
A brief introduction to (large)
language models

Sofia Serrano

What are we going to talk about?

● The language modeling problem
● How do we learn a language model?

○ A quick primer on learning a model via gradient descent
○ The role of training data

● ✨✨ The Transformer ✨✨
○ The two things that make it such an improvement over our previous techniques for language

modeling
○ More detail about both of those two things

The language modeling problem

A language model answers the question: What is p(text)?

Tokenizing text using its predefined vocabulary (which includes a [STOP] token), a
language model breaks that probability down as follows:

p(text) = p(token t of text | tokens 1 through t - 1 of text)

Just the chain rule of probability– no
simplifying assumptions!

[the rest of the LM’s vocabulary]

Applying a language model

𝒱 = {permit, reject} Our event space is 𝒱* with <eos> at end Our r.v. is X

What is p(X = reject permit <eos>)?

4

𝒱 = {permit, reject} Our event space is 𝒱* with <eos> at end Our r.v. is X

What is p(X = reject permit <eos>)?

Applying a language model

5

𝒱 = {permit, reject} Our event space is 𝒱* with <eos> at end Our r.v. is X

What is p(X = reject permit <eos>)? Use chain rule of probability.

Applying a language model

6

𝒱 = {permit, reject} Our event space is 𝒱* with <eos> at end Our r.v. is X
p(X = reject permit <eos>) = p(reject | [start]) * p(permit | [start] reject) *
 p(<eos> | [start] reject permit)

Applying a language model

7

Applying a language model

𝒱 = {permit, reject} Our event space is 𝒱* with <eos> at end Our r.v. is X

Note: as long as p(child of node) > 0 for each node and p(child of node)
= 1 for each (non-eos) node, then p(path) = 1

8

Language models of this form can generate text

The ____

The students ____

The students opened ____

The students opened their ____

[the rest of the LM’s vocabulary]

At each timestep, sample a token from the language model’s new probability
distribution over next tokens. (Might be naive sampling, top-k, nucleus sampling…)

https://arxiv.org/pdf/1904.09751.pdf

How we learn a language model

How do we learn a language model?

Given a large corpus of text, split that text into all of its different language
modeling subproblems and then:

Maximize: p(observed token in text | all observed tokens before that token)

 (summed over all tokens in text)

How do we maximize that quantity?

The dominant strategy from the past decade:

1. Compose a differentiable function of the input and some
blocks of to-be-learned parameters

2. Have that function output a real-valued vector the length of
the vocabulary

3. Softmax that vector to turn it into a probability distribution:
a. Exponentiate it
b. Normalize the exponentiated values

4. Treat the negative log probability of the correct token as
your loss function

5. Differentiate with respect to the parameters, and perform
gradient descent

Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360∘

Find the direction of steepest slope up

Go the opposite direction

13

X

Gradient descent: a throwback to calculus

Q: Given current parameter w, should we make w bigger or smaller to minimize
our loss?
A: Move w in the reverse direction from the slope of the function

14

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

15

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

16

Now let’s imagine 2 dimensions, w and b

Visualizing the (negative) gradient vector
at the red point

It has two dimensions shown
in the x-y plane

17

Key difference from our motivating scenario: in practice, calculating the exact
gradient is really time-consuming.

So… we estimate the gradient using samples of data.

Gradient Descent → Stochastic Gradient Descent

18

A brief aside: let’s talk about data

What does each instance of data is contribute?

Some of the nudges to a model’s parameters over the course of training.

Which data is used to train modern large language models?

Web text

… it’s kind of tough to give a more specific description than that.

See Dodge et al. EMNLP ‘21, “Documenting Large Webtext Corpora: A Case
Study on the Colossal Clean Crawled Corpus”

Also see Gururangan et al. EMNLP ‘22, “Whose Language Counts as High
Quality? Measuring Language Ideologies in Text Data Selection”

https://aclanthology.org/2021.emnlp-main.98/
https://aclanthology.org/2021.emnlp-main.98/
https://aclanthology.org/2022.emnlp-main.165/
https://aclanthology.org/2022.emnlp-main.165/

✨✨ The Transformer ✨✨

Why did the transformer make such a big difference for
language modeling?

1. It allowed for faster learning of more model parameters on more data

2. It built in a method for contextualizing tokens with respect to other tokens in
the sequence

A brief aside about some visual shorthand I’ll be using

A 3-layer LSTM’s calculations for an input of 10 tokens

(For more on computing
gradients via
backpropagation, see
colah’s blog post on this
topic)

http://colah.github.io/posts/2015-08-Backprop/
http://colah.github.io/posts/2015-08-Backprop/

One layer of the transformer architecture (Vaswani et al.
2017)

One layer of the transformer architecture (Vaswani et al.
2017)

ok but how does this
mess help anything sofia

Comparing training times: how many functions do we need to backpropagate through?

Comparing training times: how many functions do we need to backpropagate through?

Transformers parallelize a lot of the computations that LSTMs make us do in sequence

Comparing training times: how many functions do we need to backpropagate through?

Transformers parallelize a lot of the computations that LSTMs make us do in sequence
And (a very specific, but nonempty, subset of) you can therefore train a transformer on a

ridiculously large amount of data in a way that you cannot for an LSTM.

What kind of function can take in a variable number
of inputs like that without recursively applying an

operation a bunch of times?

Attention mechanisms

Building up to the attention mechanism

What about an average?

But we probably don’t want to weight all input
vectors equally…

How about a weighted average?

Great idea! How can we automatically
decide the weights for a weighted average
of the input vectors?

What kind of function can take in a
variable number of inputs like that

without recursively applying an operation
a bunch of times?

A simple form of attention (adapted from Bahdanau et al.
2014)

Parameter vector

(Variable number
of) input vectors

Computed how?
1. Dot product between param vector
and each input vector
2. Softmax the set of resulting scalars.

M
ultiply

M
ultiply

M
ultiply

M
ultiply

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473

Pros and cons

Pros:

● We have a function that can compute a weighted
average (largely) in parallel of an arbitrary number
of vectors!

● The parameters determining what makes it into our
output representation are learned

Cons:

● We’re also hoping to produce n different output
token representations… and this just produces
one…

Enter “self attention”

“What if instead of comparing each vector of the
sequence to a single learned vector, we compared

the sequence to itself?”

Queries Keys Values

Q K V

Q

Q K V

V

K

Our function is still made up almost entirely of matrix multiplications! Which are very
parallelizable (→ efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with
an arbitrary length

Our function is still made up almost entirely of matrix multiplications! Which are very
parallelizable (→ efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with
an arbitrary length

We’re now capable of producing n different new token representations!

Hooray for self attention!

Our function is still made up almost entirely of matrix multiplications! Which are very
parallelizable (→ efficient!)

Self attention is the key component of the transformer

That’s all I’ve got! Questions?

