the value of channel e. In what follows, by π(p) we informally mean
the set of all values of channel e for which proposition p is true.

Definition 4 A protocol over a signature (V,E, {Pe}e∈E) is a tuple ({We}e∈E,
{Lv}v∈V , π) such that

1. for every edge e ∈ E, set We is an arbitrary set of values,

2. for every v ∈ V , set Lv ⊆
∏

e∈Inc(v)We specifies local conditions at vertex
v,

3. for every p ∈ Pe, function π is such that π(p) ⊆ We. We denote π(p) by
pπ.

Definition 5 A run of a protocol ({We}e∈E , {Lv}v∈V , π) is an arbitrary tuple
⟨we⟩e∈E ∈

∏
e∈E We such that ⟨we⟩e∈Inc(v) ∈ Lv for every v ∈ V .

Definition 6 For any two tuples r = ⟨we⟩e∈E and r′ = ⟨w′
e⟩e∈E and any f ∈ E,

we write r =f r
′ if wf = w′

f .

Corollary 1 Relation r =e r
′ is an equivalence relation. ⊠

The formal semantics of our logical system is defined in terms of runs of a
protocol, rather than in more common terms of epistemic worlds of a Kripke
model. Note, however, that any protocol can be viewed as a Kripke model in
which runs of the protocol are epistemic worlds and equality of runs on a given
channel c is the indistinguishability relation ∼c on epistemic worlds.

Definition 7 For every signature Sig = (V,E, {Pe}e∈E), every φ ∈ Φ(Sig),
every protocol P = ({We}e∈E , {Lv}v∈V , π) over graph (V,E), and every run
r = ⟨we⟩e∈E of P, relation r ⊩ φ is defined recursively as:

1. r ⊮ ⊥,

2. r ⊩ p if we ∈ pπ, where p ∈ Pe,

3. r ⊩ ψ → χ if r ⊮ ψ or r ⊩ χ,

4. r ⊩ 2eψ if r′ ⊩ ψ for every run r′ of P such that r′ =e r.

For any signature Sig and any set of edges T , by Φ(Sig, T) we mean the set
of all formulas in Φ(Sig) in which all outermost modalities are labeled only by
edges in T and all atomic propositions outside of scopes of all modalities belong
to
∪

t∈T Pt. For example, 2a2bφ → 2cψ ∈ Φ(Sig, {a, c}). Also, if p ∈ Pa and
q ∈ Pb, then 2bp→ q ∈ Φ(Sig, {b}). We use this notation to state our Gateway
axiom in the next section. Below is the formal definition of this notation.

8

Definition 8 For every signature Sig = (V,E, {Pe}e∈E) and every T ⊆ E, let
Φ(Sig, T) be the minimal set of formulas such that

1. ⊥ ∈ Φ(Sig, T),

2. Pt ⊆ Φ(Sig, T) for every t ∈ T ,

3. if φ,ψ ∈ Φ(Sig, T), then φ→ ψ ∈ Φ(Sig, T),

4. if t ∈ T and φ ∈ Φ(Sig), then 2tφ ∈ Φ(Sig, T).

Note that in item 4 above, formula φ is an element of set Φ(Sig) rather than
set Φ(Sig, T).

4 Logical System

In this section we specify the axioms and the inference rules of our logical system
for a given signature Sig = (V,E, {Pe}e∈E). Our logical system, in addition to
propositional tautologies in language Φ(Sig), contains the following axioms:

1. Truth: 2eφ→ φ, where φ ∈ Φ(Sig),

2. Positive Introspection: 2eφ→ 2e2eφ, where φ ∈ Φ(Sig),

3. Negative Introspection: ¬2eφ→ 2e¬2eφ, where φ ∈ Φ(Sig),

4. Distributivity: 2e(φ→ ψ) → (2eφ→ 2eψ), where φ,ψ ∈ Φ(Sig),

5. Gateway: 2e(φ → ψ) → (φ → 2gψ), where e ∈ A, φ ∈ Φ(Sig,A),
ψ ∈ Φ(Sig,B), and edge g is a gateway between sets of edges A ⊆ E and
B ⊆ E.

Note that axioms of Truth, Positive Introspection, Negative Introspection, and
Distributivity are identical to the corresponding axioms of multi-agent epistemic
logic S5. Thus, our logical system can be viewed as an extension of S5 by
Gateway axiom.

e

A
B

g

Figure 4: Edge g is a gateway between sets of edges A and B.

Figure 4 illustrates the setting for Gateway axiom. To explain the intuition
behind Gateway axiom, let us first consider the special case of this axiom when

9

formula φ is a propositional tautology. In this case, Gateway axiom can be
reduced to 2eψ → 2gψ, which means that if an agent eavesdropping on channel
e knows something about the channels in set B, then an agent eavesdropping on
gateway channel g must also know this. Intuitively, this claim is true because the
information about channels in set B can only reach the observer of channel e by
flowing through the gateway channel g. However, to the best of our knowledge,
Gateway axiom in this reduced form 2eψ → 2gψ does not yield a complete
logical system. To achieve the completeness, we need a slightly more general
principle that takes into account the “local” information about channels on the
same side of the gateway as channel e. In Gateway axiom 2e(φ→ ψ) → (φ→2gψ) the local information is captured by formula φ.

We write ⊢Sig φ if formula φ is provable in our logical system for signature
Sig using Modus Ponens and Necessitation inference rules:

φ, φ→ ψ

ψ

φ

2eφ

where φ,ψ ∈ Φ(Sig) and e ∈ E. We write X ⊢Sig φ if formula φ is provable
in our logical system from the set of assumptions X using only Modus Ponens
rule. We omit subscript Sig when its value is clear from the context.

5 Examples

The soundness and the completeness of our logical system will be established in
the next two sections. In this section we give several examples of formal proofs
in this system. Among these examples there are several lemmas that will be
used later in the proof of completeness.

a cb

Figure 5: Three-Channel Linear Communication Network.

Example 1 For any signature Sig = (V,E, {Pe}e∈E) and any φ ∈ Φ(Sig)
where (V,E) is the graph depicted in Figure 5,

⊢Sig 2a(2bφ ∨ 2cφ) → 2bφ.

In other words, if an observer eavesdropping on channel a knows that an observer
eavesdropping on channel b knows φ or an observer eavesdropping on channel c
knows φ, then the observer eavesdropping on channel b must know φ.

Proof. Formula 2cφ→ φ is an instance of Truth axiom. Thus, by Necessitation
inference rule, ⊢ 2b(2cφ → φ). Hence, by Distributivity axiom and Modus
Ponens inference rule,

⊢ 2b2cφ→ 2bφ. (8)

10

At the same time note that edge b is a gateway between sets {a, b} and {c}.
Additionally, ¬2bφ ∈ Φ(Sig, {a, b}) and 2cφ ∈ Φ(Sig, {c}). Thus, by Gateway
axiom, ⊢ 2a(¬2bφ → 2cφ) → (¬2bφ → 2b2cφ). Hence, using statement (8)
and the laws of propositional logic, ⊢ 2a(¬2bφ → 2cφ) → (¬2bφ → 2bφ).
Note that formula (¬2bφ → 2bφ) → 2bφ is a propositional tautology. Thus,
⊢ 2a(¬2bφ → 2cφ) → 2bφ. Finally, recall that disjunction 2bφ ∨ 2bφ is an
abbreviation for ¬2bφ→ 2bφ. Therefore, ⊢ 2a(2bφ ∨ 2cφ) → 2bφ. ⊠

a cb d e

Figure 6: Five-Channel Linear Communication Network.

In what follows, we denote by ⊤ the propositional tautology ⊥ → ⊥.

Example 2 For any signature Sig = (V,E, {Pe}e∈E) and any φ ∈ Φ(Sig)
where (V,E) is the graph depicted in Figure 6,

⊢Sig 2a2e2cφ→ 2b2dφ.

Proof. By Truth axiom, ⊢ 2cφ → φ. Thus, ⊢ 2d(2cφ → φ) by Necessitation
inference rule. Hence, by Distributivity axiom and Modus Ponens rule,

⊢ 2d2cφ→ 2dφ. (9)

At the same time, formula 2cφ → (⊤ → 2cφ) is a propositional tautology.
Thus, by Necessitation rule, ⊢ 2e(2cφ→ (⊤ → 2cφ)). By Distributivity axiom
and Modus Ponens inference rule,

⊢ 2e2cφ→ 2e(⊤ → 2cφ). (10)

Similarly, one can show that

⊢ 2a2dφ→ 2a(⊤ → 2dφ). (11)

Since edge d is a gateway between the sets of edges {e} and {c}, ⊤ ∈ Φ(Sig, {e}),
and 2cφ ∈ Φ(Sig, {c}), by Gateway axiom, ⊢ 2e(⊤ → 2cφ) → (⊤ → 2d2cφ).
Hence, using statement (9), statement (10) and the propositional reasoning,
⊢ 2e2cφ → 2dφ. Thus, by Necessitation inference rule, ⊢ 2a(2e2cφ → 2dφ).
Then, by Distributivity axiom and Modus Ponens inference rule,

⊢ 2a2e2cφ→ 2a2dφ. (12)

Since edge b is a gateway between sets of edges {a} and {d}, ⊤ ∈ Φ(Sig, {a}),
and 2dφ ∈ Φ(Sig, {d}), by Gateway axiom, ⊢ 2a(⊤ → 2dφ) → (⊤ → 2b2dφ).
Therefore, using statement (11), statement (12), and the propositional reason-
ing, ⊢ 2a2e2cφ→ 2b2dφ. ⊠

We next prove formula (6) stated in Section 1.

11

Example 3 For any signature Sig = (V,E, {Pe}e∈E) and any φ ∈ Φ(Sig),
where G = (V,E) is the graph depicted in Figure 3,

⊢Sig 2m2m′′φ→ 2m′2m′′φ.

Proof. Formula 2m′′φ→ (⊤ → 2m′′φ) is a propositional tautology in language
Φ(Sig). Thus, by Necessitation inference rule, we have ⊢ 2m(2m′′φ → (⊤ →2m′′φ)). By Distributivity axiom and Modus Ponens inference rule,

⊢ 2m(2m′′φ) → 2m(⊤ → 2m′′φ)). (13)

Note now that edge m′ is a gateway between sets of edges {m} and {m′′}.
Also, ⊤ ∈ Φ(Sig, {m}) and 2m′′φ ∈ Φ(Sig, {m′′}). Thus, by Gateway axiom,
⊢G 2m(⊤ → 2m′′φ) → (⊤ → 2m′2m′′φ). Hence, using statement (13), by the
laws of propositional logic, ⊢G 2m2m′′φ→ (⊤ → 2m′2m′′φ). Therefore, again
using propositional logic, ⊢G 2m2m′′φ→ 2m′2m′′φ. ⊠

Instead of proving property (7) from the introduction, in Lemma 2 we prove
a slightly more general statement that later will be used in the proof of complete-
ness. The proof of Lemma 2 relies on the following auxiliary lemma. Figure 4
illustrates the settings of both of these lemmas.

Lemma 1 ⊢ 2e(φ ∨ ψ) → (φ ∨ 2gψ), where edge g is a gateway between sets
of edges A and B, e ∈ A, φ ∈ Φ(Sig,A), and ψ ∈ Φ(Sig,B).

Proof. Recall that φ∨ψ is an abbreviation for ¬φ→ ψ. Thus, we need to show
that ⊢ 2e(¬φ→ ψ) → (¬φ→ 2gψ), which is an instance of Gateway axiom. ⊠

Lemma 2 ⊢ 2g(φ ∨ ψ ∨ χ) → (φ ∨ 2gψ ∨ 2gχ), where edge g is a gateway
between sets A and B, φ ∈ Φ(Sig, {g}), ψ ∈ Φ(Sig,A), and χ ∈ Φ(Sig,B).

Proof. Note first that g is a gateway between sets A ∪ {g} and B. Thus, by
Lemma 1,

⊢ 2g(φ ∨ ψ ∨ χ) → φ ∨ ψ ∨ 2gχ.

Hence, by the laws of propositional logic,

⊢ 2g(φ ∨ ψ ∨ χ) → φ ∨ 2gχ ∨ ψ.

By Necessitation inference rule,

⊢ 2g(2g(φ ∨ ψ ∨ χ) → φ ∨ 2gχ ∨ ψ).

By Distributivity axiom and Modus Ponens rule,

⊢ 2g2g(φ ∨ ψ ∨ χ) → 2g(φ ∨ 2gχ ∨ ψ).

By Positive Introspection axiom,

⊢ 2g(φ ∨ ψ ∨ χ) → 2g(φ ∨ 2gχ ∨ ψ). (14)

12

Second, note that edge g is also a gateway between sets {g} and A. Thus, again
by Lemma 1,

⊢ 2g(φ ∨ 2gχ ∨ ψ) → φ ∨ 2gχ ∨ 2gψ.

Hence, taking into account statement (14),

⊢ 2g(φ ∨ ψ ∨ χ) → φ ∨ 2gχ ∨ 2gψ,

which by the laws of propositional logic is equivalent to

⊢ 2g(φ ∨ ψ ∨ χ) → φ ∨ 2gψ ∨ 2gχ.

⊠

Next, we continue with two more auxiliary lemmas. Lemma 4 is also used
in the proof of completeness. Lemma 3 is referred to in the proof of Lemma 4.

Lemma 3 ⊢ φ→ 2eφ for each φ ∈ Φ(Sig, {e}).

Proof. Formula φ → φ is a tautology. Thus, by Necessitation inference rule,
⊢ 2e(φ→ φ). Note that e is a gateway between sets {e} and {e}. By Gateway
axiom, ⊢ 2e(φ→ φ) → (φ→ 2eφ). Therefore, ⊢ φ→ 2eφ. ⊠

Lemma 4 If X ⊆ Φ(Sig, {e}) and φ ∈ Φ(Sig), then X ⊢ φ implies X ⊢ 2eφ.

Proof. Suppose that X ⊆ Φ(Sig, {e}) and X ⊢ φ where φ ∈ Φ(Sig), then
there is a finite subset {ψ1, ψ2, . . . , ψn} of X such that ψ1, ψ2, . . . , ψn ⊢ φ.
Hence, by Deduction theorem for propositional logic, we have ⊢ ψ1 → (ψ2 →
. . . (ψn → φ) . . .). By Necessitation rule, ⊢ 2e(ψ1 → (ψ2 → . . . (ψn →
φ) . . .)). Applying Distributivity axiom and Modus Ponens n times, we have2eψ1,2eψ2, . . . ,2eψn ⊢ 2eφ. Hence, by Lemma 3, ψ1, ψ2, . . . , ψn ⊢ 2eφ.
Therefore, X ⊢ 2eφ. ⊠

6 Soundness

In this section we prove the soundness of our logical system with respect to
runs of a protocol P over a signature Sig = (V,E, {Pe}e∈E). The soundness of
propositional tautologies and Modus Ponens inference rule is straightforward.
Below we prove the soundness of Necessitation inference rule and of each axiom
as a separate lemma.

Lemma 5 (Necessitation) If e ∈ E and r ⊩ φ for each run r of protocol P,
then r ⊩ 2eφ for each run r of protocol P.

Proof. Let r be a run of protocol P. To show that r ⊩ 2eφ, consider any run
r′ of protocol P such that r′ =e r. It is sufficient to prove that r′ ⊩ φ, which is
true due to the assumption of the lemma. ⊠

13

Lemma 6 (Truth) For every e ∈ E, every formula φ ∈ Φ(Sig), and every
run r of protocol P, if r ⊩ 2eφ, then r ⊩ φ.

Proof. Assume that r ⊩ 2eφ. Thus, by Definition 7, r′ ⊩ φ for every run r′ of
protocol P such that r′ =e r. In particular, r ⊩ φ. ⊠

Lemma 7 (Positive Introspection) For every e ∈ E, every formula φ ∈
Φ(Sig), and every run r of protocol P, if r ⊩ 2eφ, then r ⊩ 2e2eφ.

Proof. Assume that r ⊩ 2eφ. Let r
′ be any run of protocol P such that r′ =e r.

We need to show that r′ ⊩ 2eφ. Consider any run r′′ of protocol P such that
r′′ =e r

′. We need to show that r′′ ⊩ φ. Indeed, r′′ =e r
′ =e r due to the choice

of r′ and r′′. Hence, r′′ ⊩ φ by the assumption r ⊩ 2eφ. ⊠

Lemma 8 (Negative Introspection) For every e ∈ E, every formula φ ∈
Φ(Sig), and every run r of protocol P, if r ⊩ ¬2eφ, then r ⊩ 2e¬2eφ.

Proof. Assume that r ⊩ ¬2eφ. Then there is a run r′ of protocol P such that
r′ =e r and r′ ⊮ φ. Consider now any run r′′ of protocol P such that r′′ =e r.
It is sufficient to show that r′′ ⊩ ¬2eφ, which is true because r′ =e r =e r

′′ and
r′ ⊮ φ. ⊠

The proof of the soundness of Gateway axiom relies on the following technical
lemma.

Lemma 9 For every set F ⊆ E, every formula φ ∈ Φ(Sig, F), and every two
runs r and r′ of protocol P, if r =e r

′ for all e ∈ F , then r ⊩ φ if and only if
r′ ⊩ φ.

Proof. We prove this by induction on the structural complexity of formula φ.
The base case is when φ is a propositional variable p ∈ Pe for some e ∈ E. By
Definition 7, r ⊩ p is equivalent to we ∈ pπ, which, due to we = w′

e, in turn is
equivalent to w′

e ∈ pπ. The latter is equivalent to r′ ⊩ p, again by Definition 7.
The induction step involves the following cases:

1. Suppose that φ is of the form ¬ψ. By Definition 7, r ⊩ φ is equivalent to
r ⊮ ψ. By the induction hypothesis, r ⊮ ψ is equivalent to r′ ⊮ ψ, which,
by Definition 7, is equivalent to r′ ⊩ ¬ψ.

2. Suppose that φ is of the form ψ → χ. By Definition 7, r ⊩ ψ → χ is
equivalent to the disjunction of r ⊮ ψ and r ⊩ χ, which is equivalent to
the disjunction of r′ ⊮ ψ and r′ ⊩ χ by the induction hypothesis. The
latter is equivalent to r′ ⊩ ψ → χ by Definition 7.

3. Suppose that φ is of the form 2eψ. By Definition 7, r ⊩ 2eψ if and only if
r′′ ⊩ ψ for every r′′ such that r′′ =e r

′. Since r′ =e r, the latter statement
is equivalent to r′′ ⊩ ψ for every r′′ such that r′′ =e r

′. By Definition 7,
the latter is equivalent to r′ ⊩ 2eψ.

14

⊠

Lemma 10 (Gateway) For every run r = ⟨we⟩e∈E of protocol P, every gate-
way g between sets of edges A and B, every a ∈ A, and every φ ∈ Φ(Sig,A),
ψ ∈ Φ(Sig,B), if r ⊩ 2a(φ→ ψ) and r ⊩ φ, then r ⊩ 2gψ.

Proof. Consider any run r′ = ⟨w′
e⟩e∈E of protocol P such that r′ =g r. It

suffices to show that r′ ⊩ ψ. Consider a graph G′ = (V,E \ {g}). Due to the
assumption that g is a gateway A and B, graph G′ consists of two connected
components CA and CB such that all edges in set A belong to the component
CA and all edges in set B belong to the component CB . Let r+ be a tuple
⟨w+

e ⟩e∈E such that

w+
e =

{
we if e ∈ CA ∪ {g},
w′

e if e ∈ CB ∪ {g}.

Note that tuple r+ is well defined due to the assumption that r′ =g r.

Claim 1 Tuple r+ is a run of protocol P.

Proof. We need to show that r+ satisfies local conditions of protocol P at any
vertex v ∈ V . If v ∈ CA, then w+

e = we for each e ∈ Inc(v) by the choice
of ⟨w+

e ⟩e∈E . Hence, ⟨w+
e ⟩e∈Inc(v) = ⟨we⟩e∈Inc(v) ∈ Lv. The case v ∈ CB is

similar. ⊠

We are ready to finish the proof of the lemma. Note that r+ =a r by the
choice of ⟨w+

e ⟩e∈E and the assumption a ∈ A. Thus, r+ ⊩ φ → ψ by the
assumption r ⊩ 2a(φ → ψ). At the same time, r+ ⊩ φ by Lemma 9 and the
assumption r ⊩ φ. Hence, r+ ⊩ ψ by Definition 7. Therefore, r′ ⊩ ψ by the
same Lemma 9 and the assumption ψ ∈ Φ(Sig,B). ⊠

7 Completeness

In this section we prove the completeness of our logical system with respect to
the formal semantics defined in Section 3.

In general, to prove a completeness theorem for a logical system, for any
statement not provable in this system, one needs to describe how to construct
a model in which this statement is false. In our case, for each formula φ not
provable in our logical system, we construct a protocol (“Kripke model”) and
a run (“epistemic world”) of this protocol on which formula φ is not satisfied.
This protocol will be obtained by aggregating simpler canonical protocols. Each
canonical protocol synchronizes information known to different observers. For
example, if an observer a knows that an observer b knows ψ, then one of the
canonical protocols guarantees that observer b indeed knows ψ.

The construction of such canonical protocols is based on the network flow
protocol [11, p.708]. Information flow has many properties similar to that of

15

network flow. In fact, network flow is sometimes used to communicate infor-
mation. For example, the hydraulic brake system in modern cars uses the flow
of the brake fluid to communicate a braking signal from the brake pedal to the
wheels. In a more general setting, one can consider a closed system of water
pipes with several faucets and several sinks. If one of the faucets is pumping
water into the system (somebody knows formula δ), then at least one of the
sinks must be leaking the water (forcing formula δ to be true). We will use such
pipe systems to communicate information between different edges of the graph.

In this section we first informally discuss network flow protocols in more
details. Next, we define “canonical” protocols that formalize network flow pro-
tocol in the form needed for our proof of completeness. Finally, to finish the
proof of completeness, we aggregate multiple canonical protocols into a single
one.

7.1 Network Flow Protocol

Consider an example of a network of six pipes depicted in Figure 7. Assume
that this network has two sink faucets located at edges d and f . Furthermore,
let us assume that

1. water can leak from the network only through faucets on edges d and f ,

2. water does not have to leak even if the faucet is open, and

3. all pipes can (but do not have to) add water into the system by pumping
it in the middle of the pipes.

Throughout this section, atomic propositions p and q denote the statements
“faucet on the edge d is open” and “faucet on the edge f is open”, respectively.

on on

+2 -5 +4 -4

-2 +7 -6 +6

-5 +3

-3+3

a b c

d e f

Figure 7: Run r1 of a network flow protocol.

We show the flow in the network by assigning a real number feu to each end
u of each pipe e in the network. The positive number denotes the speed (volume
per time unit) with which water is coming into the pipe through this end and
negative number shows the speed with which water is leaving the pipe through
that end.

16

So far, we assume that no water can be added at a vertex. Thus, the sum of
all values at each vertex is zero. Any such valid assignment of the flow values
to the ends of all pipes defines a run of the network flow protocol.

An example of a run r1 is also shown on Figure 7. On this run pipes a
and c add water into the system, both sink faucets are open, but only edge d
leaks water. Note that an external observer of pipe a would see that the sum
of flow values on edge a is negative. This means that water is added into the
system. Thus, the observer would be able to conclude that at least one of the
sink faucets is open: r1 ⊩ 2a(p ∨ q). However, this observer will not be able
to deduce exactly which faucet is open: r1 ⊩ ¬2ap ∧ ¬2aq. Also, an external
observer of pipe d will see that the sum of the two flow values at the ends of
this pipe is positive and, thus, faucet on the pipe d is leaking. Hence, r1 ⊩ 2dp
and so r1 ⊩ 2d(p ∨ q).

off off

0 0 +4 -4

0 0 -4 +4

0 0

00

a b c

d e f

Figure 8: Run r2 of a network flow protocol.

We now argue that r1 ⊩ ¬2b(p∨ q). Indeed, any external observer of pipe b
will not be able to distinguish run r1 from run r2 depicted in Figure 8 because
they have the same flow values at both ends of pipe b. Run r2 has a circular
flow through pipes b and e, with both faucets being closed. Since r2 ⊮ p ∨ q
and the observer of pipe b can not distinguish between runs r1 and r2, it follows
that r1 ⊩ ¬2b(p∨ q). Similarly, another run could be constructed to show that
r1 ⊩ ¬2e(p ∨ q).

Before continuing with the next example, let us introduce a notion of a bridge
edge of a graph, which is related but not identical to the earlier introduced notion
of a gateway edge between two sets of edges.

Definition 9 An edge b is a bridge in a connected graph (V,E), if graph (V,E \
{b}) is not connected.

For any given graph, by B we mean the set of all bridges of this graph. For
example, for the graph depicted in Figure 3, set B is {m,m′,m′′}.

The main difference between a gateway and a bridge is that a gateway be-
tween sets is defined assuming two given sets. Bridge is a specific type of an
edge. It’s definition does not depend on the choice of any specific sets. Further-
more, a gateway does not have to be a bridge. For example, for any edges e and
f , of an arbitrary graph, edge e is a gateway between set {e} and set {f} even
if edge e is not a bridge.

17

The graph in Figure 8 has no bridges. As we show next, the epistemic
properties of the network flow protocol are different for edges that are bridges
and edges that are not bridges. Let r3 be the run of the network flow protocol
depicted in Figure 9, where pipe b is a bridge. Note that although no additional
water is pumped into pipe b, an external observer of pipe b would be able to
conclude that the faucet at edge d is open because such an observer would notice
a right-to-left water flow on pipe b. In other words, r3 ⊩ 2bp.

on on

+2 -5

-2 +7 -2 +2

-5 +3

-3+3

a

b

c

d f

Figure 9: Run r3 of a network flow protocol.

These examples show that in order for an observer of a non-bridge edge to
be able to deduce disjunction p ∨ q, this edge must be pumping water into the
system. In the case over a bridge, however, it is sufficient to have a non-zero flow
of the bridge in either of the two directions. This distinction between bridges
and non-bridges under the network flow protocol will lead to two different cor-
responding cases in the definition of our canonical protocol (see Definition 11).

The network flow protocol, as described above, has a peculiar property.
Namely, since water could be pumped into the system only through edges, an
external observer of bridge b under run r3 will not only be able to deduce that p is
true, but also to conclude that either an external observer of pipe c or an external
observer of pipe f must know that p∨ q is true: r3 ⊩ 2b(2c(p∨ q)∨2f (p∨ q)).
Indeed, an external observer of pipe b would conclude that water is pumped into
the system either at pipe c or at pipe f and, thus, either 2c(p∨ q) or 2f (p∨ q).
To prove the completeness theorem for our logical system, we need a slightly
more general class of flow protocols for which this property is not necessarily
true. Namely, we allow additional water to be pumped into the system not only
at pipes, but also at the vertices. The sink faucets, however, are still located
only in the middle of the pipes. Under the modified network flow protocol, the
statement r3 ⊩ 2b(2c(p ∨ q) ∨ 2f (p ∨ q)) is no longer true because an external
observer of pipe b can not distinguish run r3 from run r4 of the modified protocol
depicted in Figure 10 and because r4 ⊩ ¬2c(p ∨ q) and r4 ⊩ ¬2f (p ∨ q).

7.2 Canonical Protocols

In this section we define canonical protocols based on the network flow con-
struction informally discussed above. The canonical protocols are used later in
the proof of completeness. Under a canonical protocol, the value of each edge

18

on off

+2 -5

-2 +7 -2 +2

0 0

00

a

b

c

d f

Figure 10: Run r4 of a network flow protocol.

e contains a maximal consistent subset Xe of Φ(Sig, {e}). Informally, set Xe

consists of all epistemic facts about an external observer of edge e that are true
on a given run. Of course, on the same run, sets Xe for different edges e must be
correlated. For example, if set Xe contains formula 2e2hψ, then set Xh must
contain formula 2hψ. In general, if 2eδ ∈ Xe, then formula δ should be, in
some sense, “true” on this run. We use network flow to enforce such correlations
between sets Xe for different edges e on the same run.

A single canonical protocol is used to only enforce such a correlation for a sin-
gle formula δ. Thus, each formula δ produces a different canonical protocol. In
Section 7.4, we aggregate these canonical protocols into a single protocol. Note
that in propositional logic any formula can be written in Disjunctive Normal
Form. Any modal formula δ can be shown to be equivalent to

∧
i≤n

∨
h∈E δ

i
h,

where δih ∈ Φ(Sig, {h}) for each i ≤ n and each h ∈ E. Also note that in
the presence of Distributivity axiom and Necessitation inference rule, formula2e

∧
i≤n

∨
h∈E δ

i
h is provably equivalent to

∧
i≤n 2e

∨
h∈E δ

i
h. Because of this,

in what follows we enforce our correlation between different sets Xe only for
formulas δ of the form

∨
h∈E δh, where δh ∈ Φ(Sig, {h}) for each h ∈ E.

Definition 10 For any signature Sig = (V,E, {Pe}e∈E), let ∆(Sig) be the set
of all formulas of the form

∨
e∈E δe, where δe ∈ Φ(Sig, {e}) for each e ∈ E.

The correlation that we intend to enforce is: for all e ∈ E, if 2e

∨
h∈E δh ∈

Xe, then there exist h ∈ E such that δh ∈ Xh. Instead of defining a single
protocol Pδ under which this correlation is enforced for each e ∈ E, we define a
family of protocols {Pδ

F }F⊆E . For each subset F ⊆ E, under protocol Pδ
F the

correlation is enforced only for edges in F .
The enforcement of the desired correlation under protocol Pδ

F is achieved
by using network the flow construction described in the previous section. In-
formally, each edge of the graph is viewed as a pipe. In addition to set Xe,
the value of each edge e also includes flow values over this edge. As before,
sink faucets are placed in the middle of each edge. However, the sink faucet
at edge h is open only if δh ∈ Xh. If 2eδ ∈ Xe and edge e is not a bridge,
then e is required to “pump” water into the system. The network flow protocol
guarantees that if water is pumped into the system, then it must leak through

19

at least one of the sinks. This implies that if 2eδ ∈ Xe (“water is pumped in”),
then δh ∈ Xh (“sink is leaking”) for at least one disjunct δh in formula δ. For
the same reason, if 2eδ ∈ Xe and e is a bridge, then e is required to have a
non-zero flow (in either direction).

We now define a canonical protocol Pδ
F over a signature Sig = (V,E, {Pe}e∈E)

for each subset F ⊆ E and each δ ∈ ∆(Sig), where δ is of the form
∨

e∈E δe and
δe ∈ Φ(Sig, {e}) for each e ∈ E.

Definition 11 A value we of an edge e ∈ Edge(u, u′) under protocol Pδ
F is a

tuple ⟨X, {fv}v∈Inc(e)⟩ that has the following properties:

1. Properties common to all edges.

(a) X is a maximal consistent subset of Φ(Sig, {e}),
(b) fu and fu′ are real numbers,

(c) fu + fu′ > 0 if and only if δe ∈ X.

2. Properties of bridge edges. For each e ∈ B,

(a) if δe /∈ X, then fu + fu′ = 0,

(b) if fu < 0, then 2e

∨
h∈Cu

-e
δh ∈ X,

(c) if e ∈ F , 2eδ ∈ X, and δe /∈ X, then fu < 0 or fu′ < 0.

3. Properties of non-bridge edges. For each e ∈ E \ B,

(a) if fu + fu′ < 0, then 2eδ ∈ X,

(b) if e ∈ F , 2eδ ∈ X, and δe /∈ X, then fu + fu′ < 0.

Valuation. Let π be a function such that, for each e ∈ E and p ∈ Pe, set p
π

contains all values ⟨X, {fv}v∈Inc(e)⟩ under protocol Pδ
F , where p ∈ X.

We now specify local a condition Lu at a vertex u under protocol Pδ
F . Under

the network flow protocol, we allow any vertex u to pump additional water into
the system and disallow it to leak water out of the system. This is formally
captured by the local condition

∑
e∈Inc(u) f

e
u ≥ 0. At the same time, recall that

we use the network flow to enforce property: if 2eδ ∈ Xe, where δ =
∨

h∈E δh,

then δh ∈ Xh for at least one h ∈ E. Note that if δh ∈ Xh for at least one h ∈ E,
then the property is already true and no additional enforcement is necessary.
Because of this, if δh ∈ Xh for at least one edge h adjacent to vertex u, then we
allow the sum

∑
e∈Inc(u) f

e
u to be negative. This relaxation of the local condition

will be useful later.

Local Conditions. Consider any tuple of values ⟨Xe, {fev}v∈Inc(e)⟩e∈Inc(u)

under protocol Pδ
F . This tuple belongs to Lu when the following condition is

satisfied: if δe /∈ Xe for each e ∈ Inc(u), then
∑

e∈Inc(u) f
e
u ≥ 0.

This concludes the specification of the family of protocols Pδ
F . The following

corollary directly follows from the above definitions.

20

Corollary 2 For any run ⟨Xe, {feu}u∈Inc(e)⟩e∈E of a protocol Pδ
F and any real

number λ > 0, tuple ⟨Xe, {λfeu}u∈Inc(e)⟩e∈E is a run of protocol Pδ
F . ⊠

Lemma 11 Let ⟨Xe, {feu}u∈Inc(e)⟩e∈E be any run of a protocol Pδ
F . If h =

(v, v′) ∈ F ∩ B and δh /∈ Xh, then fhv = 0 if and only if 2hδ /∈ Xh.

Proof. (⇒) : We prove by contrapositive. Suppose that 2hδ ∈ Xh. Then by
Definition 11 part 2(c), fhv < 0 or fhv′ < 0. Hence, fhv ̸= 0 or fhv′ ̸= 0. Note that
fhv′ ̸= 0, by Definition 11 part 2(a), implies that fhv ̸= 0. Therefore, in both
cases, fhv ̸= 0.
(⇐) : Assume that fhv ̸= 0. By Definition 11 part 2(a), either fhv < 0 or fhv′ < 0.
Suppose, without loss of generality, that fhv < 0. Then, by Definition 11 part
2(b),

2h

∨
e∈Cv

-h

δe ∈ Xh. (15)

Note that
∨

e∈Cv
-h
δe → δ is a propositional tautology. Thus, by Necessitation

rule,

⊢ 2h

 ∨
e∈Cv

-h

δe → δ

 .

Hence, by Distributivity axiom and Modus Ponens rule,

⊢ 2h

 ∨
e∈Cv

-h

δe

→ 2hδ.

Thus, Xh ⊢ 2hδ from statement (15) and Modus Ponens inference rule. There-
fore, 2hδ ∈ Xh due to the maximality of set Xh. ⊠

7.3 Properties of Canonical Protocols

In this section we prove several technical properties of the canonical protocols
that are used in the proof of completeness. To build the intuition, as we proceed,
we compare these properties with those of our informal network flow model.

Lemma 12 For any δ ∈ ∆(Sig), if F ′ ⊆ F , then each run of protocol Pδ
F is

also a run of protocol Pδ
F ′ .

Proof. The statement of the lemma immediately follows from the definition of
the canonical protocols Pδ

F . Indeed, the difference between protocol Pδ
F and

Pδ
F ′ is only in parts 2(c) and 3(b) of Definition 11. ⊠

The following theorem formalizes our intuition described earlier that if there
is an inflow of water into the system, then there must be at least one open sink
for the water to leak.

21

Theorem 1 For any h ∈ E and any run ⟨Xe, {feu}u∈Inc(e)⟩e∈E of protocol

Pδ
{h}, if 2hδ ∈ Xh, then there is an edge h′ ∈ E such that δh′ ∈ Xh′

.

Proof. Suppose that there is no h′ ∈ E such that δh′ ∈ Xh′
. Due to the local

conditions of protocol Pδ
{h},∑

e∈Inc(v)

fev ≥ 0, for each v ∈ V . (16)

We consider the following two cases separately:
Case I: h /∈ B. The sum of flow values over edges can be rearranged to the sum
of flow values over vertices. Thus, due to inequality (16),∑

e∈Edge(u,u′)

(feu + feu′) =
∑
v∈V

∑
e∈Inc(v)

fev ≥ 0. (17)

The assumption that there is no h′ ∈ E such that δh′ ∈ Xh′
, together with

the assumptions h /∈ B and 2hδ ∈ Xh by part 3(b) of Definition 11, implies
that fhv + fhv′ < 0, where v and v′ are the two ends of the edge h. Then, by

inequality (17), there must exist h′ ∈ Edge(u1, u2) such that fh
′

u1
+ fh

′

u2
> 0.

Therefore, δh′ ∈ Xh′
by part 1(c) of Definition 11, which is a contradiction.

Case II: h ∈ B. By part 2(c) of Definition 11, there is an end u0 of edge h such
that fhu0

< 0, see Figure 11. The sum of the flow values over edges in component
Cu0

-h can be rearranged to the sum of the flow values over vertices. Hence, by

Cu0
-h

h
u0

Figure 11: Towards proof of Theorem 1, Case II.

inequality (16),

∑
e∈Edge(u,u′)∩C

u0
-h

(feu + feu′) =

 ∑
v∈C

u0
-h

∑
e∈Inc(v)

fev

− fhu0
≥ 0− fhu0

> 0.

Thus, there must exist h′ ∈ Edge(u1, u2) ∈ Cu0

-h such that fh
′

u1
+fh

′

u2
> 0. There-

fore, δh′ ∈ Xh′
by part 1(c) of Definition 11, which is a contradiction. ⊠

Note that in the network flow model the following property holds: if v1 is one
of the vertices of an edge e0 and the water flows through edge e0 towards vertex

22

v1, then there must exist a sink edge ek and a path e0, v1, e1, v2, e2, . . . , vk, ek
such that there is a water flow along this path in the direction from edge e0
to edge ek. In our formal setting this property is captured by the following
definition and lemma.

Definition 12 For any maximal consistent set of formulas M , let ΓM be the
set of all paths e0, v1, e1, v2, e2, . . . , vk, ek, where k > 0, such that

1. 2e0

∨
h∈C

v1
-e0

δh ∈M ,

2. δei /∈M , for each 0 ≤ i < k,

3. if ei ∈ B, then 2ei

(∨
h∈C

vi+1

-ei
δh

)
∈M , for each 0 ≤ i < k,

4. δek ∈M .

Lemma 13 For any edge e ∈ Edge(u, u′), if 2e

∨
h∈Cu

-e
δh ∈ M and δe /∈ M ,

then there is a path in set ΓM that starts with edge e and continues through
vertex u.

Proof. Let Ω be the set of all such paths e0, v1, e1, v2, e2, . . . , vk, ek that e0 = e,

v1 = u, 2e0δ ∈M , and for each 0 ≤ i < k, if ei ∈ B, then 2ei

(∨
h∈C

vi+1

-ei
δh

)
∈

M .
Let C0 be the set of all edges that belong to at least one path in Ω. Let

C1, . . . , Cn be the connected components of the graph obtained from component
Cu
-e by removing all edges in C0. By the definition of set Ω, for each 0 < i ≤ n

there is an edge gi in C0 ∩ B, such that

2gi

(∨
h∈Ci

δh

)
/∈M. (18)

Note that edge gi is the gateway between edges in C0 ∪C1 ∪ · · · ∪Ci−1 ∪Ci+1 ∪
· · · ∪ Cn and Ci. See Figure 12.

C0

C1

C2

Cn

g1

g2

gn . . .

e
u

u0

Figure 12: Components and corresponding bridges.

23

The following formula is a propositional tautology: ∨
h∈Cu

-e

δh

→

(∨
h∈C0

δh

)
∨

(
n∨

i=1

∨
h∈Ci

δh

)
.

Thus, by Necessitation inference rule,

⊢ 2e

 ∨
h∈Cu

-e

δh

→

(∨
h∈C0

δh

)
∨

(
n∨

i=1

∨
h∈Ci

δh

) .

By Distributivity axiom,

⊢ 2e

 ∨
h∈Cu

-e

δh

→ 2e

((∨
h∈C0

δh

)
∨

(
n∨

i=1

∨
h∈Ci

δh

))
.

By Lemma 1 and laws of propositional logic,

⊢ 2e

 ∨
h∈Cu

-e

δh

→

((∨
h∈C0

δh

)
∨

(
n∨

i=2

∨
h∈Ci

δh

))
∨ 2g1

(∨
h∈C1

δh

)
.

By Necessitation rule,

⊢ 2e

2e

 ∨
h∈Cu

-e

δh

→

((∨
h∈C0

δh

)
∨

(
n∨

i=2

∨
h∈Ci

δh

))
∨ 2g1

(∨
h∈C1

δh

) .

By Distributivity axiom,

⊢ 2e2e

 ∨
h∈Cu

-e

δh

→ 2e

(((∨
h∈C0

δh

)
∨

(
n∨

i=2

∨
h∈Ci

δh

))
∨ 2g1

(∨
h∈C1

δh

))
.

By Positive Introspection axiom,

⊢ 2e

 ∨
h∈Cu

-e

δh

→ 2e

(((∨
h∈C0

δh

)
∨

(
n∨

i=2

∨
h∈Ci

δh

))
∨ 2g1

(∨
h∈C1

δh

))
.

By Lemma 1 and the laws of propositional logic,

⊢ 2e

 ∨
h∈Cu

-e

δh

→

((∨
h∈C0

δh

)
∨

(
n∨

i=3

∨
h∈Ci

δh

)
∨

(
2∨

i=1

2gi

(∨
h∈Ci

δh

)))
.

By repeating the previous steps n− 2 more times,

⊢ 2e

 ∨
h∈Cu

-e

δh

→

((∨
h∈C0

δh

)
∨

(
n∨

i=1

2gi

(∨
h∈Ci

δh

)))
.

24

Since, 2e

(∨
h∈Cu

-e
δh

)
∈M and set M is a maximal consistent set of formulas,(∨

h∈C0

δh

)
∨

(
n∨

i=1

2gi

(∨
h∈Ci

δh

))
∈M.

Due to (18) and the maximality of set M , there must exist an edge h ∈ C0 such
that δh ∈ M . By the definition of C0, there is a path e, v1, e1, v2, e2, . . . , vk, ek
in Ω containing h. Let em be the first edge along this path such that δem ∈M .
Note that em ̸= e because δe /∈ M by the assumption of the claim. Then,
e, v1, e1, v2, e2, . . . , vm, em is the required path in Γ. ⊠

Another property that holds for the network flow is: if water is pumped into
an edge e0, then there must exist a sink edge ek and a path e0, v1, e1, . . . , vk, ek
such that there is a water flow along this path in the direction from edge e0
to edge ek. We capture this property in the canonical protocol case by the
following lemma.

Lemma 14 For any edge e ∈ E, and any δ ∈ ∆(Sig), if 2eδ ∈M and δe /∈M ,
then there is a path in set ΓM that starts with edge e.

Proof. Let e ∈ Edge(u, u′). There are two cases:
Case I: e ∈ E \B. Note that e is a gateway between sets {e} and E \{e}. Then,
by Lemma 1,

⊢ 2e

δe ∨ ∨
h∈Cu

-e

δh

→

δe ∨ 2e

∨
h∈Cu

-e

δh

 (19)

At the same time, component Cu
-e contains all edges of the graph except for

edge e due to the assumption e ∈ E \ B. Thus,

δ → δe ∨
∨

h∈Cu
-e

δh

is a propositional tautology. Hence, by Necessitation inference rule,

⊢ 2e

δ → δe ∨
∨

h∈Cu
-e

δh

 .

By Distributivity axiom and Modus Ponens inference rule,

⊢ 2eδ → 2e

δe ∨ ∨
h∈Cu

-e

δh

 .

Using statement (19) and the laws of propositional logic,

⊢ 2eδ → δe ∨ 2e

∨
h∈Cu

-e

δh.

25

Recall that 2eδ ∈ M and δe /∈ M . Thus, 2e

∨
h∈Cu

-e
δh ∈ M , due to the

maximality and the consistency of set M . Then, the required follows from
Lemma 13.
Case II: e ∈ B. Thus, edge e is a gateway between edges of the component Cu

-e
and edges of the component Cu′

-e . Thus, by Lemma 2,

⊢ 2e

δe ∨ ∨
h∈Cu

-e

δh ∨
∨

h∈Cu′
-e

δh

→

δe ∨ 2e

∨
h∈Cu

-e

δh ∨ 2e

∨
h∈Cu′

-e

δh

 . (20)

At the same time, notice that the formula

δ → δe ∨
∨

h∈Cu
-e

δh ∨
∨

h∈Cu′
-e

δh

is a propositional tautology. Thus, by Necessitation inference rule,

⊢ 2e

δ → δe ∨
∨

h∈Cu
-e

δh ∨
∨

h∈Cu′
-e

δh

 .

By Distributivity axiom and Modus Ponens inference rule,

⊢ 2eδ → 2e

δe ∨ ∨
h∈Cu

-e

δh ∨
∨

h∈Cu′
-e

δh

 .

Using statement (20) and the laws of propositional logic,

⊢ 2eδ → δe ∨ 2e

∨
h∈Cu

-e

δh ∨ 2e

∨
h∈Cu′

-e

δh.

Recall that 2eδ ∈ M and δe /∈ M . Thus, 2e

∨
h∈Cu

-e
δh ∈ M or 2e

∨
h∈Cu′

-e
δh ∈

M , due to the maximality and the consistency of set M . In either case, the
required follows from Lemma 13. ⊠

In general, the completeness of a modal logic is often proven through a
construction that converts a maximal consistent set of formulas into a world of
a “canonical” model for this set of formulas. In our case, the canonical model is
represented by protocol Pδ

E . Instead of a Kripke world, we construct a special
run of this protocol. The construction is done recursively for an arbitrary Pδ

F in
the theorem below. Informally, in term of the network flow model, the theorem
states that for any maximal consistent set of formulas X there is a network flow
on the graph that satisfies this set of formulas.

Theorem 2 For every δ ∈ ∆(Sig) every F ⊆ E and every maximal consistent
set M there is a run r = ⟨Xe, {feu}u∈Inc(e)⟩e∈E of protocol Pδ

F such that for
each e ∈ E, we have Xe =M ∩ Φ(Sig, {e}).

26

Proof. We prove the theorem by induction on the size of set F .
If F = ∅, for each e ∈ E and each u ∈ Inc(e), let

feu =

{
1, if δe ∈ Xe,

0, otherwise.

Claim 2 Tuple ⟨Xe, {feu}u∈Inc(e)⟩e∈E is a run of protocol Pδ
∅.

Proof. The claim immediately follows from Definition 11 and the definition of
local conditions of protocol Pδ

∅ on page 20. ⊠

Next, assume that F = F ′∪{h}. By the induction hypothesis, there is a run
r = ⟨Xe, {feu}u∈Inc(e)⟩e∈E of protocol Pδ

F ′ such that Xe =M ∩ Φ(Sig, {e}) for
each e ∈ E. If 2hδ /∈ Xh or δh ∈ Xh, then, by Definition 11, run r is a run of
protocol Pδ

F . Suppose now that 2hδ ∈ Xh and δh /∈ Xh. Let λ be any positive
real number such that

λ > |feu|

for each e ∈ E and each u ∈ Inc(e). By the assumption 2hδ ∈ Xh and
Lemma 14, there is a path e0, v1, e1, v2, e2, . . . , vk, ek in ΓM such that e0 = h.
Let v0 be the end of edge h different from v1 and let vk+1 be the end of edge ek
different from vk. We next define a tuple r̂ = ⟨Xe, {f̂eu}u∈Inc(e)⟩e∈E , for which
we consider two cases, see Figures 13 and 14:

h = e0 v1

v2

vk

v0
fh
v0+� fh

v1�� e1f
e1
v1
+�

f
e1
v2
��

ekf
ek
vk
+�

vk+1
f
ek
vk+

1

Figure 13: Definition of f̂eu if h ∈ B.

Case I: If h ∈ B, then for each e ∈ E and each u ∈ Inc(e),

f̂eu =

feu + λ, where e = ei, u = vi, and 0 ≤ i ≤ k,

feu − λ, where e = ei, u = vi+1, and 0 ≤ i < k,

feu, otherwise.

27

h = e0 v1

v2

vk

v0
fh
v0 fh

v1�� e1
f
e1
v1
+�

f
e1
v2
��

ekf
ek
vk
+�

vk+1
f
ek
vk+

1

Figure 14: Definition of f̂eu if h ∈ E \ B.

Case II: If h ∈ E \ B, then for each e ∈ E and each u ∈ Inc(e),

f̂eu =

feu + λ, where e = ei, u = vi, and 0 < i ≤ k,

feu − λ, where e = ei, u = vi+1, and 0 ≤ i < k,

feu, otherwise.

This defines tuple r̂.

Claim 3 f̂eu + f̂eu′ = feu + feu′ , for each e ∈ Edge(u, u′) ∈ E \ {e0, ek}.

Proof. If e = ei for some 0 < i < k, then

f̂eu + f̂eu′ = f̂evi + f̂evi+1
= fevi + λ+ fevi+1

− λ = fevi + fevi+1
= feu + feu′ .

Otherwise, f̂eu = feu and f̂eu′ = feu′ . Thus, f̂eu + f̂eu′ = feu + feu′ . ⊠

Claim 4 Tuple r̂ is a run of protocol Pδ
F .

Proof. We need to verify that the tuple r̂ satisfies the conditions of Definition 11
and the local conditions of the run Pδ

F on page 20. Below by vk+1 we denote the
end of edge ek different from vertex vk. We start with conditions of Definition 11.

1(c) Due to Claim 3 and the assumption that r is a run of protocol Pδ
F ′ , we

only need to verify condition 1(c) for edges e0 and ek.

We first verify this condition for edge e0. Note that e0 = h. Thus,
δe0 /∈ Xe0 due to our assumption. Hence, fe0v0

+ fe0v1 ≤ 0, because run r
satisfies condition 1(c) of Definition 11.

If e0 ∈ B, then

f̂e0v0
+ f̂e0v1 = fe0v0 + λ+ fe0v1 − λ = fe0v0

+ fe0v1 ≤ 0.

28

If e0 /∈ B, then, since λ > 0,

f̂e0v0 + f̂e0v1
= fe0v0

+ fe0v1
− λ < fe0v0

+ fe0v1
≤ 0.

In either case, we have δe0 /∈ Xe0 and f̂e0u + f̂e0u′ ≤ 0. Thus, condition 1(c)
is satisfied.

Next, we verify this condition for the edge ek. Note that δek ∈ Xek , by

Definition 12. Thus, we only need to show that f̂ekvk + f̂ekvk+1
> 0. Indeed,

fekvk
+ fekvk+1

> 0 because run r satisfies condition 1(c). Thus, since λ > 0,

f̂ekvk
+ f̂ekvk+1

= fekvk
+ λ+ fekvk+1

> fekvk + fekvk+1
> 0.

2(a) Due to Claim 3 and the assumption that r is a run of protocol Pδ
F ′ , we

again only need to verify condition 2(a) for edges e0 and ek.

We first verify this condition for edge e0. Note that δe0 /∈ Xe0 by condition
2 of Definition 12. Since run r satisfies the condition 2(c) of Definition 11,
we have fe0v0 + fe0v1

= 0. Hence,

f̂e0v0
+ f̂e0v1 = fe0v0 + λ+ fe0v1 − λ = fe0v0 + fe0v1 = 0.

For edge ek this condition is vacuously true because δek ∈ Xek due to
condition 4 of Definition 12.

2(b) By the definition of r̂, for each edge b ∈ B \ {e0, . . . , ek}, and each vertex

u ∈ Inc(b), we have f̂ bu = f bu. Thus, r̂ on any such edge satisfies condition
2(b) of Definition 11 because run r does.

We next show that condition 2(b) is satisfied for each ei such that ei ∈ B
and 0 ≤ i ≤ k. Indeed, consider any u ∈ Inc(ei) and suppose that f̂eiu < 0.

If u = vi, then, since λ > 0,

feiu = feivi = f̂eivi − λ < f̂eiu < 0.

Thus, 2ei

∨
e∈Cu

-ei
δe ∈ Xei because run r satisfies condition 2(b) of Defi-

nition 11.

If u = vi+1 and i < k, then condition 2(b) is satisfied due to condition 3
of Definition 12.

Finally, if i = k and u = vk+1, then f̂
ei
u = feiu by the definition of r̂. Thus,

condition 2(b) is satisfied by run r̂ because it is satisfied by run r.

2(c) By the definition of r̂, for each edge b ∈ B \ {e0, . . . , ek}, and each vertex

u ∈ Inc(b), we have f̂ bu = f bu. Thus, r̂ on any such edge satisfies condition
2(c) of Definition 11 because run r does.

29

We will next show that condition 2(c) is satisfied for each ei such that
ei ∈ B and 0 ≤ i < k. Indeed, note that λ > |feivi+1

| due to the choice of
λ. Thus

f̂eivi+1
= feivi+1

− λ < 0.

Finally, note that when i = k, we have δek ∈ Xek . Therefore, condition
2(c) is vacuously true.

3(a) Due to Claim 3 and the assumption that r is a run of protocol Pδ
F ′ , we

again only need to verify condition 3(a) for edges e0 and ek.

Note that 2hδ ∈ Xh by our assumption. Recall that e0 = h. Thus,2e0δ ∈ Xe0 . Therefore, condition 3(a) is satisfied for edge e0.

By condition 4 of Definition 12, δek ∈ Xek . Thus, as we have shown in the

case 1(c) above, f̂ekvk + f̂ekvk+1
> 0. Therefore, condition 3(a) is vacuously

true for edge ek.

3(b) Due to Claim 3 and the assumption that r is a run of protocol Pδ
F ′ , we

again only need to verify condition 3(b) for edges e0 and ek.

Note that δh /∈ Xh by our assumption. Recall that e0 = h. Thus, δe0 /∈
Xe0 . Since r is a run of protocol Pδ

F ′ , by condition 1(c) of Definition 11,
we have fe0v0 + fe0v1

≤ 0. Hence, due to λ > 0,

f̂e0v0 + f̂e0v1
= fe0v0

+ fe0v1
− λ ≤ 0− λ < 0.

Therefore, condition 3(b) is satisfied for edge e0. By condition 4 of Def-
inition 12, δek ∈ Xek . Thus, condition 3(b) is vacuously true for edge
ek.

To show that local conditions (see page 20) are satisfied at any vertex u ∈ V , it
is sufficient to show that ∑

e∈Inc(u)

f̂eu ≥
∑

e∈Inc(u)

feu.

Consider first the case when u = v0 and e0 ∈ B. Since it has been assumed
(see page 6) that vertices along any path do not repeat and because λ > 0,∑

e∈Inc(v0)

f̂ev0 = f̂e0v0
+

∑
e∈Inc(v0)\{e0}

f̂ev0
= fe0v0 + λ+

∑
e∈Inc(v0)\{e0}

fev0

=
∑

e∈Inc(v0)

fev0
+ λ >

∑
e∈Inc(v0)

fev0
.

Next, consider the case when vertex u = vi for some 0 < i ≤ k. Then,∑
e∈Inc(vi)

f̂evi
= f̂ei−1

vi
+ f̂eivi +

∑
e∈Inc(vi)\{ei−1,ei}

f̂evi

= fei−1
vi

− λ+ feivi + λ+
∑

e∈Inc(vi)\{ei−1,ei}

fevi
=

∑
e∈Inc(vi)

fevi .

30

Otherwise, the sum
∑

e∈Inc(u) f̂
e
u and the sum

∑
e∈Inc(u) f

e
u are equal be-

cause they consist of equal terms. ⊠
This concludes the proof of Theorem 2. ⊠

The previous theorem constructs a run (“epistemic world”) that matches a
maximal consistent set M on all edges. The next theorem enhances the claim
of the previous theorem by adding an additional condition on the run being
constructed. Namely, if h is a given edge of the graph and r is a given run of
the protocol, then the desired run r̂ can be constructed not only to match set
M on all edges, but also to satisfy the equation r̂ =h r. The theorem assumes,
of course, that run r itself matches set M on edge h. In terms of the network
flow model, the theorem states that if there is a network flow that satisfies local
properties M ∩ Φ(Sig, {h}) at a given edge h, then this network flow can be
modified to match properties in M globally (on all edges of the graph). The
proof of the theorem below explains how the water can be re-routed through
the graph to achieve the desired outcome.

Theorem 3 For each h ∈ E, each run r = ⟨Xe, {feu}u∈Inc(e)⟩e∈E of protocol

Pδ
E, and each maximal consistent set M such that Xh =M ∩Φ(Sig, {h}), there

is a run
r̂ = ⟨X̂e, {f̂eu}u∈Inc(e)⟩e∈E

of protocol Pδ
E such that

1. X̂e =M ∩ Φ(Sig, {e}) for each e ∈ E,

2. r̂ =h r.

Proof. By Theorem 2, there is a run r′ = ⟨Y e, {ℓeu}u∈Inc(e)⟩e∈E of protocol Pδ
E

such that Y e =M ∩Φ(Sig, {e}) for each e ∈ E. We will show how this run can
be modified to obtain the desired run r̂, by considering several possible cases.
Case I: if δh ∈M , then define r̂ to be the tuple ⟨Y e, {f̂eu}u∈Inc(e)⟩e∈E , where

f̂eu =

{
fhu , if e = h,

ℓeu, otherwise.

Claim 5 r̂ is a run of protocol Pδ
E and r̂ =h r.

Proof. We need to verify that tuple r̂ satisfies conditions of Definition 11 and
the local conditions of protocol Pδ

E on page 20.
We start with the conditions of Definition 11 for an arbitrary edge e ∈ E.

If e = h, then r̂ =e r, and thus tuple r̂ satisfies the conditions of Definition 11
on edge e because run r does. Similarly, if e ̸= h, then r̂ =e r

′, and thus tuple
r̂ satisfies the conditions of Definition 11 on edge e because run r′ does.

We now show that tuple r̂ vacuously satisfies local conditions of protocol Pδ
E

at any vertex v ∈ V . If v /∈ Inc(h), then r̂ =e r
′ for each e ∈ Inc(v). Thus, tuple

r̂ satisfies local conditions of protocol Pδ
E because run r′ does. If v ∈ Inc(h),

then tuple r̂ vacuously satisfies local conditions of protocol Pδ
E because δh ∈M .

31

The condition r̂ =h r is satisfied because (i) Y h = M ∩ Φ(Sig, {h}) = Xh

and (ii) f̂hu = fhu for each u ∈ Inc(h). ⊠

Case II: if δh /∈ M and h ∈ E \ B. Let h ∈ Edge(v0, v1). Since h /∈ B, there
is a circular path h = e0, v1, e1, v2, . . . , vk−1, ek−1, vk, ek = h. By Definition 9,
ei /∈ B for each 0 ≤ i < k. We will now further split this case into two subcases:

Subcase IIa: If 2hδ /∈M , then define r̂ to be tuple ⟨Y e, {f̂eu}u∈Inc(e)⟩e∈E , see
Figure 15, where

f̂eu =

ℓeu + fhv0

− ℓhv0
, if e = ei, u = vi, and 0 ≤ i < k,

ℓeu + fhv1
− ℓhv1

, if e = ei, u = vi+1, and 0 ≤ i < k,

ℓeu, otherwise.

ek=h=e0 v1

v2

`e0v0+f h
v0�`hv0

`e1v1+fh
v0�`hv0

e1

`ek�1
vk�1

+fh
v0�`hv0

`ek�1
vk�1

+fh
v1�`hv1

ek�1

`e1v1+fh
v1�`hv1

vk�1

`e0v0+f h
v1�`hv1vk=v0

Figure 15: Subcase IIa.

Claim 6 f̂eivi + f̂eivi+1
= ℓeivi + ℓeivi+1

and f̂eivi+1
+ f̂

ei+1
vi+1 = ℓeivi+1

+ ℓ
ei+1
vi+1 , for each

0 ≤ i < k.

Proof. By condition 1(c) of Definition 11, the assumption δh /∈ M implies that
fhv0 + fhv1

≤ 0 and ℓhv0 + ℓhv1 ≤ 0. By condition 3(a) of the same definition, the
assumption 2hδ /∈ M implies that fhv0 + fhv1 ≥ 0 and ℓhv0

+ ℓhv1 ≥ 0. Thus,
fhv0 + fhv1

= 0 and ℓhv0
+ ℓhv1

= 0. Therefore,

f̂eivi
+ f̂eivi+1

= ℓeivi + fhv0 − ℓhv0 + ℓeivi+1
+ fhv1

− ℓhv1
= ℓeivi + ℓevi+1

+

(fhv0 + fhv1
)− (ℓhv0 + ℓhv1) = ℓeivi + ℓevi+1

+ 0− 0 = ℓeivi + ℓeivi+1
,

and

f̂eivi+1
+ f̂ei+1

vi+1
= ℓeivi+1

+ fhv1 − ℓhv1
+ ℓei+1

vi+1
+ fhv0 − ℓhv0 = ℓeivi+1

+ ℓei+1
vi+1

+

(fhv0
+ fhv1)− (ℓhv0 + ℓhv1

) = ℓeivi+1
+ ℓei+1

vi+1
+ 0− 0 = ℓeivi+1

+ ℓei+1
vi+1

.

32

⊠

Claim 7 r̂ is a run of protocol Pδ
E and r̂ =h r.

Proof. We need to verify that the tuple r̂ satisfies the conditions of Definition 11
and the local conditions of protocol Pδ

E on page 20.
We start with the conditions of Definition 11 for an arbitrary edge e ∈ E. If

e = ei for some 0 ≤ i < k, then, due to the path being circular, e /∈ B. Thus, all
applicable conditions from Definition 11 are satisfied for tuple r̂ because they
are satisfied for run r′ and due to the equality f̂eivi +f̂

ei
vi+1

= ℓeivi
+ℓeivi+1

established
in Claim 6. If e ̸= ei for all 0 ≤ i < k, then the required is true because r̂ =e r

′.
We now show that tuple r̂ satisfies local conditions of protocol Pδ

E at any

vertex v ∈ V . If v = vi+1 for some 0 ≤ i < k, then f̂eivi+1
+ f̂

ei+1
vi+1 = ℓeivi+1

+ ℓ
ei+1
vi+1

by Claim 6. Thus,
∑

e∈Inc(vi+1)
f̂evi+1

=
∑

e∈Inc(vi+1)
ℓevi+1

. If v ̸= vi+1 for all

0 ≤ i < k, then r̂ =e r
′ for all e ∈ Inc(v). In either of these two cases, tuple

r̂ satisfies the local conditions of protocol Pδ
E at vertex v ∈ V because run r′

satisfies these conditions.
Condition r̂ =h r is satisfied because (i) Y h = M ∩ Φ(Sig, {h}) = Xh, (ii)

f̂hv0 = ℓhv0
+ fhv0 − ℓhv0 = fhv0 , and (iii) f̂hv1

= ℓhv1 + fhv1
− ℓhv1

= fhv1
. ⊠

Subcase IIb: If 2hδ ∈M , then fhv0
+fhv1 < 0 and ℓhv0

+ℓhv1
< 0 due to condition

3(b) of Definition 11. Let λ = (fhv0 + fhv1)/(ℓ
h
v0

+ ℓhv1). Note that λ > 0. Define

r̂ to be the tuple ⟨Y e, {f̂eu}u∈Inc(e)⟩e∈E , see Figure 16, where

f̂eu =

λ(ℓeu − ℓhv0

) + fhv0
, if e = ei, u = vi, and 0 ≤ i < k,

λ(ℓeu + ℓhv0
)− fhv0

, if e = ei, u = vi+1, and 0 ≤ i < k,

λℓeu, otherwise.

ek=h=e0 v1

v2

�(`e0v0� `hv0)+f
h
v0

�(`e1v1� `hv0)+f
h
v0

e1

�(`ek�1
vk�1

� `hv0)+f
h
v0

�(`ek�1
vk + `hv0)�f

h
v0

ek�1

�(`e1v2+ `hv0)�f
h
v0

vk�1

�(`e0v1+ `hv0)�f h
v0vk=v0

Figure 16: Subcase IIb.

33

Claim 8 f̂eivi + f̂eivi+1
= λ(ℓeivi

+ ℓeivi+1
) and f̂eivi+1

+ f̂
ei+1
vi+1 = λ(ℓeivi+1

+ ℓ
ei+1
vi+1), for

each 0 ≤ i < k.

Proof.

f̂eivi + f̂eivi+1
= λ(ℓeivi − ℓhv0

) + fhv0
+ λ(ℓeivi+1

+ ℓhv0
)− fhv0

= λ(ℓeivi + ℓeivi+1
).

Similarly,

f̂eivi+1
+ f̂ei+1

vi+1
= λ(ℓeivi+1

+ ℓhv0
)− fhv0

+ λ(ℓei+1
vi+1

− ℓhv0
) + fhv0

= λ(ℓeivi+1
+ ℓei+1

vi+1
).

⊠

Claim 9 r̂ is a run of protocol Pδ
E and r̂ =h r.

Proof. We need to verify that tuple r̂ satisfies the conditions of Definition 11
and the local conditions of protocol Pδ

E on page 20.
We start with the conditions of Definition 11 for an arbitrary edge e ∈ E.

If e = ei for some 0 ≤ i < k, then e /∈ B since the path is circular. Thus, all
applicable conditions from Definition 11 are satisfied for tuple r̂ because they are
satisfied for run r′ and due to λ > 0 and the equality f̂eivi + f̂

ei
vi+1

= λ(ℓeivi + ℓ
ei
vi+1

)
established in Claim 8. If e ̸= ei for all 0 ≤ i < k, then the required is true
because run r′ satisfies the conditions from Definition 11 and f̂eu =e λℓ

e
u for each

u ∈ Inc(e), where λ > 0.
We now show that tuple r̂ satisfies the local conditions of protocol Pδ

E at any

vertex v ∈ V . If v = vi+1 for some 0 ≤ i < k, then f̂eivi+1
+f̂

ei+1
vi+1 = λ(ℓeivi+1

+ℓ
ei+1
vi+1)

by Claim 8. Thus,
∑

e∈Inc(vi+1)
f̂evi+1

= λ
∑

e∈Inc(vi+1)
ℓevi+1

. If v ̸= vi+1 for all

0 ≤ i < k, then f̂ev = λℓev for all e ∈ Inc(v). In either of these two cases, tuple
r̂ satisfies the local conditions of protocol Pδ

E at vertex v ∈ V because run r′

satisfies these conditions and λ > 0.
The condition r̂ =h r is satisfied because Y h =M ∩ Φ(Sig, {h}) = Xh,

f̂hv0
= λ(ℓhv0 − ℓhv0) + fhv0 = 0 + fhv0 = fhv0 ,

and

f̂hv1 = λ(ℓhv1 + ℓhv0)− fhv0 =
fhv0 + fhv1

ℓhv0
+ ℓhv1

(ℓhv1
+ ℓhv0

)− fhv0
= fhv0

+ fhv1 − fhv0 = fhv1 .

⊠

Case III: If δh /∈M and h ∈ B. Let h ∈ Edge(v0, v1). There are three subcases:

Subcase IIIa: If fhv1
· ℓhv1

= 0, then fhv1
= 0 or ℓhv1 = 0. Hence, by Lemma 11,2hδ /∈ Xh. Thus, again by Lemma 11, fhv1 = 0, fhv0 = 0, ℓhv0

= 0, and ℓhv1 = 0.
Furthermore, Y h =M ∩ Φ(Sig, {h}) = Xh. Hence, r =h r

′. Let r̂ = r′.

34

Subcase IIIb: If fhv1
· ℓhv1

> 0, then define r̂ to be tuple

⟨Y e, {(fhv1
/ℓhv1)ℓ

e
u}u∈Inc(e)⟩e∈E .

By Corollary 2 and the fact that r′ is a run of protocol Pδ
E , tuple r̂ is a run of

protocol Pδ
E . Since Y h = M ∩ Φ(Sig, {h}) = Xh, to show that r̂ =h r, it is

sufficient to show that (fhv1
/ℓhv1)ℓ

h
v1

= fhv1
and (fhv1

/ℓhv1)ℓ
h
v0

= fhv0
. The former

is an algebraic identity, the later follows from the equalities fhv0 + fhv1
= 0 and

ℓhv0 + ℓhv1 = 0, which, in turn, follows from condition 2(a) of Definition 11.

Subcase IIIc: If fhv1 · ℓhv1
< 0, then fhv1

̸= 0. By Definition 11, part 2(a), it
follows that either fhv1 < 0 or fhv0

< 0. We consider the former case, the later
one is similar. If fhv1 < 0, then 2h

∨
e∈C

v1
-h
δe ∈ Xh by Definition 11, part 2(b).

Hence, 2h

∨
e∈C

v1
-h
δe ∈M . Thus, 2h

∨
e∈C

v1
-h
δe ∈ Y h. By Lemma 13, there is a

path e0, v1, e1, v2, . . . , vk, ek in ΓM such that h = e0. Let λ be any positive real
number such that

λ > |ℓeu|

for each e ∈ E and each u ∈ Inc(e). Also, let µ = fhv0/(ℓ
h
v0 + λ). Recall that

fhv1 < 0. Thus, fhv0
> 0 by condition 2(a) of Definition 11. Additionally, note

that λ > |ℓhv0 |. Thus, µ > 0.

Define r̂ to be tuple ⟨Y e, {f̂eu}u∈Inc(e)⟩e∈E , see Figure 17, where

f̂eu =

µ(ℓeu + λ), if e = ei, u = vi, and 0 ≤ i ≤ k,

µ(ℓeu − λ), if e = ei, u = vi+1, and 0 ≤ i < k,

µℓeu, otherwise.

(21)

e0=h v1

v2

µ(`
e0
v0
+�)

µ(`ekvk +�)

e1

µ(`
e0
v1
��) µ(`e1v1 +�)

ek
µ`ekvk+1

vk+1

µ(`e1v2 ��)v0

vk

Figure 17: Subcase IIIc, the last vertex of the path, not named in the text, is
denoted by vk+1 on this figure.

Claim 10 f̂eu + f̂eu′ = µ(ℓeu + ℓeu′), for each edge e ∈ Edge(u, u′) ∈ E \ {ek}.

Proof. If e = ei for some 0 ≤ i < k, then

f̂eivi + f̂eivi+1
= µ(ℓeivi + λ) + µ(ℓeivi+1

− λ) = µ(ℓeivi + ℓeivi+1
).

If e ̸= ei for all 0 ≤ i ≤ k, then f̂eu + f̂eu = µℓeu + µℓeu′ = µ(ℓeu + ℓeu′). ⊠

35

Claim 11
∑

e∈Inc(u) f̂
e
u ≥ µ

∑
e∈Inc(u) ℓ

e
u for each vertex u ∈ V .

Proof. If u ̸= vi for all 0 ≤ i ≤ k, then∑
e∈Inc(u)

f̂eu =
∑

e∈Inc(u)

µℓeu = µ
∑

e∈Inc(u)

ℓeu.

If u = vi+1 for some 0 ≤ i < k, then∑
e∈Inc(u)

f̂eu = f̂eivi+1
+ f̂ei+1

vi+1
+

∑
e∈Inc(vi+1)\{ei,ei+1}

f̂evi+1

= µ(ℓeivi+1
− λ) + µ(ℓei+1

vi+1
+ λ) +

∑
e∈Inc(vi+1)\{ei,ei+1}

µℓevi+1

= µ

ℓeivi+1
+ ℓei+1

vi+1
+

∑
e∈Inc(vi+1)\{ei,ei+1}

ℓevi+1

= µ

∑
e∈Inc(vi+1)

ℓevi+1
.

Finally, if u = v0, then, since λ > 0 and µ > 0,∑
e∈Inc(u)

f̂eu = f̂e0v0 +
∑

e∈Inc(v0)\{e0}

f̂ev0

= µ(ℓe0v0
+ λ) +

∑
e∈Inc(v0)\{e0}

µℓev0

= µ

ℓe0v0
+

∑
e∈Inc(v0)\{e0}

ℓev0

+ µλ

= µ
∑

e∈Inc(v0)

ℓev0
+ µλ

> µ
∑

e∈Inc(v0)

ℓev0
.

The last inequality is true because λ > 0 and µ > 0. ⊠

Claim 12 r̂ is a run of protocol Pδ
E and r̂ =h r.

Proof. We need to verify that tuple r̂ satisfies the conditions of Definition 11 and
the local conditions of protocol Pδ

E on page 20. Below by vk+1 we denote the end
of edge ek different from vertex vk. We start with conditions of Definition 11.

1(c) Due to Claim 10 and the assumption that r′ is a run of protocol Pδ
E , we

only need to verify condition 1(c) for edge ek. Note that δek ∈ Xek , by

Definition 12. Thus, we only need to show that f̂ekvk + f̂ekvk+1
> 0. Indeed,

36

ℓekvk + ℓekvk+1
> 0 because run r′ satisfies condition 1(c). Since λ > 0 and

µ > 0,

f̂ekvk
+f̂ekvk+1

= µ(ℓekvk+λ)+µℓ
ek
vk+1

= µ(ℓekvk+ℓ
ek
vk+1

)+µλ > µ(ℓekvk
+ℓekvk+1

) > 0.

2(a) Due to Claim 10 and the assumption that r′ is a run of protocol Pδ
E , we

again only need to verify condition 2(a) for edge ek, which is vacuously
true because δek ∈ Xek due to condition 4 of Definition 12.

2(b) By the definition of r̂, for each edge b ∈ B \ {e0, . . . , ek}, and each vertex

u ∈ Inc(b), we have f̂ bu = µℓbu. Thus, r̂ on any such edge satisfies condition
2(b) of Definition 11 because run r′ does and µ > 0.

We next show that condition 2(b) is satisfied for each ei such that ei ∈ B
and 0 ≤ i ≤ k. Indeed, consider any u ∈ Inc(ei) and suppose that f̂eiu < 0.

If u = vi, then, since λ > 0 and µ > 0, from equation (21), we have

ℓeiu = ℓeivi =
f̂eivi

µ
− λ <

f̂eivi

µ
< 0.

Thus, 2ei

∨
e∈Cu

-ei
δe ∈ Xei because run r′ satisfies condition 2(b) of Def-

inition 11.

If u = vi+1 and i < k, then condition 2(b) is satisfied due to condition 3
of Definition 12.

Finally, if i = k and u = vk+1, then f̂eiu = µℓeiu by the definition of r̂.
Thus, condition 2(b) is satisfied by run r̂ because it is satisfied by run r′

and since µ > 0.

2(c) By the definition of r̂, for each edge b ∈ B \ {e0, . . . , ek}, and each vertex

u ∈ Inc(b), we have f̂ bu = µℓbu. Thus, r̂ on any such edge satisfies condition
2(c) of Definition 11 because run r′ does and µ > 0.

We will next show that condition 2(c) is satisfied for each ei such that
ei ∈ B and 0 ≤ i < k. Indeed, note that λ > |ℓeivi+1

| due to the choice of
λ. Thus

f̂eivi+1
= µ(ℓeivi+1

− λ) < 0.

Finally, note that when i = k, we have δek ∈ Xek . Therefore, condition
2(c) is vacuously true.

3(a) Due to Claim 10 and the assumption that r′ is a run of protocol Pδ
E , we

again only need to verify condition 3(a) for edge ek. By condition 4 of
Definition 12, δek ∈ Xek . Thus, as we have shown in the case 1(c) above,

f̂ekvk
+ f̂ekvk+1

> 0. Therefore, condition 3(a) is vacuously true for edge ek.

3(b) Due to Claim 10 and the assumption that r′ is a run of protocol Pδ
E , we

once more only need to verify condition 3(b) for edge ek. By condition
4 of Definition 12, δek ∈ Xek . Thus, condition 3(b) is vacuously true for
edge ek.

37

The local conditions (see page 20) are satisfied by tuple r̂ at each vertex u ∈ V
because they are satisfied by run r′ and due to Claim 11 combined with the fact
that µ > 0.

To show that r̂ =h r, first note that Y h = M ∩ Φ(Sig, {h}) = Xh. Then,
observe that

f̂hv0
= µ(ℓhv0 + λ) =

fhv0
ℓhv0 + λ

(ℓhv0 + λ) = fhv0
.

Finally, note that fhv0
= −fhv1

and ℓhv0
= −ℓhv1

because runs r and r′ satisfy
condition 2(a) of Definition 11. Thus,

f̂hv1 = µ(ℓhv1 − λ) =
fhv0

ℓhv0
+ λ

(ℓhv1
− λ) =

−fhv1

−ℓhv1 + λ
(ℓhv1 − λ) = fhv1

.

⊠
This concludes the proof of Theorem 3. ⊠

7.4 Aggregated Protocol

Recall from Section 7.2 that canonical protocol Pδ
E has formula δ as a parameter.

In this section we introduce a construction that aggregates multiple canonical
protocols. One can view a run of the aggregated protocol P as several runs of
different canonical protocols for different values of parameter δ being executed
concurrently on different “levels”. Also recall that a value of an edge under a
canonical protocol consists of a maximal consistent set of formulas and a pair
of real numbers (flow values). Although there is no explicit connection between
flow values on different levels for the same edge, we assume that maximal con-
sistent sets are the same on all layers for a given edge of the aggregated protocol,
see Definition 13.

Definition 13 A value we of an edge e ∈ E under the aggregated protocol P
is a tuple ⟨X, {fv,δ}v∈Inc(e),δ∈∆(Sig)⟩ such that ⟨X, {fv,δ}v∈Inc(e)⟩ is a value of

edge e under protocol Pδ
E for each δ ∈ ∆(Sig).

Valuation. Let π be a function such that, for each e ∈ E and p ∈ Pe, set p
π

contains all values ⟨X, {fv,δ}v∈Inc(e),δ∈∆(Sig)⟩, where p ∈ X.

Local Conditions. A tuple ⟨Xe, {fev,δ}v∈Inc(e),δ∈∆(Sig)⟩e∈Inc(u) satisfies the
local conditions of protocol P at vertex u if for each δ ∈ ∆(Sig), the tuple
⟨Xe, {fev,δ}v∈Inc(e)⟩e∈Inc(u) satisfies local conditions of protocol Pδ

E at vertex u.
This concludes the definition of the aggregated protocol P.

Theorem 4 If e ∈ E, φ ∈ Φ(Sig, {e}), and tuple

r = ⟨Xh, {fhu,δ}u∈Inc(h),δ∈∆(Sig)⟩h∈E

is a run of protocol P, then r ⊩ φ if and only if φ ∈ Xe.

38

Proof. We prove the theorem by induction on the structural complexity of for-
mula φ. If φ is a proposition p ∈ Pe, then the required follows from Definition 7
and the definition of valuation function π for protocol P. The cases when φ is
constant ⊥ or an implication φ1 → φ2 follow from Definition 7 and the maxi-
mality and the consistency of set Xe in the standard way. Now let φ be of the
form 2eψ.
(⇒) : Suppose that

∧
i

∨
h∈E ψ

i
h is the conjunctive normal form of ¬ψ such that

ψi
h ∈ Φ(Sig, {h}) for each h ∈ E. Thus, the following statement can be proven

using just the axioms of the propositional logic in language Φ(Sig)

⊢ ¬
∧
i

∨
h∈E

ψi
h → ψ. (22)

Assume that 2eψ /∈ Xe. To prove that r ⊮ 2eψ, it suffices to show that there
is a run r̂ of the canonical protocol PE such that r̂ =e r and r̂ ⊩

∧
i

∨
h∈E ψ

i
h.

The assumption 2eψ /∈ Xe and the maximality of set Xe imply that Xe ⊬2eψ. Thus, Xe ⊬ ψ by Lemma 4. Hence, set Xe ∪ {¬ψ} is consistent. Let M
be any maximal consistent extension of Xe ∪ {¬ψ}. By Theorem 3, for each

δ ∈ ∆(Sig) there is a run r̂δ = ⟨X̂h, {f̂hu,δ}u∈Inc(h)⟩h∈E of the canonical protocol

Pδ
E such that r̂ =e r and X̂h =M ∩Φ(Sig, {h}) for each h ∈ E. Define tuple r̂

to be ⟨X̂h, {f̂hu,δ}u∈Inc(h),δ∈∆(Sig)⟩h∈E . By the definition of protocol P, tuple r̂
is a run of P.

We next show that r̂ ⊩
∧

i

∨
h∈E ψ

i
h. Suppose the opposite, then there is

i0 such that r̂ ⊮
∨

h∈E ψ
i0
h . Thus, r̂ ⊮ ψi0

h for each h ∈ E. Hence, by the

induction hypothesis, ψi0
h /∈ X̂h for each h ∈ E. Recall that ψi0

h ∈ Φ(Sig, {h})
and X̂h is a maximal consistent subset of Φ(Sig, {h}) for each h ∈ E. Thus,

¬ψi0
h ∈ X̂h ⊆ M for each h ∈ E. Hence,

∧
h∈E ¬ψi0

h ∈ M due to maximality

of the set M . Then, M ⊢ ¬
∨

h∈E ψ
i0
h . Hence, M ⊢ ¬

∧
i

∨
h∈E ψ

i
h. Therefore,

M ⊢ ψ, by statement (22). The latter contradicts the choice of set M being a
maximal consistent extension of set Xe ∪ {¬ψ}.
(⇐) : Suppose that 2eψ ∈ Xe. We will show that r ⊩ 2eψ. Consider any run

r̂ = ⟨X̂h, {f̂hu,δ}u∈Inc(h),δ∈∆(Sig)⟩h∈E of the aggregated protocol P such that
r̂ =e r. It suffices to prove that r̂ ⊩ ψ.

Let
∧

i

∨
h∈E ψ

i
h be a conjunctive normal form of ψ such that ψi

h ∈ Φ(Sig, {h})
for each h ∈ E. Then, for each i, the following statement can be proven using
just the axioms of the propositional logic in language Φ(Sig)

⊢ ψ →
∨
h∈E

ψi
h.

By Necessitation inference rule

⊢ 2e

(
ψ →

∨
h∈E

ψi
h

)
.

39

By Distributivity axiom and Modus Ponens inference rule,

⊢ 2eψ → 2e

∨
h∈E

ψi
h.

Thus, for each i, we have 2e

∨
h∈E ψ

i
h ∈ Xe due to the assumption 2eψ ∈ Xe

and the maximality of setXe. Note that X̂e = Xe due to the assumption r̂ =e r.
Hence, 2e

∨
h∈E ψ

i
h ∈ X̂e. Let δ̂ denote the formula

∨
h∈E ψ

i
h. Recall that r̂ is

a run of protocol P. Hence, by the definition of the aggregated protocol, tuple

⟨X̂h, {f̂h
u,δ̂

}u∈Inc(h)⟩h∈E is a run of protocol P δ̂
E , and so, by Lemma 12, it is a

run of protocol P δ̂
{e}. Then, by Theorem 1, there is an edge h0 ∈ E such that

ψi
h0

∈ X̂h0 . Thus, by the induction hypothesis, r̂ ⊩ ψi
h0
. Hence, r̂ ⊩

∨
h∈E ψ

i
h

for each i. Then, r̂ ⊩
∧

i

∨
h∈E ψ

i
h. Therefore, r̂ ⊩ ψ. ⊠

Theorem 5 (completeness) For any signature Sig and any formula φ ∈
Φ(Sig), if ⊬ φ, then there exists a protocol P over Sig and a run r of P such
that r ⊮ φ.

Proof. Suppose that ⊬ φ. Let M be a maximal consistent subset of Φ(Sig)
containing the formula ¬φ. Assume that

∧
i

∨
e∈E φ

i
e is the conjunctive normal

form of the formula ¬φ such that φi
e ∈ Φ(Sig, {e}) for each i and each e ∈ E.

Since ¬φ ∈ M , for each i there exists ei ∈ E such that φi
ei ∈ M . By Theo-

rem 2, for each δ ∈ ∆(Sig), there exists a run rδ = ⟨Xh, {fhu }u∈Inc(h)⟩h∈E of

the canonical protocol Pδ
E such that Xh =M ∩Φ(Sig, {h}) for all h ∈ E. Thus,

φi
ei ∈ Xei for each i. Consider tuple r = ⟨Xh, {fhu,δ}u∈Inc(h),δ∈∆(Sig)⟩h∈E . By

the definition of the aggregated protocol, tuple r is a run of protocol P. Hence,
r ⊨ φi

ei for each i, by Theorem 4. Therefore, r ⊩
∧

i

∨
e∈E φ

i
e and so r ⊩ ¬φ. ⊠

8 Conclusion

In this article we have developed a formal modal logical framework for reason-
ing about information flow in communication networks with a fixed topological
structure. Our main results are the soundness and the completeness of this logi-
cal system. At the core of the proof of the completeness is a well-known network
flow protocol. A natural possible extension of this work is to develop a similar
system for directed graphs that represent networks with one-way communica-
tion channels. Another possible extension is a distributed knowledge system
with a modality 2A in which the statement 2Aφ is interpreted as “any agent
that eavesdrops on all channels in set A knows that φ is true”.

Another possible direction for the future work is to develop logical frame-
works for reasoning about information flow in more specialized settings. An
example of such a setting is the influence flow in social networks. The in-
fluence in social networks is usually modeled by a relatively simple and very

40

specific form of “local conditions” such as those in commonly used threshold
model [12, 13, 14, 15, 16, 17]. A logical framework for such a setting is likely
to include more powerful version of Gateway axiom. The canonical network
construction for the proof of the completeness presented in this article is very
unlikely to be adoptable to a much more restricted interpretation of local con-
ditions found in social network.

References

[1] Jeffrey Kane and Pavel Naumov. Epistemic logic for communication chains.
In 14th conference on Theoretical Aspects of Rationality and Knowledge
(TARK ‘13), January 2013, Chennai, India, pages 131–137, 2013.

[2] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about knowledge. MIT Press, Cambridge, MA, 1995.

[3] Reasoning about communication graphs.

[4] Jia Tao, Giora Slutzki, and Vasant Honavar. A conceptual framework for
secrecy-preserving reasoning in knowledge bases. ACM Trans. Comput.
Logic, 16(1):3:1–3:32, December 2014.

[5] Michael S. Donders, Sara Miner More, and Pavel Naumov. Information flow
on directed acyclic graphs. In Lev D. Beklemishev and Ruy de Queiroz,
editors, WoLLIC, volume 6642 of Lecture Notes in Computer Science, pages
95–109. Springer, 2011.

[6] Sarah Holbrook and Pavel Naumov. Fault tolerance in belief formation
networks. In Luis Fariñas del Cerro, Andreas Herzig, and Jérôme Mengin,
editors, JELIA, volume 7519 of Lecture Notes in Computer Science, pages
267–280. Springer, 2012.

[7] Sara Miner More and Pavel Naumov. Hypergraphs of multiparty secrets.
Ann. Math. Artif. Intell., 62(1-2):79–101, 2011.

[8] Sara Miner More and Pavel Naumov. The functional dependence relation
on hypergraphs of secrets. In João Leite, Paolo Torroni, Thomas Ågotnes,
Guido Boella, and Leon van der Torre, editors, CLIMA, volume 6814 of
Lecture Notes in Computer Science, pages 29–40. Springer, 2011.

[9] Sara Miner More and Pavel Naumov. Logic of secrets in collaboration
networks. Ann. Pure Appl. Logic, 162(12):959–969, 2011.

[10] Jeffrey Kane and Pavel Naumov. The Ryōan-ji axiom for common knowl-
edge on hypergraphs. Synthese, 191(14):3407–3426, 2014.

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.

41

[12] Thomas W Valente. Social network thresholds in the diffusion of innova-
tions. Social networks, 18(1):69–89, 1996.

[13] Michael W Macy. Chains of cooperation: Threshold effects in collective
action. American Sociological Review, pages 730–747, 1991.

[14] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread
of influence through a social network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 137–146. ACM, 2003.

[15] Krzysztof R Apt and Evangelos Markakis. Social networks with competing
products. Fundamenta Informaticae, 129(3):225–250, 2014.

[16] Mark Granovetter. Threshold models of collective behavior. American
journal of sociology, pages 1420–1443, 1978.

[17] Thomas Schelling. Micromotives and Macrobehavior. Norton, 1978.

42

