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1 Introduction 
 
In late November 2022, OpenAI released a web-based chatbot, ChatGPT. Within a 
few months, ChatGPT was reported to be the fastest-growing application in 
history, gaining over 100 million users. Reports in the popular press touted 
ChatGPT’s ability to engage in conversation, answer questions, play games, write 
code, translate and summarize text, produce highly fluent content from a prompt, 
and much more. New releases and competing products have followed, and there 
has been extensive discussion about these new tools: How will they change the 
nature of work? How should educators respond to the increased potential for 
cheating in academic settings? How can we reduce or detect misinformation in 
the output? What exactly does it take (in terms of engineering, computation, and 
data) to build such a system? What principles should inform decisions about the 
construction, deployment, and use of these tools?  
 
Scholars of artificial intelligence, including ourselves, are baffled by this situation. 
Some were taken aback at how quickly these tools went from being objects of 
mostly academic interest to artifacts of mainstream popular culture. Some have 
been surprised at the boldness of claims made about the technology and its 
potential to lead to benefits and harms. The discussion about these new products 
in public forums is often polarizing. When prompted conversationally, the fluency 
of these systems’ output can be startling; their interactions with people are so 
realistic that some have proclaimed the arrival of human-like intelligence in 
machines, adding a strong emotional note to conversations that, not so long ago, 
would have mostly addressed engineering practices or statistics. 
 
Given the growing importance of AI literacy, we decided to write this tutorial to 
help narrow the gap between the discourse among those who study language 
models—the core technology underlying ChatGPT and similar products—and 
those who are intrigued and want to learn more about them. In short, we believe 
the perspective of researchers and educators can add some clarity to the public’s 
understanding of the technologies beyond what’s currently available, which tends 
to be either extremely technical or promotional material generated about 
products by their purveyors. 
 



Our approach teases apart the concept of a language model from products built 
on them, from the behaviors attributed to or desired from those products, and 
from claims about similarity to human cognition. As a starting point, we: 

1. Offer a scientific viewpoint that focuses on questions amenable to study 
through experimentation, 

2. Situate language models as they are today in the context of the research 
that led to their development, and 

3. Describe the boundaries of what is known about the models at this writing. 
 
Popular writing offers numerous, often thought-provoking metaphors for LMs, 
including bureaucracies or markets (Henry Farrell and Cosma Shalizi), demons 
(Leon Derczynski), and a “blurry JPEG” of the web (Ted Chiang). Rather than 
offering a new metaphor, we aim to empower readers to make sense of the 
discourse and contribute their own. Our position is that demystifying these new 
technologies is a first step toward harnessing and democratizing their benefits and 
guiding policy to protect from their harms.  
 
LMs and their capabilities are only a part of the larger research program known as 
artificial intelligence (AI). (They are often grouped together with technologies that 
can produce other kinds of content, such as images, under the umbrella of 
“generative AI.”) We believe they’re a strong starting point because they underlie 
the ChatGPT product, which has had unprecedented reach, and also because of 
the immense potential of natural language for communicating complex tasks to 
machines. The emergence of LMs in popular discourse, and the way they have 
captured the imagination of so many new users, reinforces our belief that the 
language perspective is as good a place to start as any in understanding where this 
technology is heading. 
 
The guide proceeds in five parts. We first introduce concepts and tools from the 
scientific/engineering field of natural language processing (NLP), most importantly 
the notion of a “task” and its relationship to data (section 2). We next define 
language modeling using these concepts (section 3). In short, language modeling 
automates the prediction of the next word in a sequence, an idea that has been 
around for decades. We then discuss the developments that led to the current so-
called “large” language models (LLMs), which appear to do much more than 
merely predict the next word in a sequence (section 4). We next elaborate on the 
current capabilities and behaviors of LMs, linking their predictions to the data 

https://www.economist.com/by-invitation/2023/06/21/artificial-intelligence-is-a-familiar-looking-monster-say-henry-farrell-and-cosma-shalizi
https://interhumanagreement.substack.com/p/demons
https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web


used to build them (section 5). Finally, we take a cautious look at where these 
technologies might be headed in the future (section 6). To overcome what could 
be a terminology barrier to understanding admittedly challenging concepts, we 
also include a Glossary of NLP and LM words/concepts (including “perplexity,” 
wryly used in the title of this Guide). 
 

2 Background: Natural language processing concepts and tools 
 
Language models as they exist today are the result of research in various 
disciplines, including information theory, machine learning, speech processing, 
and natural language processing.1

1 A “natural language” is a language that developed naturally in a community, like Hawaiian or 
Portuguese or American Sign Language. For the most part, NLP researchers focus on human 
languages and specifically written forms of those languages. Most often, natural languages 
contrast with programming languages like Python and C++, which are artifacts designed 
deliberately with a goal in mind. 

 This work’s authors belong to the community of 
natural language processing (NLP) researchers, members of which have been 
exploring the relationship between computers and natural languages since the 
1960s.2

2 There are other uses of the “NLP” acronym with very different meanings. Ambiguous terms 
and expressions are common in natural languages, and one of the challenges of the field of NLP. 

 Two fundamental and related questions asked in this community are: “In 
what ways can computers understand and use natural language?” and “To what 
extent can the properties of natural languages be simulated computationally?” 
The first question has been approached mainly by attempts to build computer 
programs that show language-understanding and language-use behavior (such as 
holding a conversation with a person); it is largely treated as an engineering 
pursuit that depends heavily on advances in hardware. The second question 
brings NLP into contact with the fields of linguistics, cognitive science, and 
psychology. Here, language tends to be viewed through a scientific lens (seeking 
to experimentally advance the construction of theories about natural language as 
an observable phenomenon) or sometimes through a mathematical lens (seeking 
formal proofs). Because these two questions are deeply interconnected, people 
interested in either of them often converse and collaborate, and many are 
interested in both questions. 
 
We believe the concepts (ideas, terminology, and questions) and tools (problem-
solving methods) the NLP community uses in research are helpful in advancing 

 



understanding of language models. They are familiar to many AI researchers and 
practitioners, and similar ones have evolved in other communities (for example, 
computer vision). If you have experience with computer programming, data 
science, or the discrete math foundations of computer science, you may have 
been exposed to these ideas before, but we don’t believe they are universally or 
consistently taught in classes on those topics. Having a basic understanding of 
them will help you to think like an NLP expert. 
 

2.1 Taskification: Defining what we want a system to do 
 
The first step in building a machine is deciding what we want the machine to do. 
People who build power plants, transportation devices, or cooking appliances 
work from a specification that spells out the inputs and outputs of the desired 
system in great detail. It’s not enough to say that “the power plant must provide 
electricity to all the homes in its town.” Engineers require a precise statement of 
how many kiloWatt-hours are to be produced, the budget for building the plant, 
environmental impacts expected, all the laws regulating the construction of plants 
that are in effect to guarantee safety, and much more. 
 
To take an example that’s much simpler and more relevant to building an NLP 
system, consider a computer program (which is a “machine” in a very abstract 
sense; we’ll also call it a “system”) that sorts a list of names alphabetically. This 
task sounds simple, and computer science students would likely start thinking 
about different procedures for sorting lists. There are, however, some details that 
need to be addressed before we start writing code, such as: 

• How will the names be input to the program, and what should the program 
do with the output? (E.g., will the program run locally on a user’s laptop? Or 
is there a web interface users will use to type in the input and then see the 
output in their browser tab? Or will they upload/download files? If so, what 
is the format for those files?) 

• What set of characters will appear in the input, and what rules are we using 
to order them? (E.g., how do we handle the apostrophe in a name like 
“O’Donnell”? How should diacritic (accented) characters be handled? What 
happens if some names are in Latin script and others in Arabic script?) 

• Are there constraints on how much memory the program can use, or on 
how quickly it needs to execute? If the input list is so long that the program 
will violate those constraints, should the user get a failure message? 



These may seem like tedious questions, but the more thoroughly we anticipate 
the eventual use of the system we’re building, the better we can ensure it will 
behave as desired across all possible cases. 
 

 
Figure 1: Some tasks, like alphabetical name sorting, may seem very simple but 
often raise detailed questions that must be addressed for a full specification. 

 

2.1.1 Abstract vs. concrete system capabilities 
 
When building an NLP system, the situation is no different than the name sorter, 
except that it’s considerably harder to be precise. Consider some of the kinds of 
capabilities the NLP community has been targeting in its sixty-year history: 

• Translate text from one language to another 

• Summarize one or more documents in a few paragraphs or in a structured 
table 

• Answer a question using information in one or more documents 

• Engage in a conversation with a person and follow any instructions they give 
Each of these high-level applications immediately raises a huge number of 
questions, likely many more than for simpler applications like the name sorter, 
because of the open-ended nature of natural language input (and output). Some 
answers to those questions could lead an expert very quickly to the conclusion 
that the desired system just isn’t possible yet or would be very expensive to build 
with the best available methods. Researchers make progress on these challenging 
problems by trying to define tasks, or versions of the application that abstract 
away some details while making some simplifying assumptions. 
 
For example, consider the translation of text from one language to another. Here 
are some fairly conventional assumptions made in many translation research 
projects: 



• The input text will be in one of a small set of languages; it will be formatted 
according to newspaper-like writing conventions. The same holds for the 
output text. 

• Text will be translated one sentence or relatively short segment of text at a 
time. 

• The whole segment will be available during translation (that is, translation 
isn’t happening in “real time” as the input text is produced, as might be 
required when subtitling a live broadcast). 

 
It’s not hard to find research on automatic translation that makes different 
assumptions from those above. A new system that works well and relies on fewer 
assumptions is typically celebrated as a sign that the research community is 
moving on to harder problems. For example, it’s only in the past few years that we 
have made the leap from systems that support single input-to-output translations 
to systems that support multiple input-to-output languages. We highlight that 
there are always some narrowing assumptions, hopefully temporary, that make a 
problem more precise and therefore more solvable. 
 
We believe that many discussions about AI systems become more understandable 
when we recognize the assumptions beneath a given system. There is a constant 
tension between tasks that are more general/abstract, on which progress is more 
impactful and exciting to researchers, and tasks that are more specific/concrete. 
Solving a concrete, well-defined task may be extremely useful to someone, but 
certain details of how that task is defined might keep progress on that task from 
being useful to someone else. To increase the chances that work on a concrete 
task will generalize to many others, it’s vital to have a real-world user community 
engaged in the definition of that task. 
 

2.1.2 We need data and an evaluation method for research progress on a task 
 
The term “task” is generally used among researchers to refer to a specification of 
certain components of an NLP system, most notably data and evaluation: 

• Data: there is a set of realistic demonstrations of possible inputs paired 
with their desirable outputs. 

• Evaluation: there is a method for measuring, in a quantitative and 
reproducible way, how well any system’s output matches the desired 
output. 



 
Considerable research activity focuses on building datasets and evaluation 
methods for NLP research, and the two depend heavily on each other. Consider 
again the translation example. Examples of translation between languages are 
easy to find for some use cases. A classic example is parliamentary language 
translated from English to French, or vice versa. The proceedings of the Canadian 
Parliament are made available to the public in both English and French, so human 
translators are constantly at work producing such demonstrations; paired bilingual 
texts are often called “parallel text” in the research community. The European 
Parliament does the same for multiple languages. Finding such data isn’t as easy 
for some languages or pairs of languages, and as a result, there has been 
considerably more progress on automated translation for European languages 
than for others. 
 
What about evaluation of translation? One way to evaluate how well a system 
translates text is to take a demonstration, feed the input part to a system, and 
then show a human judge the desired output and the system output. We can ask 
the judge how faithful the system output is to the desired output. If the judge 
speaks both languages, we can show them the input instead of the desired output 
(or in addition to it) and ask the same question. We can also ask human judges to 
look only at the system output and judge the fluency of the text. As you can 
imagine, there are many possible variations, and the outcomes might depend on 
exactly what questions we ask, how we word those questions, which judges we 
recruit, how much they know about translation systems already, how well they 
know the language(s), and whether and how much we pay them. 
 
In 2002, to speed up translation evaluation in research work, researchers 
introduced a fully automated way to evaluate translation quality called “Bleu” 
scores (Papineni et al. 2002), and there have been many proposed alternatives 
since then, with much discussion over how well these cheaper automatic methods 
correlate with human judgments. One challenge for automatic evaluation of 
translation is that natural languages offer many ways to say the same thing. In 
general, reliably rating the quality of a translation could require recognizing all of 
the alternatives because the system could (in principle) choose any of them. 
 
We used translation as a running example precisely because these questions are 
so contentious and potentially costly for this task. We’ll next consider a fairly 



concrete task that’s much simpler: categorizing the overall tone of a movie review 
(positive vs. negative), instantiating a more general problem known as sentiment 
analysis. Here, researchers have collected demonstrations from movie review 
websites that pair reviews with numerical ratings (e.g.„ one to five stars). If a 
system takes a review as input and predicts the rating, we can easily check 
whether the output exactly matches the actual rating given by the author, or we 
could calculate the difference between the system and correct ratings. Here, the 
collection of data is relatively easy, and the definition of system quality is fairly 
uncontroversial: the fewer errors a system makes (or the smaller the difference 
between the number of author stars and system-predicted stars), the higher the 
system’s quality. 
 
Note, however, that a system that does well on the movie review sentiment task 
may not do so well on reviews of restaurants, electronics products, or novels. This 
is because the language people use to say what they like or don’t like about a 
movie won’t carry the same meaning in a different context. (If a reviewer says that 
a movie “runs for a long time,” that isn’t as obviously positive as the same remark 
about a battery-operated toothbrush, for example.) In general, knowing the scope 
of the task and how a system was evaluated are crucial to understanding what we 
can expect of a system in terms of its generalizability, or how well its performance 
quality holds up as it’s used on inputs less and less like those it was originally 
evaluated on. It’s also essential when we compare systems; if the evaluations use 
different demonstrations or measure quality differently, a comparison won’t make 
sense. 
 
For most of its history, NLP has focused on research rather than development of 
deployable systems. Recent interest in user-facing systems highlights a 
longstanding tension in taskification and the dataset and evaluation requirements. 
On one hand, researchers prefer to study more abstract tasks so that their findings 
will be more generally applicable across many potential systems. The scientific 
community will be more excited, for example, about improvements we can expect 
will hold across translation systems for many language pairs (rather than one) or 
across sentiment analysis systems for many kinds of reviews (rather than just 
movies). On the other hand, there is near-term value in making a system that 
people want to use because it solves a specific problem well, which requires being 
more concrete about the intended users, their data, and meaningful evaluation. 
 



There is yet another step between researching even fairly concrete tasks and 
building usable systems. These are evaluated very differently. Evaluations in 
research tend to focus on specific, narrowly defined capabilities, as exemplified in 
a sample of data. It’s an often unstated assumption in research papers that 
improved task performance will generalize to similar tasks, perhaps with some 
degradation. The research community tends to share such assumptions, with the 
exception of research specifically on generalization and robustness across 
domains of data. Meanwhile, deployable systems tend to receive more rigorous 
testing with intended users, at least to the extent that they are built by 
organizations with an interest in pleasing those users. In deployment, “task 
performance” is only part of what’s expected (systems must also be reasonably 
fast, have intuitive user interfaces, pose little risk to users, and more). 
 
People interested in NLP systems should be mindful of the gaps between (1) 
high-level, aspirational capabilities, (2) their "taskified" versions that permit 
measurable research progress, and (3) user-facing products. As research 
advances, and due to the tension discussed above, the "tasks" and their 
datasets and evaluation measures are always in flux. 
 

2.2 A closer look at data: where it comes from and how it’s used 
 
For the two task examples discussed above (translation and sentiment analysis 
tasks), we noted that demonstrations (inputs with outputs) would be relatively 
easy to find for some instances of the tasks. However, data might not always be so 
easy to come by. The availability of data is a significant issue for two reasons: 

• For most NLP applications, and most tasks that aim to approximate those 
applications, there is no “easy” source of data. (Sentiment analysis for 
movie reviews is so widely studied, we believe, because the data is 
unusually easy to find, not because there is especially high demand for 
automatic number-of-stars prediction.) 

• The best known techniques for building systems require access to 
substantial amounts of extra data to build the system, not just to evaluate 
the quality of its output. 

 

2.2.1 Differentiating training from test data 
 



From here on, we refer to data used to build a system as training data and data 
used to evaluate systems as test data. This distinction is extremely important for a 
reason that’s easy to understand. 
 

 
Figure 2: When data is split into training and test sets, it’s critical there is no 
overlap between the two. 

 
Consider a student who somehow gets a copy of the final exam for one of their 
classes a few weeks before the exam. Regardless of how much the student is to 
blame in accessing the test, regardless of whether they even knew the exam they 
saw was the actual final exam, regardless of how honorably they behaved during 
those weeks and during the test, if they get a high score, the instructor cannot 
conclude that the student learned the material. The same holds true for an NLP 
system. For the test data to be useful as an indicator of the quality of the system’s 
output, it is necessary that the test data be “new” to the system. We consider this 
the cardinal rule of experimentation in NLP: The test data cannot be used for any 
purpose prior to the final test. Occasionally, someone will discover a case where 
this rule was violated, and (regardless of the intent or awareness of those who 
broke the rule) the conclusions of any research dependent on that case must be 
treated as unreliable. 
 



To get a sense of an NLP system’s actual quality, it is crucial that the system not 
be evaluated on data it has seen during training. 
 

2.2.2 Creating a dataset from scratch 
 
Let’s consider a variant of the sentiment analysis problem that might emerge in a 
high-stakes academic decision-making setting. Suppose we plan to build an NLP 
system that reads recommendation letters for applicants to a university degree 
program. The system should rate the sentiment of the recommender toward the 
applicant. On the surface, this is similar to the movie review problem we 
discussed previously. But this use case introduces some new challenges. 
 
First, we are unlikely to find demonstrations that we could use to train or evaluate 
a system.3

3 In NLP terms, finding and collecting such existing demonstrations would count as dataset 
creation. “Creating a dataset” in NLP can refer to either creating of new text via expert 
annotation or crowdsourcing, or collecting existing text into a more readily accessible form for 
model developers, such as via web crawling or scraping. 

 Recommendation letters are extremely private; those who write them 
do so on the assumption that they will not be revealed to anyone who doesn’t 
need to read them to assess the application. If we manage to find 
recommendation letters on the public web, it’s likely that they either aren’t 
supposed to be there (and are therefore unethical to use) or they’re synthetic 
examples used to teach people how to write or evaluate recommendation letters 
(and therefore artificial and probably different from actual letters in key practical 
ways—remember that we need realistic demonstrations). 
 
A second issue is that the information conveyed in a recommendation letter is 
often complex, considering many aspects of a candidate’s performance and 
potential. Mapping the letter down to a single number or category seems quite 
challenging (if it were easy, we wouldn’t ask recommenders to write letters, we’d 
only ask them to report the number or category). Finally, as anyone who has been 
on an admissions or hiring committee knows, there is a great deal of subjectivity 
in interpreting a recommendation letter. Different readers may draw different 
conclusions about the prevailing signal in a single letter. Even if we overcome the 
hurdle of finding letters to use, that’s only half of what we need because the 
demonstrations need to include desired outputs as well as inputs. 
 

 



Indeed, the tasks that researchers explore or system builders try to explore are 
very often limited by the data that’s available. When the desired data (or anything 
similar to it) is unavailable, it’s sometimes possible to create it. For example, to 
automate sentiment analysis of social media messages about a particular much-
discussed public figure, we could hire people to do the task of labeling a sample of 
messages, essentially demonstrating the desired behavior for our eventual 
system. Labeling tweets about a politician might be relatively easy for someone 
who speaks the language of the tweets and is familiar with the social context. 
 
Some tasks, in contrast, require much more expertise. For example, to build a 
system that answers questions about medical journal articles, we’d want the data 
to be created by people who know how to read and understand such articles so 
that the answers are accurate and grounded in article specifics. Of course, experts 
will be more costly to employ for this work than non-experts. A major tradeoff in 
the creation of datasets for NLP is between the inherent quality and diversity of 
the demonstrations and the cost of producing them. We believe that high-quality 
data is always essential for reliable evaluations (test data) and usually essential for 
high performance on those evaluations (training data). 
 
Collecting training data for most NLP tasks is quite difficult, and this often 
impacts which possible NLP applications or problems are studied. 
 

2.3 Building an NLP system 
 
For almost a decade, and with a small number of exceptions, the dominant 
approach to building an NLP system for a particular task has been based on 
machine learning. Machine learning (ML) refers to a body of theoretical and 
practical knowledge about data driven methods for solving problems that are 
prohibitively costly for humans to solve. These methods change over time as new 
discoveries are made, as different performance requirements are emphasized, and 
as new hardware becomes available. A huge amount of tutorial content is already 
available about machine learning methods, with new contributions following fast 
on the heels of every new research advance. Here, we introduce a few key ideas 
needed to navigate the current landscape. 
 
The first concept is a parameter. A parameter is like a single knob attached to a 
system: Turning the knob affects the behavior of the system, including how well it 



performs on the desired task. To make this concrete, let’s consider an extremely 
simple system for filtering spam emails. Due to budgetary constraints, this system 
will have only one parameter. The system works as follows: it scans an incoming 
email and increments a counter every time it encounters an “off-color” word (e.g., 
an instance of one of the seven words the comedian George Carlin claimed he 
wasn’t allowed to say on television). If the count is too high, the email is sent to 
the spam filter; otherwise, it goes to the inbox. How high is too high? We need a 
threshold, and we need to set it appropriately. Too high, and nothing will get 
filtered; too low, and too many messages may go to spam. The threshold is an 
example of a parameter. 
 
This example neatly divides system-building problem into two separate parts: 

1. Deciding what parameters the system will have and how they will work. In 
our spam example, the system and the role of the off-color word threshold 
parameter are easy to explain. The term architecture (or model 
architecture, to avoid confusion with hardware architecture) typically refers 
to the decision about what parameters a model will have. For example, 
picture a generic-looking black box with lots of knobs on it; the box has a 
slot on one side for inputs and a slot on the other side for outputs. The 
“architecture” of that model refers to the number of knobs, how they’re 
arranged on the box, and how their settings affect what occurs inside the 
box when it turns an input into an output. 

2. Setting parameter values. This corresponds to determining what value each 
individual knob on the box is turned to. While we likely have an intuition 
about how to set the parameter in the spam example, the value that works 
the best is probably best determined via experimentation. 

 
We now walk through how ML works in more detail and introduce some 
components you’ll likely hear about if you follow NLP developments. 
 

2.3.1 Architectures: Neural networks 
 
Today, the vast majority of architectures are neural networks (sometimes called 
artificial neural networks to differentiate them from biological ones). For our 
purposes, it’s not important to understand what makes neural networks special as 
a category of architectures. However, we should know that their main properties 
include (1) large numbers of parameters (at this writing, trillions) and (2) being 



differentiable4

4 We are referring to the concept from calculus. If a function is “differentiable” with respect to 
some numbers it uses, then calculus gives us the ability to calculate which small changes to 
those variables would result in the biggest change to the function. 

 functions with respect to those parameters: addition, subtraction, 
exponentiation, trigonometric functions, etc., and combinations of them. A 
general observation about neural network architectures (but not a necessary or 
defining property) is that the relationship between their numerical calculations 
and the task-solving behavior of a model (after its parameters are set) is not 
explainable to human observers. This is why they are associated with the 
metaphor of a black box (whose internal components can’t be observed or easily 
understood). 

2.3.2 Choosing values for all the parameters: Minimizing a loss function 

In order to work well, a neural network needs to have its parameters set to useful 
values (i.e., values that will work well together to mathematically transform each 
input into an output close to the input’s correct answer). But how do we choose 
parameters’ values when we have so many we need to decide? In this section, we 
describe the general strategy that we use in NLP. 

Imagine yourself in the following (admittedly not recommended) scenario. At 
night, and with no GPS or source of light on you, you are dropped in a random 
location somewhere over the Cascade Range in Washington State with the 
instructions to find the deepest valley you can (without just waiting for morning). 
You move your feet to estimate the steepest downward direction. You take a 
small, careful step in that direction and repeat until you seem to be in a flat place 
where there’s no direction that seems to take you farther downward. 

Machine learning (and, by extension, NLP) views the setting of parameter values 
as a problem of numerical optimization, which has been widely studied for many 
years by mathematicians, statisticians, engineers, and computer scientists. One of 
the tools of machine learning is an automated procedure that frames the 
parameter value-setting problem like that terrifying hike. Recall that we said that 
neural networks need to be differentiable with respect to their parameters— that 
is, they need to be set up to allow calculus to tell us which tiny change to each 
parameter will result in the steepest change of something calculated using the 
neural network’s output. In our nighttime hike scenario, at each step, we make a 



tiny adjustment to our north-south and east-west coordinates (i.e., position on the 
map). To adjust the parameters of our neural network, we will consider our 
current set of parameters our “coordinates” and likewise repeatedly make tiny 
adjustments to our current coordinates. But what does it mean to move “down” in 
this context? Ideally, moving “down” should correspond to our neural network 
producing outputs that better match our data. How can we define a function—our 
“landscape”— such that this is true? 

A loss function is designed for precisely this purpose: to be lower when a neural 
network performs better. In short, a loss function evaluates how well a model’s 
output resembles a set of target values (our training data), with a higher “loss” 
signifying a higher error between the two. The more dissimilar the correct output 
is from the model’s produced output, the higher the loss value should be; if they 
match, it should return zero. This means a loss function should ideally be closely 
aligned to our evaluation method.5

5 You can think of a loss function as a stern, reserved teacher grading a student’s work. The 
student (the model whose parameters we want to set) is given an exam question (an input to 

the model) and produces an answer. The teacher mechanically compares the question’s correct 

answer to the student’s answer, and then reports how many points have been deducted for 

mistakes. When the student gets the answer perfectly right, the loss will be zero; no points are 

deducted. We discuss some additional mathematical details of loss functions in the appendix. 

 

By performing the following procedure, we are able to train a neural-network-
based model: 

1. We use a loss function to define our landscape for our model’s nighttime
hike based on our training inputs and outputs,

2. we make a small adjustment to each of our coordinates (model parameters)
to move “down” that landscape towards closer matches between our
model’s outputs and the correct ones, and

3. we repeat step 2 until we can’t make our model’s outputs any more similar
to the correct ones.

This method is known as (stochastic) gradient descent (SGD), since the direction 
that calculus gives us for each parameter is known as the “gradient.” 

Leaving aside some important details (for example, how to efficiently calculate the 
gradients using calculus, working out precisely when to stop, exactly how much to 



change the parameter values in step 3, and some tricks that make the algorithm 
more stable), this method has proven effective for choosing parameter values in 
modern model architectures and in their predecessors. 

2.3.3 The hardware: Graphics processing units (GPUs) 

For over a decade, graphics processing units (GPUs) have been the main type of 
hardware used to train NLP models based on neural networks. This may seem 
counterintuitive (since it’s language we’re processing here, not graphics). 
However, GPUs are effective for doing many matrix and vector calculations in 
parallel, and successful neural network architectures have used these parallel 
calculations to perform input-to-output mapping quickly (since stochastic gradient 
descent requires that mapping to be performed many many times during 
training). Indeed, the realization that neural networks were well-suited to train on 
GPUs proved to be crucial to their widespread adoption. 

3 The language modeling task 

Section 2 introduced some NLP concepts and tools, including the idea of 
encapsulating a desired application into a “task,” the importance of datasets, and 
a high-level tour of how systems learn to perform a task using data. Here, we turn 
to language modeling, a specific task. 

3.1 Language modeling as next word prediction 

The language modeling task is remarkably simple in its definition, in the data it 
requires, and in its evaluation. Essentially, its goal is to predict the next word in a 
sequence (the output) given the sequence of preceding words (the input, often 
called the “context” or “preceding context”). For example, if we ask you to come 
up with an idea of which word might come next in a sentence in progress—say, 
“This document is about Natural Language ____”—you’re mentally performing 
the language modeling task. The real-world application that should come to mind 
is some variation on an auto-complete function, which at this writing is available 
in many text messaging, email, and word processing applications. 



Language modeling was for several decades a core component in systems for 
speech recognition and text translation. Recently, it has been deployed for broad-
purpose conversational chat, as in the various GPT products from OpenAI, where a 
sequence of “next” words is predicted as a sequential response to a natural 
language prompt from a user. 
 

 
Figure 3: Next word prediction samples a word from the language model’s guess 
of what comes next at each time step. 

 
What would make it possible to achieve high accuracy at predicting the next word 
across many contexts? At a fundamental level, natural language is predictable 
because it is highly structured. People unconsciously follow many rules when they 
use language (e.g., English speakers mostly utter verbs that agree with their 
subjects sometime after those subjects, and they place adjectives before the 
nouns whose meaning they modify). Also, much of our communication is about 
predictable, everyday things (consider how frequently you engage in small talk). 
 
As an NLP task, language modeling easily checks the two critical boxes we 
discussed in section 2: data and evaluation. LMs need only text; every word in a 
large collection of text naturally comes with the preceding context of words. 
When we say “only text,” we mean specifically that we don’t need any kind of 
label to go with pieces of text (like the star ratings used in sentiment analysis 
tasks, or the human-written translations used in translation tasks). The text itself 
is comprised of inputs and outputs. Because people produce text and share it in 
publicly visible forums all the time, the amount of text available (at least in 
principle, ignoring matters of usage rights) is extremely large. The problem of 
fresh, previously unseen test data is also neatly solved because new text is created 
every day, reflecting new events and conversations in the world that are reliably 
different from those that came before. There is also a relatively non-controversial 
evaluation of LMs that requires no human expertise or labor, a more technical 
topic that we return to in section 3.4. 
 



3.2 Why do we care about language modeling? 
 
We have thus far established what the language modeling task is. However, we 
haven’t explained why this task is worth working on. Why do we bother building a 
model that can predict the next word given the words that have come before? If 
you already make use of auto-complete systems, you have an initial answer to this 
question. But there are more reasons. 
 
For many years, NLP researchers and practitioners believed that a good language 
model was useful only for estimating fluency. To illustrate this, imagine a language 
model faced with guessing possible continuations for a partial sentence like “The 
dog ate the ____” or “Later that afternoon, I went to a ____.” As English speakers, 
we share a pretty strong sense that the following word is likely to be either a noun 
or part of a descriptor preceding a noun. Likewise, if we have a good language 
model for this type of English, that model will have needed to implicitly learn 
those kinds of fluency-related rules to perform the language modeling task well. 
This is why LMs have historically been incorporated as a component in larger NLP 
systems, such as machine translation systems; by taking their predictions (at least 
partially) into account, the larger system is more likely to produce more fluent 
output. 
 
In more recent years, our understanding of the value of LMs has evolved 
substantially. In addition to promoting fluency, a sufficiently powerful language 
model can implicitly learn a variety of world knowledge. Consider continuations to 
the following partial sentences: “The Declaration of Independence was signed by 
the Second Continental Congress in the year ____,” or “When the boy received a 
birthday gift from his friends, he felt ____.” While there are any number of fluent 
continuations to those sentences—say, “1501” or “that the American Civil War 
broke out” for the first, or “angry” or “like going to sleep” for the second—you 
likely thought of “1776” as the continuation for the first sentence and a word like 
“happy” or “excited” for the second. Why? It is likely because you were engaging 
your knowledge of facts about history as well as your common sense about how 
human beings react in certain situations. This implies that to produce those 
continuations, an LM would need at least a rudimentary version of this 
information. 
 



To do a good job of guessing the continuations of text, past a certain point, an 
LM must have absorbed some additional kinds of information to progress 
beyond simple forms of fluency. 
 
NLP researchers got an early glimpse of this argument in Peters et al. (2018). This 
paper reported that systems that trained an LM first as an early stage of building 
systems for varied tasks, ranging from determining the answer to a question based 
on a given paragraph to determining which earlier entity a particular pronoun was 
referencing, far outperformed their analogous versions that weren’t informed by 
an LM (as measured by task-specific definitions of quality). This finding led to 
widespread researcher acceptance of the power of “pretraining” a model to 
perform language modeling and then “finetuning” it (using its pretrained 
parameters as a starting point) to perform a non-language-modeling task of 
interest, which also generally improved end-task performance. 
 
It shouldn’t be too surprising that LMs can perform well at filling in the blanks or 
answering questions when the correct answers are in the training data. For a new 
task, it seems that the more similar its inputs and outputs are to examples in the 
pretraining data, the better the LM will perform on that task. 
 

3.3 Data for language models: Some nuances 
 
There are two important caveats to our earlier claim that collecting data for a 
language model is “easy.” First, because there is a massive amount of text 
available on the internet which could be downloaded and used to build or 
evaluate LMs, at least for research purposes, a language model builder must 
decide which data to include or exclude. Typical sources of data include news 
articles, books, Wikipedia, and other web text that is likely to be carefully edited 
to conform to professional writing conventions. Some LMs include more casual 
text from social media websites or online forums, or more specialized language 
from scientific texts. While researchers have generally considered training 
language models on publicly available text data to be covered by fair use doctrine, 
the relationship between copyright protections and language model practices is 
not fully settled; we discuss this further in section 6.2.1. 
 



A major decision is whether to filter texts to only certain languages.6

6 The problem of assigning a language identifier to a text (e.g., is it English, Spanish, etc.?) 
constitutes another family of NLP tasks. It’s a useful exercise to consider how to select the set of 
language names to use as labels for language identification, e.g.,which dialects of a language are 
separate from each other and should receive different labels? 

 Depending 
on the community of users one intends the LM to serve, it may be preferable to 
filter text on certain topics (e.g., erotica) or text likely to contain offensive content 
or misinformation. Today’s LM datasets are too large for a person to read in a 
single lifetime, so automated tools are employed to curate data. The implications 
of these decisions are a major topic for current research, and we return to them in 
section 4.4.1. 
 
The other caveat is a more technical one: what counts as a “word”? For languages 
with writing systems that use whitespace to separate words, like English, this is 
not a very interesting question. For writing systems with less whitespace between 
words (e.g., Chinese characters), segmentation into words could be a matter of 
choosing an arbitrary convention to follow or of adopting one of many competing 
linguistic theories. Today, LMs are often built on text from more than one natural 
language as well as programming language code. The dominant approach to 
defining where every word in the data starts and ends is to apply a fully 
automated solution to create a vocabulary (set of words the language model will 
recognize as such) that is extremely robust (i.e., it will always be able to break a 
text into words according to its definition of words). The approach (Sennrich, 
Haddow, and Birch 2016) can be summed up quite simply: 

• Any single character is a word in the vocabulary. This means that the LM can 
handle any entirely new sequence of characters by default by treating it as a 
sequence of single-character words. 

• The most frequently occurring two-word sequence is added to the 
vocabulary as a new word. This rule is applied repeatedly until a target 
vocabulary size is reached. 

 
This data-driven approach to building a language modeling vocabulary is effective 
and ensures that common words in the LM’s training data are added to its 
vocabulary. Other, rarer words will be represented as a sequence of word pieces in 
the model’s vocabulary (similarly to how you might sound out an unfamiliar word 
and break it down into pieces you’ve seen before). However, note that a lot 
depends on the data through the calculation of what two-word sequence is most 

 



frequent in that data at each step. Unsurprisingly, if the dataset used to build the 
vocabulary includes little or no text from a language (or a sub-language), words in 
that language will get “chopped up” into longer sequences of short vocabulary 
words (some a single character), which has been shown to affect how well the LM 
performs on text in that language. 
 

3.4 Evaluating LMs: Perplexity 
 
We mentioned earlier that the language modeling task has a straightforward 
evaluation method. At first, we might think that a “good” language model has a 
low word error rate: when it guesses the next word in a sequence, it should 
seldom predict the wrong word. (A “wrong word” here means anything other than 
the actual next word in the test data sequence.)7

7 We give a formal mathematical definition of word error rate in the appendix

 
 
LMs have generally not used the error rate to evaluate LM quality for two reasons. 
First, applications sometimes predict a few options for the next word; perhaps it’s 
just as good to rank the correct next word second or third as it is to rank it first. 
The error rate could be modified to count as mistakes only the cases where the 
correct word is ranked below that cutoff. But how long the list should be is a 
question for application designers and moves the task definition in a more 
specialized/concrete direction, perhaps unnecessarily. Second, at least earlier in 
the history of language modeling, most systems weren’t good enough at 
predicting the next word to have error rates that weren’t extremely high. If all LMs 
achieve error rates close to one, the error rate measurement isn’t very helpful for 
comparing them. 
 
The evaluation method that is typically used for LMs avoids both of these issues. 
This method is known as perplexity, and can be considered a measure of an LM’s 
“surprise” as expressed through its outputs in next word prediction. Perplexity 
manages to work around the problems we’ve described by taking advantage of 
how LMs decide on a next word in practice. 
 
When an LM produces a next word, that next word is in reality a somewhat 
processed version of that LM’s actual output. What the LM actually produces 
given some input text is a probability distribution over its vocabulary for which 

 
. 



word comes next. In other words, for every possible next word in its vocabulary, 
the LM generates a number between 0 and 1 representing its estimate of how 
likely that word is as the continuation for the input text.8 
 

8 Because this is a probability distribution, all those numbers must add up to 1, and in practice, 
LMs always set their probabilities to numbers strictly greater than 0. 

Rather than evaluating an LM based on however an application developer chooses 
to process those probability distributions into next words (whether by sampling, 
or by choosing the word with the highest estimated likelihood, or something else), 
perplexity instead directly evaluates the probability distributions produced by the 
LM. Given a test set of text, perplexity examines how high the LM’s probabilities 
are for the true observed next words overall, averaged over each word in the text-
in-progress. The higher that LM’s average probability for the true words is, the 
lower the LM’s perplexity (corresponding to the LM being less “surprised” by the 
actual continuations of the text).9 
 

9 For those interested, we walk through the mathematics underlying the definition of perplexity 
in the appendix

Like any evaluation method, perplexity depends heavily on the test data. In 
general, the more similar the training and test data, the lower we should expect 
the text data perplexity to be. And if we accidentally break the cardinal rule and 
test on data that was included in the training data, we should expect extremely 
low perplexity (possibly approaching 1, which is the lowest possible value of 
perplexity, if the model were powerful enough to memorize long sequences it has 
seen in training). 
 
Finally, it’s worth considering when perplexity seems “too” low. The idea that 
there is some limit to this predictability, that there is always some uncertainty 
about what the next word will be, is an old one (Shannon 1951), motivating much 
reflection on (1) how much uncertainty there actually is, and (2) what very low 
perplexity on language modeling implies. Some have even suggested that strong 
language modeling performance is indicative of artificially intelligent behavior. 
(We return to this question in section 5.) 
 

3.5 Building language models 
 

 

. 



Given the tools from section 2 and our presentation of the language modeling 
task, it’s straightforward to describe how today’s best LMs are built: 

1. Acquire a substantial amount of diverse training data (text), filtering to what 
you believe will be high quality for your eventual application. Set aside 
some data as the test data. 

2. Build a vocabulary from the training data. 
3. Train a model with learnable parameters to minimize perplexity on the 

training data using a variant of stochastic gradient descent. 
4. Evaluate the perplexity of the resulting language model on the test set. In 

general, it should be very possible to evaluate the LM on another test set 
because (1) we can check that the new proposed test data doesn’t overlap 
with the training data, and (2) the vocabulary is designed to allow any new 
text to be broken into words. 

 
The third step reveals another attractive property of perplexity: it can serve as a 
loss function because it is differentiable with respect to the model’s parameters.10

10 In practice, the loss function is usually the logarithm of perplexity, a quantity known as cross-
entropy. 

 
Note the difference between training set perplexity (calculated using training 
data) and test set perplexity calculated in the last step.11 
 

11 One common question about language models is why they sometimes “hallucinate” 
information that isn’t true. The fact that next word prediction is the training objective used for 
these models helps to explain this. The closest an LM comes to encoding a “fact” is through its 
parameters’ encoding of which kinds of words tend to follow from a partially written sequence. 
Sometimes, the context an LM is prompted with is sufficient to surface facts from its training 
data. (Imagine our example from earlier: “The Declaration of Independence was signed by the 
Second Continental Congress in the year ____.” If an LM fills in the year “1776” after being given 
the rest of the sentence as context, that fact has been successfully surfaced.) Other times, 
however, it’s not, and we just get a fluent-sounding next word prediction that’s not actually 
true, or a “hallucination.” 

The preceding process is how some well-known models, like GPT-2, GPT-3, and 
LLaMA, were built, and it’s the first step to building more recent models like 
ChatGPT and GPT-4. These newer models have been further trained on additional 
kinds of data (which is less “easy” to obtain than the text we use for next word 
prediction). We return to this topic in section 4.3.4. 
 

 



4 From LMs to large language models (LLMs) 
 
Everything we’ve described thus far has been established for over a decade, and 
some concepts much longer. Why have language models become a topic of 
mainstream public conversation only recently? 
 
Recall that a longstanding use of LMs was to estimate the fluency of a piece of text 
(3.2), especially to help text-generating systems produce more fluent output. Only 
since around 2020 have LMs been producing highly fluent output on their own, 
that is, without incorporating some other components. At this writing, you could 
observe something like the text generation performance of older LMs by looking 
at the autocomplete functions in messaging applications on smartphones. If you 
have one of these on hand, try starting a sentence and then finishing the sentence 
by picking one of the most likely next words the autocomplete program suggests. 
You’re likely to notice that while the short-term continuations to the sentence are 
reasonable, the text quickly devolves into moderately fluent incoherence, nothing 
like text produced by state-of-the-art web-based products. 
 
Having established the foundations—the language modeling task and the basic 
strategy for building a language model—we’ll now consider the factors that have 
recently transformed the mostly academic language models of the last decade 
into the so-called large language models (LLMs) of today. 
 

4.1 The move towards more data 
 
This is not a history book, but there is one obvious lesson to be learned from the 
history of NLP: more training data helps make higher quality models. One period 
of major changes in the field occurred in the late 1980s and 1990s when three 
trends converged almost concurrently: 

1. Increasingly large collections of naturalistic, digital text data became easier 
to access by growing numbers of researchers thanks to the rise of the 
internet and the world-wide web. 

2. Researchers shifted from defining rules for solving NLP tasks to using 
statistical methods that depend on data. This trend came about in part due 
to interaction with the speech processing community, which began using 
data-driven methods even earlier. 



3. Tasks, as we described them above, became more mature and standardized, 
allowing more rigorous experimental comparisons among methods for 
building systems. This trend was driven in part by government investment 
in advancing NLP technology, which in turn created pressure for 
quantitative measures of progress. 

 
During the 1990s and 2000s, the speed of progress was higher for tasks where the 
amount of available training data increased the fastest. Examples include topic 
classification and translation among English, French, German, and a few other 
languages. New tasks emerged for which data was easy to get, like sentiment 
analysis for movies and products sold and reviewed online. Meanwhile, progress 
on tasks where data was more difficult to obtain (such as long text summarization, 
natural language interfaces to structured databases, or translation for language 
pairs with less available data) was slower. In particular, progress on NLP for English 
tasks was faster than for other languages, especially those with relatively little 
available data. 
 
The recognition that more data tends to help make better systems generates a lot 
of enthusiasm, but we feel obliged to offer three cautionary notes. First, easily 
available data for a task doesn’t make that task inherently worth working on. For 
example, it’s very easy to collect news stories in English. Because the style of 
many English-language newspapers puts the most important information in the 
first paragraph, it’s very easy to extract a decent short summary for each story, 
and we now have a substantial number of demonstrations for an English-language 
news summarizer. However, if readers of the news already know that the first 
paragraph of a news story is usually a summary, why build such a system? We 
should certainly not expect a system built on news summarization task data to 
carry over well to tasks that require summarizing scientific papers, books, or laws. 
 
The second cautionary note is that the lack of easy data for a task doesn’t mean 
the task isn’t worth solving. Consider a relatively isolated community of people 
who have more recently gained access to the internet. If they do not speak any of 
the dominant languages on the internet, they may be unable to make much use of 
that access. The relative absence of this community’s language from the web is 
one reason that NLP technology will lag behind for them. This inequity is one of 
the drawbacks of data-driven NLP. 
 



The third cautionary note is that data isn’t the only factor in advancing NLP 
capabilities. We already mentioned evaluation methods. But there are also 
algorithms and hardware, both of which have changed radically over the history of 
NLP. We won’t go into great detail on these technical components here, but we 
note that the suitability of an algorithm or a hardware choice for an NLP task 
depends heavily on the quality and quantity of training data. People often use the 
term “scale” to talk about the challenges and opportunities associated with very 
large training datasets. As early as 1993, researchers were claiming that “more 
data is always better data” (Church and Mercer 1993). We would add that which 
algorithms or computers are better for building a system that performs a task 
depends highly on the availability of appropriate data for that task, whether high 
or low or in between. And indeed, as it turns out, the second factor we now 
mention falls into the category of a change in algorithm: a change in model 
architecture. 
 

4.2 The architecture: Transformers 
 
Not long ago, students of NLP would be introduced to a wide range of different 
architectures. One would likely hear about the relative merits of each and learn 
what particular kinds of problems it was well suited to solve. From year to year, 
new ones would be added, sometimes replacing those no longer deemed optimal 
in any setting. Today, these diverse architectures have virtually all been replaced 
by a single architecture called the transformer, whimsically named after a brand 
of 1980s robot toys, proposed by Vaswani et al. (2017). 
 
The transformer, a type of neural network, was introduced by researchers at 
Google for machine translation tasks. Though we won’t go into detail about how it 
works, its design was inspired by earlier developments in neural networks, and it 
was primarily optimized to allow the GPU-based simultaneous processing of all 
parts of even long input texts instead of word-by-word processing. Earlier 
architectures were largely abandoned12

12 They were not totally abandoned, however, and are still used occasionally when datasets are 
small. 

 because they didn’t effectively use GPUs 
and could not process large datasets as quickly. 
 
It didn’t take long for researchers to realize that the transformer would allow for 
training models more quickly and/or on more data, as well as training much larger 

 



models than other architectures ever allowed. By “larger models,” we mean 
models with more parameters. These three elements—larger datasets, faster 
hardware, and larger models—all depend on each other. For example, a larger 
model could better encode patterns in the training data, but without faster 
hardware, training such a model may be infeasible. And if the model is trained on 
an insufficient sample of data, it may not generalize well.13

13 At its extreme, this phenomenon, known as “overfitting,” leads to models that “memorize” 
what they see in the training data but perform poorly on new data, e.g., the test data. 

 Conversely, a 
substantial dataset may require a larger model (more parameters) to encode the 
larger set of discoverable patterns in the data. Indeed, there is a fundamental 
tradeoff when selecting architectures: too few parameters, and the architecture 
will be limited in what input-output mappings it can learn, no matter how much 
training data is used. Too many parameters (i.e., too large a model), and the 
model might overfit. 
 
The simultaneous, rapid increase in datasets and parameter counts, aided by 
improved hardware, affected computer vision before affecting NLP. In fact, the 
term “deep learning” was originally a reference to these larger models (“deep” 
refers to models with increasing numbers of “layers” in the architecture, where 
layers are iterations of repeated calculations with different parameters at each 
round). The “deepening” of transformers applied to the language modeling task 
led to what are now called “large language models.” “Large” usually refers to the 
parameter count, but it could also refer to the size of the training dataset. 
 
The models in wide use for NLP today have billions of parameters; older 
generations of OpenAI models increased from sizes of over a billion parameters 
with the largest version of GPT-2 to 175 billion parameters with GPT-3. The main 
drawback is that running their training algorithms on large datasets requires very 
many GPUs working in parallel for a long time, which in turn requires a lot of 
energy. From the perspective of improving the quality of generated text (in 
perplexity but also subjective human judgments), these LLMs represent a major 
advance. 
 
From a scientific perspective, it’s difficult to assess which of these changes—data 
size, number of parameters, architecture, etc.—matter the most. Larger models 
are more data-hungry; over the last few years, models have gone from training on 
datasets with millions of words to trillions of words. While some work, such as 

 



that by Hoffmann et al. (2022), tried to disentangle the impacts of model scale 
and data scale, the additional influence of yet other factors (like hyperparameters 
on a training run) complicates efforts to confidently draw conclusions from such 
research. These experiments require the repeated training of models that are 
estimated to cost millions of dollars apiece. In addition, it would take far too long 
to train fairly matched models based on previously popular, pre-transformer 
architectures (i.e., with similar parameter counts on similar amounts of data to 
the strongest models of today); this means that it’s impossible to measure how 
much benefit the transformer offers other than allowing for larger models. 
 
It’s important to recognize that larger datasets and more powerful hardware 
were the drivers for the scaling up of language models to architectures with 
hundreds of billions of parameters (at this writing), and that the parameter 
count is only part of the explanation for the impressive behaviors of these 
models. 
 

4.3 Impacts of these changes 
 
What was the impact of LLMs? In short, they caused language modeling 
performance to improve dramatically. To see this qualitatively for yourself, try 
typing out the beginning of a sentence and instruct a language model like 
ChatGPT to complete that sentence. Chances are, you will immediately see a 
sentence that reads much more naturally than you saw generated by a simpler 
autocomplete system at the beginning of this section. Many people have shared 
this subjective experience of more fluent text generation, and it is backed up by 
quantitative evaluations like perplexity. However, if that were their only 
contribution, LLMs probably wouldn’t have entered the public consciousness. 
 

4.3.1 Many other tasks are now reduced to language modeling 
 
We previously mentioned in section 3.2 that LMs could inform NLP systems 
designed for other tasks. LLMs are accelerating this trend. By formulating task 
instructions in natural language, perhaps also providing additional specific 
examples of what it would look like to successfully perform the task (inputs and 
outputs), and then supplying that text as the context on which a LLM conditions 
when choosing next words as continuations, we see very reasonable outputs for a 
broad range of such tasks (e.g., generating summaries and answering questions). 



As we discussed in section 3.2, many techniques built on the pretraining-
finetuning approach transferred strong language model performance to other 
tasks. But the extent to which LLMs became the full model pipeline, i.e., with no 
task-specific finetuning needed for particular tasks, was striking.14

14 The idea of prompting a model with a small number of examples came to be known as “in-
context learning.” Considerable effort has gone into engineering prompts for better task 
performance and into finetuning LMs to follow instructions describing widely varied tasks. Such 
instruction finetuning has become a widely used second stage of training for commercial LM 
products. Note that it requires a dataset of instructions paired with the desired response an LM 
should give to each. 

 Importantly, 
remember that part of the definition of a task is an evaluation method; the 
striking observation is that, as language models achieve lower perplexity, they also 
achieve better performance on many other tasks’ own evaluations. 
 
For example, we previously described translation between languages and 
sentiment analysis as two broad categories of NLP applications. Today’s LLMs can 
often perform those tasks given context instructions and/or examples — i.e., they 
are “prompted” to do so. For example, consider a context like “Translate this 
sentence into French: We’d like another bottle of wine.” If an LLM has seen 
enough text that includes requests/responses, text in the relevant languages, and 
parallel examples, it could produce the translation. (Indeed, OpenAI’s ChatGPT 
system gave us a fairly reasonable “Nous aimerions une autre bouteille de vin.” 
Similarly, the prompt “Is the sentiment toward the movie positive or negative? 
This film made me laugh, but only because it was so poorly executed.” led 
ChatGPT to output that the sentiment was negative.) 
 
This ease of transferability has made it much simpler for a wider variety of people, 
including non-researchers, to explore NLP capabilities. Often, it is no longer 
necessary to collect training data and build a specialized model for a task. We can 
say what we want in natural language to prompt an LLM, and we will often get 
output close to what we intended. People, including experts and non-experts, are 
now using LLMs for many purposes, including many not originally formalized as 
NLP tasks. 
 

4.3.2 Black boxes 
 

 



Modern transformers are considered to be “black boxes” with befuddling 
numbers of parameter-knobs to turn, and to our knowledge, no one has 
particularly useful intuition about how to set any particular knob. This situation 
seems daunting, like sitting in a cockpit with thousands of knobs and controls and 
being told to fly the plane with no training. Indeed, it’s only because of the 
increasing computational power of commercially available computers that we can 
solve problems this way today, but this still leaves us without a sense of the kinds 
of information models have learned to leverage, or how. 
 
Both the transformer architecture and the stochastic gradient descent method 
used to set its parameters are mystifying, at least at first. Below, we reflect on that 
and note important differences that make an architecture like the transformer 
more inscrutable. 
 
Stochastic gradient descent, the algorithm used to train transformers and other 
neural networks, has been extensively studied and is very well understood for 
some kinds of problems. Picture a smooth bowl and imagine a marble placed 
anywhere in it. That marble will roll and eventually settle at the lowest point. If 
the dish were sitting on a piece of graph paper (a two-dimensional plane), the 
coordinates of that lowest point are the values of our two parameters that 
minimize the loss function. Stochastic gradient descent is, roughly speaking, doing 
the work of gravity. The simple curve of the dish, with no bumps or cutouts or 
chips, corresponds to the property of convexity. Some machine learning problems 
correspond to a convex loss function, and theoretical proofs support the existence 
of the best parameter values, how close SGD gets to them, and how fast. What 
remains surprising is that SGD works well in practice even when the loss function 
is not convex (like the Cascades, discussed in section 2.3.2). But the mathematics 
underlying this algorithm are relatively mature. 
 
The transformer architecture, only a few years old at this writing, remains 
mysterious. Some researchers have sought to prove theorems about its limitations 
(i.e., input-output mappings it cannot represent under some conditions), and 
more have run experiments to try to characterize what it learns from data in 
practice. More research is clearly needed, both to improve our understanding of 
what we can expect from this architecture and to help define new architectures 
that work better or for which parameter setting is less computationally expensive. 
 



4.3.3 Cost and complexity affect who can develop these models now 
 
Yet another effect of the move to LLMs has been that a much smaller set of 
organizations can afford to produce such models. Since large, well-funded tech 
companies are (almost exclusively) well positioned to train LLMs due to their 
access to both data and specialized hardware, these companies are the sources 
for almost all current LLMs. This poses a barrier to entry for many researchers at 
other institutions. Given the wide array of different communities that could 
benefit from using these models, the many different purposes they might envision 
for these models, and the vast diversity of language varieties that they represent, 
determining ways to broaden participation in LLM development is an important 
emerging challenge. 
 
Furthermore, when models were smaller, the idea of “running out” of web text on 
the public internet seemed ludicrous; now, that’s a looming concern for LLM 
developers. As massive datasets play an increasingly large role in model training, 
some large companies’ access to their own massive proprietary data associated 
with platforms they maintain may give them an advantage in their development of 
models of text. 
 

4.3.4 Adapting LLMs for use as products 
 
Because of the capabilities of these new models, many developers seek to 
integrate them into a wide array of products and services, from helping software 
engineers write code to helping lawyers write briefs. This echoes a longstanding 
practice of incorporating LMs into parts of standalone products with commercial 
purposes, such as guiding a translation system to produce more fluent text in the 
output language. As LLMs gained broader exposure (and, we conjecture, with 
increased internal testing at the companies where they were built), it became 
clear that additional adjustments were needed before deploying these models in 
products. 
 
We relate some of the more concerning issues that emerge in LLM-generated text 
in section 5. For now, consider the concrete possibility that an LLM would 
generate text that is fluent, but impolite or even obscene. How can this be 
prevented? Enforcing conventions of social acceptability is a difficult problem that 
many researchers have tackled. Proposed methods can vary from post-processing 



outputs (e.g., to screen out outputs that include certain dispreferred words) to 
reranking sampled outputs using an auxiliary model specifically trained on curated 
data to exhibit politeness. It is difficult to “taskify” social acceptability because it is 
context-dependent and extremely subjective. 
 
The notion of “alignment,” often used today for this class of problems, was 
introduced by Norbert Wiener: “If we use, to achieve our purposes, a mechanical 
agency with whose operation we cannot efficiently interfere… then we had better 
be quite sure that the purpose put into the machine is the purpose which we 
really desire” (Wiener 1960). This idea comes through today in research on using 
machine learning to alter LM behaviors directly. 
 
In practice, commercial models are further trained on tasks designed to encourage 
instruction following (section 4.3.1) and generating text that humans respond to 
favorably.15

15 One current example of a proposed method for doing this is “reinforcement learning from 
human feedback.” As its name implies, this method uses machine learning to turn discrete 
representations of human preferences, like “sampled output A is preferable to sampled output 
B,” into a signal for how to adjust a model’s parameters accordingly. 

 It is complicated to determine which behaviors to encourage. In her 
2023 keynote at the FAccT research conference, the social scientist Alondra 
Nelson made the point that “civilizations, for eons, for millennia. . . choose your 
long time scale—have been struggling, fighting, arguing, debating over human 
values and principles” (Nelson 2023). In other words, not only is it a difficult 
problem to determine how to shape models’ outputs to reflect a given set of 
values, it’s also extremely complicated to determine which set of values to 
incorporate into that set. Therefore, we tend to view these last adjustments of an 
LLM’s behavior as a kind of customization rather than as an intrinsic encoding of 
“human values” into the system. Just like training models, only a few companies 
are currently equipped to customize them at this writing. 
 

4.3.5 Safeguards and mitigation 
 
Because LLMs are trained on such a wide variety of internet content, models can 
create outputs that contain unsafe content. For example, a user may want to 
know how to create a bomb or have the model help them plan some other 
dangerous or illegal act. Leaving aside whether the models constitute 
“intelligence,” the information these models contain and how easily they present 

 



it to users can create substantial risk. The current method for attempting to solve 
this problem is establishing content safeguards, a major part of adapting LLMs for 
use as products. Safeguards can take different forms, from tuning the model to 
avoid certain topics to addressing the issue through post-processing, where 
output from the model is filtered. These safeguards are part of the larger 
“alignment” process since they can also be used to help block hateful content in 
addition to dangerous information. 
 
There are also less obvious cases where safeguards can be critical for user safety. 
For example, a model should not provide medical advice without at least 
suggesting that the user seek professional advice and disclosing that it is not a 
doctor or that its output is not guaranteed to be consistent with the medical 
community’s consensus. Another case is self-harm, where the behavior of LLMs 
has been likened to a mirror, e.g., encouraging behaviors reflected in user 
prompts. 
 
Though necessary, safeguards can also impact a model’s utility depending on how 
they are implemented. For example, a model that is too strict may refuse to do 
something that isn’t actually harmful, making it less useful. Therefore, there is a 
tension between cautiously avoiding liability for model developers and meeting 
user expectations. 
 

4.3.6 The evaluation crisis 
 
Excitement around LLMs often centers on the rate of progress: as the models get 
larger (or are trained on more data), they seem to get increasingly accurate and 
fluent. As mentioned previously in section 2.1, NLP researchers have long-
standing, rigorous methods for measuring how well systems perform at various 
tasks. These have not been abandoned. Following the trend of adapting LLMs to 
almost every task NLP originally set out to do, with relatively little transfer effort 
(section 4.3.1), researchers are now evaluating new models, adapted in new ways, 
on ever-growing suites of tasks drawn from the past few decades of empirical 
evaluation of NLP systems, as well as new ones coming into use. The general trend 
is that performance numbers are improving. 
 
This is promising news insofar as these tasks accurately capture what people want 
to do with NLP technology. But we believe there are reasons to be skeptical. Since 



the deployment and widespread adoption of LLM-based products, users have 
expressed enthusiastic interest in thousands of new use cases for LLMs that bear 
little resemblance to the tasks that constitute our standard research evaluations, 
which has several important implications: 

• The suite of tasks driving research evaluations needs thorough and ongoing 
reconsideration and updating to focus on communities of actual users. 

• Observations of how real users interact with an LLM, along with feedback 
on the quality of the LLM’s behavior, will be important for continuing to 
improve LLM quality. 

• Because there is diversity in the communities of users, customization of 
models will become increasingly important, making thorough evaluation 
increasingly multi-faceted and challenging. 

• Reports of “progress” cannot be taken at face value; there are many 
different aspects to model quality. A single performance number (like 
perplexity on a test set or average performance on a suite of hundreds or 
thousands of tasks’ specific evaluations) will not meaningfully convey the 
strengths and weaknesses of a system with such wide-ranging possible 
behaviors. 

 
We believe that these challenges will inspire new collaborations between 
researchers and users to define evaluations (and, by extension, models) that work 
as our needs and the realities of model building evolve. 
 

4.4 Knowing the model means knowing its training data 
 
Model capabilities depend directly on the specific data used to train them. The 
closer a string of text (say, the instructions provided to an LLM) is to the kind of 
data that the model was trained on (which, for current models, is a large portion 
of the data on the internet), the better we expect that model to do in mimicking 
reasonable continuations of that “kind” of language.16

16 Note that we are not implying that language models are only mimics; characterizing the 
precise ways in which they merely copy vs. generalize is work still to be done. 

 Conversely, the further the 
language of some text is from the model’s training data, the less predictable the 
model’s continuation of that text will be. (In section 5.1, we discuss the 
implications for choosing which prompts to supply to a model.) 
 

 



You can test this out. Try instructing a model (for example, ChatGPT) to generate 
some text (a public awareness statement, perhaps, or a plan for an advertising 
campaign) about a very specific item X geared towards a specific subpopulation Y, 
preferably with an X and Y that haven’t famously been paired together. 
 
Grammatically, the answer returned is probably fine. However, if the content of 
the model’s response seems generic, that’s not too surprising. The amount of text 
that models like ChatGPT are trained on that could serve as a close example to a 
particular prompt is typically far greater than that which is relevant for precise 
ideas specific to whatever personal combination you thought up. 
 
If you speak a language besides English, you’ll likely also notice a worse answer or 
a more stilted, generic tone if you translate your question into that language and 
ask it again. And again, this is directly related to the model’s training data: 
however much text there is relevant to your issue or product on the internet in 
English, there’s likely less of it in your other language, meaning there was less 
available to use for training. 
 

4.4.1 What does LLMs’ training data contain? 
 
Characterizing a dataset on a trillions-of-words scale is tricky for a few reasons. 
First, reading through the corpus, or even a large enough sample to capture its 
diversity, would take too long. (A colleague of ours estimated thousands of years 
of reading without any breaks.) Published descriptions of datasets that have been 
explored using automated tools focus on the top sources (e.g., web domains like 
Reddit.com or Wikipedia.org) or coarse characterizations in terms of genre (e.g., 
patents, news); see Dodge et al. (2021) for an example. These characterizations, 
while convenient, show tremendous variation. We believe that researchers must 
do more work on developing methodologies and implementing tools for 
describing that variation. 
 
In many cases, though, information about the documents used to train an LLM is 
hidden. It’s very common for companies that deploy these models to treat the 
data they used as a trade secret, saying little to nothing about the data, making 
analysis impossible. However, a few model builders do share more information 
about their training data, which helps researchers better understand how model 
behaviors, beneficial and otherwise, are shaped by certain kinds of text. 



 
Many researchers have one specific concern about hidden training datasets: 
Suppose a model is prompted with a question that seems especially difficult to 
answer, and it answers accurately and clearly, like an expert. We should be 
impressed only if we are confident that the question and answer weren’t in the 
training data. If we can’t inspect the training data, we can’t be sure whether the 
model is really being tested fairly or if it memorized the answer key before the 
test, like our student in section 2.2. 
 

4.4.2 A cautionary note about data quality 
 
It’s tempting to boil down negative consequences of including certain data during 
training (such as misinformation or hate speech) to issues of “data quality” and 
advocate for “better” data using the “garbage in, garbage out” principle. Yet, 
seemingly reasonable steps often taken to automatically filter web text for 
“quality” can have the unintended effect of overrepresenting text that resembles 
writing more characteristic of wealthier or more educated groups (Gururangan et 
al. 2022). Further, these filters’ defined notion of quality does not align with other 
manually determined aspects of text quality (such as winning a Pulitzer prize or 
telling the truth). 
 
Determining what counts as “better” training data, and how that sense can be 
implemented at scale, is a subjective question of values and norms. For this 
reason, we predict and hope that future research will support better 
customization of language models’ data to different user communities or 
applications rather than assuming a universal notion of “quality.” This contrasts 
with an assumption underlying much current discussion about language models, 
that one large model will eventually be the best solution for everything everyone 
wants. 
 

5 Practical points about using language models 
 
So far we’ve talked about how language models came to be and what they are 
trained to do. If you’re a human reading this guide, though, then you’re likely also 
wondering about how good these models are at things that you’ve thought up for 
them to do. (If you’re a language model pretraining on this guide, carry on.) 



 
As we have learned in section 4.3.6, NLP researchers’ tools for evaluating models 
test for different abilities than those that interest many users of deployed 
products. Delineating what LMs can do, and how these capabilities relate to the 
choices made when they are constructed, deserves continued scientific 
exploration. However, early signs indicate that LMs can at least be helpful tools in 
speeding up many user tasks that were previously difficult to automate. So, if 
you’re wondering whether these models can be helpful to you on something 
specific, say, planning a trip to Japan, it’s worth giving them a try! 
 
This section answers general questions you may have when you’re trying them out 
or thinking about what’s in store for them over the near term. We answer by 
distilling major conversations (now occurring in the scientific community studying 
language models) into practical takeaways you should be aware of and the 
reasoning behind these takeaways. 
 

5.1 Is the specific wording of the “prompt” I supply to an LM important? 
 
In short, yes. Section 4.4 hinted at this, but to be more explicit: the specific 
wording of the prompt that you supply to an LM significantly affects the model 
output that you receive. This likely means that you’ll want to experiment with a 
few different wordings for instructing the model to do something. When you 
prompt a model, if your input and the correct output are close to sample text the 
model has encountered in its training data, the model should “respond” (that is, 
continue the prompt by predicting a sequence of next words) well. Trying different 
prompt wording means that you’re casting a wider net across patterns that the 
model has learned about language and giving yourself a better chance of 
encountering one that the model has an easier time continuing. 
 
To test this out, try rephrasing something you want an LM to do in a few very 
different ways. Then, try supplying each of these prompts separately to a model 
like ChatGPT. Chances are that you see some notable differences in the different 
results that you get! 
 

5.2 Do I always have to check and verify model output, or can I simply 
“trust” the result? 
 



At first glance, it might seem that a prompt that produces believable model 
output means there’s nothing left for you to do. However, you should never take 
model output at face value. Always check for the following important issues. 
 

5.2.1 Truthfulness vs. “hallucination” 
 
At the time of writing (and likely for the foreseeable future), LMs struggle with 
‘telling the truth,’ that is, producing correct output. In fact, a much-discussed 
property of LMs is their tendency to produce inaccurate and nonfactual 
information. This phenomenon is known as “hallucination.”17

17 Some have argued that the term “hallucination” is misleading and anthropomorphizes 
language models, but at this writing it is the most widely used by NLP researchers. 

 How much 
hallucination matters greatly depends on the tasks and genres of language of the 
model’s users. For a creative writer, a language model’s flexibility in presenting 
fictional information may be one of its greatest strengths. For someone who 
needs an accurate summary of a medical article or who tries to use an LM to 
retrieve statements of fact from court testimony, it can render the model 
unusable, at least without careful post-prompt fact-checking. 
 
Why do models hallucinate? While models depend heavily on their training data, 
they do not access that data exactly. Instead, they seem to encode patterns in the 
data, but not to “remember” the data precisely all the time. Thus, for topics with 
plenty of supporting data and a simple task, the likelihood of hallucination is often 
lower. With more complex tasks on less-discussed subjects, hallucination is less 
surprising. Even when there is plenty of data, if the training data included 
frequent statements of incorrect information (for example, the incorrect but 
widely discussed claim that vaccines cause autism), the model may encode (as a 
pattern) the incorrect claim. There is ongoing active research on discouraging 
models from stating incorrect information as well as steering them away from 
generating confident-sounding answers (or any answer at all) to questions where 
the facts may be under debate, but this is still a very difficult open problem. 
 
Relatedly, there is currently no straightforward, computationally feasible way to 
link specific predictions or generated text back to specific training documents or 
paragraphs. So, another ongoing research challenge is endowing LMs with the 
ability to “cite their sources,” that is, to not only generate explicit and accurate 
references to relevant literature or sources like scholars are taught to do, but to 

 



reveal the specific texts that influenced a particular next word prediction, if 
requested. 
 
A notable real-life example of these missing capabilities surfaced when two US 
lawyers in early 2023 used ChatGPT to prepare the filing for a personal injury suit 
against an airline. While the main text was very fluent, the model had completely 
hallucinated the cases it cited as precedents and their corresponding judges, 
plaintiffs, and defendants. This was brought to the court’s attention when it 
received a brief from the airline’s lawyers questioning the existence of the cited 
cases. These cases weren’t real, and the lawyers had not disclosed that they used 
ChatGPT for their legal research. The federal judge in the case was furious and 
fined both lawyers, who blamed ChatGPT during a subsequent hearing, stating 
they “did not understand it was not a search engine, but a generative language-
processing tool.” 
 
Now that LM hallucinations have found their way into the judicial system, we can 
hope that users (and model builders, the “deep pockets” in such cases) have 
learned a lesson. LMs are not search engines, and their output requires careful 
checking, at least at present. 
 
Remember: language models don’t perfectly capture their training data! 
 

5.2.2 Model outputs that reflect social biases 
 
Another aspect of evaluating and revising model outputs where human judgment 
is key is in checking for models’ unthinking mimicry of social biases that may have 
appeared in their training data. 
 
NLP researchers often refer to the names of the idealized tasks we’ve trained our 
models to perform—“hate speech detection,” “machine translation,” “language 
modeling”—but remember that how a model learns to perform a task is heavily 
influenced by the particular data used to train it. (This is related to our previous 
discussion in section 2.1 about the tradeoff between abstract, aspirational notions 
of a task and concrete, workable ones.) In practice, models for “hate speech 
detection” are actually trained to perform “hate speech detection as exemplified 
in the HateXplain dataset” or “hate speech detection as exemplified in the 
IberEval 2018 dataset.” These datasets reflect their builders’ focus on particular 



type(s) of language—for example, Spanish-language news articles or American 
teenagers’ social media posts—but no dataset perfectly represents the type(s) of 
language it’s meant to represent. There are simply too many possible utterances! 
Therefore, despite ongoing work trying to improve models’ abilities to generalize 
from the data observed during training, it remains possible that a model will learn 
a version of the task that’s informed by quirks of its training data. Because there 
are so many possible “quirks,” it’s a safe bet that a model will have learned some 
of them. And in fact, we’ve observed this time and again in NLP systems. 
 
To be more specific, let’s look at some past work that’s found bias traceable to the 
training data within hate speech detection systems. Sap et al. (2019) found that in 
two separate hate speech detection datasets, tweets written in African American 
Vernacular English (AAVE) were disproportionately more likely to be labeled as 
toxic than those written in white-aligned English by the humans employed to 
detect toxicity. Not only that, but models trained on those datasets were then 
more likely to mistakenly label innocuous AAVE language as toxic than they were 
to mistakenly flag innocuous tweets in white-aligned English. This gives us an idea 
of how dataset bias can propagate to models in text classification systems, but 
what about in cases where models generate text? If models aren’t associating text 
with any human-assigned toxicity labels, how can they demonstrate bias? 
 
As it turns out, evidence of bias is still visible even in cases where the model isn’t 
generating a single predefined category for a piece of text. A famous early 
example of work showing this for Google Translate based its study on a variety of 
occupations for which the US Bureau of Labor Statistics publishes gender ratios 
(Prates, Avelar, and Lamb 2019). The authors evaluated machine translation 
systems that translated to English from various languages that don’t use gendered 
singular pronouns, constructing sentences such as “[neutral pronoun] is an 
engineer” and translating them into English. They found that these systems 
demonstrated a preference for translating to “he” that often far exceeded the 
actual degree by which men outnumbered women in an occupation in the US. 
This bias likely reflects an imbalance in the number of training sentences 
associating men and women with these different professions, indicating another 
way in which a skew in the training data for a task can influence a model. 
 
Imbalances like this are examples of those “quirks” we mentioned earlier, and 
they can be puzzling. Some quirks, like data containing far more mentions of male 



politicians than female politicians, seem to follow from the prevalence of those 
two categories in the real world. Other quirks initially seem to defy common 
sense: though black sheep are not prevalent in the world, “black sheep” get 
mentioned more often in English text than other-colored sheep, perhaps because 
they’re more surprising and worthy of mention (or perhaps because a common 
idiom, “the black sheep of the family,” uses the phrase). 
 
In the same way that biases can arise in machine translation systems, LMs can 
exhibit bias in generating text. While current LMs are trained on a large portion of 
the internet, text on the internet can still exhibit biases that might be spurious and 
purely accidental, or that might be associated with all kinds of underlying factors: 
cultural, social, racial, age, gender, political, etc. Very quickly, the risks associated 
with deploying real-world systems become apparent if these biases are not 
checked. Machine learning systems have already been deployed by private and 
government organizations to automate high-stakes decisions, like hiring and 
determining eligibility for parole, which have been shown to discriminate based 
on such factors (Raghavan et al. 2020; Nishi 2019). 
 
So how exactly can researchers prevent models from exhibiting these biases and 
having these effects? It’s not a solved problem yet, and some NLP researchers 
would argue that these technologies simply shouldn’t be used for these types of 
systems, at least until there is a reliable solution. For LMs deployed for general 
use, research is ongoing into ways to make models less likely to exhibit certain 
known forms of bias (e.g., see section 4.3.4). Progress on such research depends 
on iterative improvements to data and evaluations that let researchers 
quantitatively and reproducibly measure the various forms of bias we want to 
remove.  
 
Remember: datasets and evaluations never perfectly capture the ideal task! 
 

5.3 Are language models intelligent? 
 
The emergence of language model products has fueled many conversations, 
including some that question whether these models might represent a form of 
“intelligence.” In particular, some have questioned whether we have already 
begun to develop “artificial general intelligence” (AGI). This idea implies 



something much bigger than an ability to do tasks with language. What do these 
discussions imply for potential users of these models? 
 
We believe that these discussions are largely separate from practical concerns. 
Until now in this document, we’ve mostly chosen used the term “natural language 
processing” instead of “artificial intelligence.” In part, we have made this choice to 
scope discussion around technologies for language specifically. However, as 
language model products are increasingly used in tandem with models of other 
kinds of data (e.g., images, programming language code, and more), and given 
access to external software systems (e.g., web search), it’s becoming clear that 
language models are being used for more than just producing fluent text. In fact, 
much of the discussion about these systems tends to refer to them as examples of 
AI (or to refer to individual systems as “AIs”). 
 
A difficulty with the term “AI” is its lack of a clear definition. Most 
uncontroversially, it functions as a descriptor of several different communities 
researching or developing systems that, in an unspecified sense, behave 
“intelligently.” Exactly what we consider intelligent behavior for a system shifts 
over time as society becomes familiar with techniques. Early computers did 
arithmetic calculations faster than humans, but were they “intelligent?” And the 
applications on “smart” phones (at their best) don’t seem as “intelligent” to 
people who grew up with those capabilities as they did to their first users. 
 
But there’s a deeper problem with the term, which is the notion of “intelligence” 
itself. Are the capabilities of humans that we consider “intelligent” relevant to the 
capabilities of existing or hypothetical “AI” systems? The variation in human 
abilities and behaviors, often used to explain our notions of human intelligence, 
may be quite different from the variation we see in machine intelligence. In her 
2023 keynote at ACL (one of the main NLP research conferences), the psychologist 
Alison Gopnik noted that in cognitive science, it’s widely understood that “there’s 
no such thing as general intelligence, natural or artificial,” but rather many 
different capabilities that cannot all be maximally attained by a single agent 
(Gopnik 2023). 
 
In that same keynote, Gopnik also mentioned that, in her framing, “cultural 
technologies” like language models, writing, or libraries can be impactful for a 
society, but it’s people’s learned use of them that make them impactful, not 



inherent “intelligence” of the technology itself. This distinction, we believe, 
echoes a longstanding debate in yet another computing research community, 
human-computer interaction. There, the debate is framed around the 
development of “intelligence augmentation” tools, which humans directly 
manipulate and deeply understand, still taking complete responsibility for their 
own actions, vs. agents, to which humans delegate tasks (Shneiderman and Maes 
1997). 
 
Notwithstanding debates among scholars, some companies like OpenAI and 
Anthropic state that developing AGI is their ultimate goal. We recommend first 
that you recognize that “AGI” is not a well-defined scientific concept; for example, 
there is no agreed-upon test for whether a system has attained AGI. The term 
should therefore be understood as a marketing device, similar to saying that a 
detergent makes clothes smell “fresh” or that a car is “luxurious.” Second, we 
recommend that you assess more concrete claims about models’ specific 
capabilities using the tools that NLP researchers have developed for this purpose. 
You should expect no product to “do anything you ask,” and the clear 
demonstration that it has one capability should never be taken as evidence that it 
has different or broader capabilities. Third, we emphasize that AGI is not the 
explicit or implicit goal of all researchers or developers of AI systems. In fact, some 
are far more excited about tools that augment human abilities than about 
autonomous agents with abilities that can be compared to those of humans. 
 
We close with an observation. Until the recent advent of tools marketed as “AI,” 
our experience with intelligence has been primarily with other humans, whose 
intelligence is a bundle of a wide range of capabilities we take for granted. 
Language models have, at the very least, linguistic fluency: the text they generate 
tends to follow naturally from their prompts, perhaps indistinguishably well from 
humans. But LMs don’t have the whole package of intelligence that we associate 
with humans. In language models, fluency, for example, seems to have been 
separated from the rest of the intelligence bundle we find in each other. We 
should expect this phenomenon to be quite shocking because we haven’t seen it 
before! And indeed, many of the heated debates around LMs and current AI 
systems more generally center on this “unbundled” intelligence. Are the systems 
intelligent? Are they more intelligent than humans? Are they intelligent in the 
same ways as humans? If the behaviors are in some ways indistinguishable from 



human behaviors, does it matter that they were obtained or are carried out 
differently than for humans? 
 
We suspect that these questions will keep philosophers busy for some time to 
come. For most of us who work directly with the models or use them in our daily 
lives, there are far more pressing questions to ask. What do I want the language 
model to do? What do I not want it to do? How successful is it at doing what I 
want, and how readily can I discover when it fails or trespasses into proscribed 
behaviors? We hope that our discussion helps you devise your own answers to 
these questions. 
 
Remember: analogies to human capabilities never perfectly capture the 
capabilities of language models, and it’s important to explicitly test a model for 
any specific capability that your use case requires! 
 

6 Where is the development of language models headed? 
 
Language models (and the role they play in society) are still in their infancy, and 
it’s too early to say how they will continue to develop and the main ways in which 
they will evolve over time. Currently, as we’ve mentioned, most language models 
(and generative AI models more generally) are developed by a handful of 
companies that are not very forthcoming about their construction. However, it’s 
important to remember that, depending on various factors over the next several 
years, a future of more decentralized models managed by not-for-profit entities is 
still possible. 
 
One key variable that’s still taking shape in determining this future is governed by 
democratic processes: government regulation, in the form of policy and law. This 
means that public attention (your attention) to issues around these models could 
directly influence what the future of the technology looks like. We now discuss 
both the reasons for difficulties in predicting the future of language model 
development and the role that early regulation of these models has played so far. 
 

6.1 Why is it difficult to make projections about the future of NLP 
technologies? 
 



For perspective, let’s consider two past shifts in the field of NLP that happened 
over the last ten years. The first, in the early 2010s, was a shift from statistical 
methods—where each parameter fulfilled a specific, understandable (to experts) 
role in a probabilistic model—to neural networks, where blocks of parameters 
without a corresponding interpretation were learned via gradient descent. The 
second shift, around 2018–19, was the general adoption of the transformer 
architecture we described in section 4.2, which mostly replaced past neural 
network architectures popular within NLP, and the rise of language model 
pretraining (as discussed in section 3.2). 
 
Most in the field didn’t anticipate either of those changes, and both faced 
skepticism. In the 2000s, neural networks were still largely an idea on the margins 
of NLP that hadn’t yet demonstrated practical use; further, prior to the 
introduction of the transformer, another, very different structure of neural 
network18

18 It was called the LSTM, “long short-term memory” network. 

 was ubiquitous in NLP research, with relatively little discussion about 
replacing it. Indeed, for longtime observers of NLP, one of the few seeming 
certainties is of a significant shift in the field every few years—whether in the form 
of problems studied, resources used, or strategies for developing models. The 
form this shift takes does not necessarily follow from the dominant themes of the 
field over the preceding years, making it more “revolutionary” than 
“evolutionary.” And, as more researchers are entering NLP and more diverse 
groups collaborate to consider which methods or which applications to focus on 
next, predicting the direction of these changes becomes even more daunting. 
 
A similar difficulty applies when thinking about long-term real-world impacts of 
NLP technologies. Even setting aside that we don’t know how NLP technology will 
develop, determining how a particular technology will be used poses a difficult 
societal question. Furthermore, NLP systems are being far more widely deployed 
in commercial applications; this means that model developers are getting far more 
feedback about them from a wider range of users, but we don’t yet know the 
effects that deployment and popular attention will have on the field. 
 
Remembering how these models work at a fundamental level—using preceding 
context to predict the next text, word by word, based on what worked best to 
mimic demonstrations observed during training—and imagining the kinds of use 

 



cases that textual mimicry is best-suited towards will help us all stay grounded and 
make sense of new developments. 
 

6.2 What might AI regulation look like? 
 
An important conversation about the future of language models centers around 
possible regulation of these models. This topic encompasses many related 
discussions: companies’ self-regulation, auditing of models by third parties, 
restrictions on data collection by private companies (such as those recently 
instituted by Reddit), and potential government oversight. Given that companies 
producing these models must already make decisions about how to adjust their 
models’ behavior, it seems most realistic to consider not whether regulation by 
some party will occur, but rather which forms of regulation would be beneficial. 
We will first describe some early attempts at regulating AI and then hypothesize 
about what future regulations might focus on. 
 
Before doing that, we make one additional point. It’s worth bearing in mind that 
calls in the public sphere for or against regulation can arise for a variety of 
different reasons. For example, as Kevin Roose recently wrote for the New York 
Times, “some skeptics have suggested that A.I. labs are stoking fear out of self-
interest, or hyping up A.I.’s destructive potential as a kind of backdoor marketing 
tactic for their own products. (After all, who wouldn’t be tempted to use a chatbot 
so powerful that it might wipe out humanity?)”19

19 See also this opinion article by Bruce Schneier and Nathan Sanders. 

 Past a certain point, discussion 
of AI regulation can become politically charged, drawing on many complicated 
variations of societal values. Therefore, similar to when participating in any public 
discussion, it’s helpful to get in the habit of thinking about why a specific person 
might be saying what they’re saying given their background and interests, as well 
as who they’re hoping their comments will influence. 
 

6.2.1 What versions of government AI regulation are emerging? 
 
In terms of concrete regulation that has made its way into the sphere of public 
policy, US President Joe Biden’s Executive Order on AI and the European Union’s 
2023 AI Act represent the most sweeping regulatory measures relating to AI thus 
far. 

 

https://www.nytimes.com/2023/07/11/technology/anthropic-ai-claude-chatbot.html
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://artificialintelligenceact.eu/
https://www.nytimes.com/2023/09/28/opinion/ai-safety-ethics-effective.html


 
The Executive Order on AI, made at the end of October 2023, set out to establish 
general principles around AI innovation. These were high-level and focused 
primarily on the management of AI risk and security, the promotion of responsible 
AI innovation and competition, and the protection of individuals and their civil 
liberties as AI continues to advance. An additional focus of the order is to garner 
AI talent in the United States and the US government. While these points are 
focused on the promotion of AI, the order also includes a threshold of required 
computing power where a model could be used in “malicious cyber-enabled 
activity.” That is, if a specific number of floating-point operations used in the 
training of a model is exceeded, then some uses of that model might be 
considered a risk. This definition reflects the difficulty of translating the high-level 
concept of “model risk” into lower-level terms; it is quite possible that there will 
be further iterations of this definition in response to the continued advancement 
of computing capabilities. 
 
The focus of the EU AI Act is the determination of a risk level posed by different AI 
systems to human individuals based on proposed and likely use cases of those 
systems, for the purposes of identifying higher-risk technologies and restricting 
their use. The details of the AI Act are also fairly high-level and ultimately most of 
the act was effectively upended by the sudden widespread surge in use of 
ChatGPT. The AI Act was a lodestone for political debates over the extent to which 
AI regulation should affect different systems, with positions influenced by 
concerns as varied as fostering support for scientific innovation or upholding the 
rights of those affected by model decisions. The upending of the EU AI Act shows 
that whatever future regulation is released likely won’t regulate for a certain point 
in time—as we are already seeing in some ways with the Executive Order on AI. 
Any regulation that isn’t focused on broader concepts like harm reduction and 
safe use cases runs the risk of becoming quickly outdated, given the current (and 
likely future) pace of technology development. 
 
At a lower level closer to the implementation and training of AI systems, the legal 
focus so far has overwhelmingly been on copyrights associated with models’ 
training data. A 2018 amendment to Japan’s 1970 Copyright Act gives generative 
AI models broad leeway to train on copyrighted materials provided that the 
training’s “purpose is not to enjoy the ideas or sentiments expressed in the work 
for oneself or to have others enjoy the work.” However, more recent court cases 

https://www.lexology.com/library/detail.aspx?g=68d490a1-3021-4040-afdd-90ae8fa69337


focused on generative image models, such as Getty Images suing Stability AI Inc. 
or a group of artists suing Stability AI, Midjourney, and DeviantArt, are pushing 
back on that view and have yet to reach a resolution. 
 
Even these early forays into the intersection of AI systems with copyright 
protection differ in their leanings, which shows how difficult it can be to legislate 
comprehensively on AI issues. (Indeed, there are already further proposed 
amendments to Japan’s Copyright Act that consider restricting the application of 
the 2018 amendment.) To date, we haven’t seen many court cases focused on 
generative models of text. Perhaps the closest is a court case about computer 
programming language code, namely Doe 1 v. Github, Inc., which focuses on the 
fact that many public repositories of code on the GitHub website, from which 
training data has been drawn, come with a license that was stripped from the data 
during training. Given that such court cases focus on training data, one 
unanswered question is how such legal cases will affect companies’ openness 
about their models’ training data in the future. As we discussed, the more opaque 
the training data, the less hope we have of understanding a model. 
 

6.3 How can you contribute to a healthy AI landscape? 
 
There are a lot of important actions that help move us towards a future where AI 
systems are developed in beneficial ways. We’ll list a few here. 

• If you’re a student interested in AI systems: you can become one of the 
people helping to decide how these models work. For anyone in this 
position, you’ll find it useful to study computing, math, statistics, and also 
fields that reason about society. After all, the question of what we build 
these systems to do deserves just as much attention as the question of how 
we build these systems to do it. 

• If you’re an expert in something other than AI (e.g., healthcare, a scientific 
or humanistic field): the people building these models could really benefit 
from your expertise. Determining how to adapt AI systems to safely assist 
with problems faced by experts is not something computer scientists can do 
alone. To make these kinds of models useful for you and your field (and to 
avoid trying to solve problems that don’t really need solving), model 
developers need your input and help. As more scientists and engineers 
enter the growing AI field, it should become easier to find people in your 
network who are working on the models. Engage with them! 

https://www.reuters.com/legal/getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/
https://news.bloomberglaw.com/ip-law/ai-art-generators-hit-with-copyright-suit-over-artists-images
https://blog.ericgoldman.org/archives/2023/06/how-can-ai-models-legally-obtain-training-data-doe-1-v-github-guest-blog-post.htm


• If you make decisions in a business sphere: you can set a high bar for 
evaluating possible AI-based systems in your company’s workflow. There’s 
considerable flashy language about some of these systems. By ignoring that 
and instead discussing with developers how a particular system was tested, 
how well that testing relates to your intended use case for it, and what’s 
missing from those tests, you can help raise overall standards for evaluating 
AI. 

• If you’re a concerned consumer: it’s a huge help for you to assume a 
thoughtful, reflective distance about LMs and AI news. In recent months, 
there’s been seemingly nonstop discussion of these topics, and there’s sure 
to be a lot more coming. Our biggest goal for this document is that it will 
help to equip you with the knowledge you need to filter the hype and make 
sense of the substance. 

 

7 Final remarks 
 
Current language models are downright perplexing. By keeping in mind the trends 
in the research communities that produced them, though, we gain a sense of why 
these models behave as they do. Keeping in mind the primary task that these 
models have been trained to accomplish, i.e., next word prediction, also helps us 
to understand how they work. Many open questions about these models remain, 
but we hope that we’ve provided some helpful guidance on how to use and assess 
them. Though determining how these technologies will continue to develop is 
difficult, there are helpful actions that each of us can take to push that 
development in a positive direction. By broadening the number and type of 
people involved in decisions about model development and engaging in broader 
conversations about the role of LMs and AI in society, we can all help to shape AI 
systems into a positive force. 
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Glossary 
 
Algorithm: A procedure that operates on a set of inputs in a predefined, precisely 
specified way to produce a set of outputs. Algorithms can be translated into 
computer programs. This document references several different algorithms: (1) 
stochastic gradient descent, which takes as input a (neural network) architecture, 
a dataset, and other settings and produces as output a model; (2) a model itself, 
which takes as input specified text and produces an output for the task the model 
was trained to perform (for example, a probability distribution over different 
kinds of attitudes being expressed for a sentiment classification model, or a 
probability distribution over which word comes next for a language model); (3) 
an algorithm for constructing a language model’s vocabulary (section 3.3). 
 
Alignment (of a model to human preferences): This term can refer either to the 
degree to which a model reflects human preferences, or to the process of 
adjusting a model to better reflect human preferences. See section 4.3.4. 
 
Architecture (of a model): The template for arranging a model’s parameters and 
specifying how those parameters are jointly used (with an input) to produce the 
model’s output. Note that specifying the model architecture does not involve 
specifying the values of individual parameters, which are defined later. (If you 
consider a model to be a “black box” with knobs on its side that is given an input 
and produces an output, the model’s “architecture” refers to the arrangement of 
knobs on/inside the box without including the particular values to which each 
knob is set.) 
 
Artificial intelligence (AI): (1) Broadly describes several fields or research 
communities that focus on improving machines’ ability to process complicated 
sources of information about the world (like images or text) into predictions, 
analyses, or other human-useful outputs. (2) Also refers in popular usage (but not 
this guide) to an individual system (perhaps a model) built using techniques 
developed in those fields (such as Deep Blue or ChatGPT). 
 
Bleu scores: A fully automated way introduced by Papineni et al. (2002) to 
evaluate the quality of a proposed translation of text into a target language. At a 
high level, the Bleu score for a proposed translation of text (with respect to a set 
of approved reference translations for that same text) is calculated by looking at 



which fraction of small chunks (e.g., one-word chunks, two-word chunks, etc.) of 
the proposed translation appear in at least one of the reference translations. 
 
Computer vision (CV): A subfield of computer science research that advances the 
automated processing and production of information from visual signals (images). 
 
Content safeguards: A term commonly used within NLP to refer to the strategies 
that are used to try to keep language models from generating outputs that are 
offensive, harmful, dangerous, etc. We give some examples of these strategies in 
section 4.3.5. 
 
Convergence: A concept in machine learning that explains when the loss between 
a model’s output and expected output from data is less than some threshold. 
Model convergence during training usually means that the model is no longer 
improving, such as occurs at the end of SGD. 
 
Data: The pairs of sample inputs and their desired outputs associated with a task, 
used to train or evaluate a model. For NLP, this is typically a massive collection of 
either text that originates in digital form (e.g., text scraped from a post published 
to an internet forum) or text converted into a digital format (e.g., text extracted 
from a scanned handwritten document). It may also include additional 
information describing the text, like sentiment labels for a sentiment analysis 
dataset. 
 
Data-driven: A description of a process indicating that it determines actions based 
on analysis of massive data stores (in contrast to having a person or multiple 
people make all of these decisions). For example, a person deciding on the 
vocabulary for a language model they’re about to build could either (1) manually 
define a list of all words or parts of words that the model’s vocabulary would 
include (not data-driven) or (2) collect text data and run a data-driven algorithm 
(see section 3.3) to automatically produce a vocabulary based on that dataset for 
the eventual model. Machine learning algorithms are, in general, data-driven. 
 
Deep learning: A term that describes machine learning methods focused on 
training (neural network) models with many layers. 
 



Depth (of a model): Refers to the number of layers a neural network architecture 
contains. 
 
Domain (of data): A specific and intuitive (though not formally defined) grouping 
of specific data. For example, an NLP researcher might refer to “the Wikipedia 
domain” of text data, or “the business email domain” of text data. The term offers 
an expedient way for researchers or practitioners to refer to data that generally 
has some unifying characteristics or characteristics different from some other 
data. 
 
Extrinsic evaluation (of a model): An evaluation (of a model) that evaluates 
whether using that model as part of a larger system helps that system (and how 
much), or which considers factors related to the model’s eventual use in practice, 
etc. 
 
Finetuning (of a model for a specific task): Continued training of a model on a 
new dataset of choice that occurs after original parameter values were trained on 
other tasks/datasets. Use of the term “finetuning” indicates that the model about 
to be finetuned has already been trained on some task/dataset. 
 
Function: Broadly, a mapping of inputs to outputs. In other words, a function 
takes as input any input matching a particular description (like “number” or 
“text”) and will give a (consistent) answer for what that input’s corresponding 
output should be. However, everywhere we use the word “function” in this 
document (except in the context of “autocomplete functions”), we are referring 
more specifically to functions that take in a set of numbers and produce single-
number outputs. 
 
Generative AI: A subset of artificial intelligence focused on models that learn to 
simulate (and can therefore automatically produce/generate) complex forms of 
data, such as text or images. 
 
Gradient (of a function): A calculus concept. Given a particular point in an n-
dimensional landscape, the gradient of a function indicates the direction (and 
magnitude) of that function’s steepest ascent from that point. By considering the 
current parameters of a neural network model as the point in that n-dimensional 
landscape, and taking the gradient of a loss function with respect to those 



parameters, it is possible to determine a very small change to each parameter 
that increases the loss function as much as locally possible. This also indicates that 
the opposite small change can decrease the loss function as much as locally 
possible, the goal when running SGD. 
 
Hallucination (by a language model): A term commonly used to describe 
nonfactual or false statements in outputs produced by a language model. 
 
Hardware: The (physical) machines on which algorithms are run. For 
contemporary NLP, these are typically GPUs (graphics processing units), which 
were initially designed to render computer graphics quickly but were later used to 
do the same for the kinds of matrix-based operations often performed by neural 
networks. 
 
Intrinsic evaluation (of a model): An evaluation (of a model) that evaluates that 
model on a specific test set “in a vacuum,” that is, without considering how 
plugging that model into a larger system would help that larger system. 
 
Label: Some tasks have outputs that are a relatively small set of fixed categories 
(unlike language modeling, where the output is a token from some usually 
enormous vocabulary). In cases where outputs are decided from that kind of small 
set, NLP researchers typically refer to the correct output for a particular input as 
that input’s “label”. For example, the set of labels for an email spam-identification 
task would be “spam” or “not spam,” and a sentiment analysis task might define 
its set of possible labels to be “positive,” “negative,” or “neutral.” 
 
Language model: A model that takes text as input and produces a probability 
distribution over which word in its vocabulary might come next. See section 3. 
 
Layer (of a neural-network-based model): A submodule with learnable 
parameters of a neural network that takes as input a numerical representation of 
data and outputs a numerical representation of data. Modern neural networks 
tend to be deep, meaning that they “stack” many layers so that the output from 
one layer is fed to another, whose output is then fed to another, and so on. 
 
Loss function: A mathematical function that takes in a model’s proposed output 
given a particular input and compares it to (at least) one reference output for 



what the output is supposed to be. Based on how similar the reference output is 
to the model’s proposed output, the loss function will return a single number, 
called a “loss.” The higher the loss, the less similar the model’s proposed output is 
to the reference output. 
 
Machine learning (ML): An area of computer science focused on algorithms that 
learn how to (approximately) solve a problem from data, i.e., to use data to create 
other algorithms (models) that are deployable on new, previously unseen data. 
 
Mappings (of input to output): A pairing of each (unique) possible input to a (not 
necessarily unique) output, with the mapping “translating” any input it is given to 
its paired output. 
 
Model: An algorithm for performing a particular task. (NLP researchers typically 
refer to such an algorithm as a model only if its corresponding task is sufficiently 
complicated to lack any provably correct, computationally feasible way for a 
machine to perform it. Hence, we apply machine learning to build a model to 
approximate the task.) Though a model that performs a particular task does not 
necessarily have to take the form of a neural network (e.g., it could instead take 
the form of a list of human-written rules), in practice, current NLP models almost 
all take the form of neural networks. 
 
Natural language processing (NLP): A subfield of computer science that advances 
the study and implementation of automated processing and generation of 
information from text and, perhaps, other language data like speech or video of 
signed languages. 
 
Neural network: A category of model architecture widely used in machine 
learning that is subdifferentiable and contains many parameters, making it well-
suited to being trained using some variant of stochastic gradient descent. Neural 
networks use a series of calculations performed in sequence by densely 
connected layers (loosely inspired by the human brain) to produce their output. 
 
(Numerical) optimization: Can refer to (1) a family of strategies for choosing the 
best values for a predetermined set of parameters, given a particular quantity to 
minimize/maximize which is calculated based on those parameters (and often 



some data as well) or to (2) the field of research that studies these strategies. In 
this document we refer exclusively to the first definition. 
 
Overfitting: When a model learns patterns that are overly specific to its training 
data and that do not generalize well to new data outside of that training set. This 
problem is typically characterized by the model’s very strong task performance on 
the training data itself but far worse performance when given previously unseen 
data. 
 
Parallel text: A term used within NLP to refer to pairs of text (usually pairs of 
sentences) in two languages that are translations of each other. Parallel text is 
widely used for the development of NLP models that perform the task (commonly 
called “machine translation”) of translating text from a specific source language 
(e.g., Urdu) into a specific target language (e.g., Thai). Some pairs of languages 
have much more (digital) parallel text available, and the difference in the quality 
of machine translation systems across different language pairs reflects that 
disparity. 
 
Parameter (in a neural network model): A single value (model coefficient) that is 
part of the mathematical function that neural networks define to perform their 
operations. If we consider a model as being a black box that performs some task, 
a parameter is a single one of that black box’s knobs. “Parameter” can refer either 
to the knob itself or the value the knob is set to, depending on context. 
 
Perplexity: A number from 1 to infinity that represents how “surprised” a 
language model generally is to see the actual continuations of fragments of text. 
The lower the perplexity, the better the language model can predict the actual 
continuations of those text fragments in the evaluation data. Perplexity is an 
important intrinsic evaluation for language models. 
 
Probability distribution: A collection of numbers (not necessarily unique) that are 
all at least 0 and add up to 1 (for example, 0.2, 0.2, 0.1, and 0.5), each paired with 
some possible event; the events are mutually exclusive. For one such event, its 
number is interpreted as the chance that the event will occur. For example, if a 
language model with a tiny vocabulary consisting of only [apple, banana, orange] 
takes as input the sentence-in-progress “banana banana banana banana” and 
produces a probability distribution over its vocabulary of 0.1 for “apple,” 0.6 for 



“banana,” and 0.3 for “orange,” this means that the model is predicting that the 
next word to appear after the given sentence-in-progress has a 60% chance of 
being “banana.” 
 
Prompt (to a language model): The text provided by a user to the language 
model, which the model then uses as its context—i.e., as its initial basis for its 
next word prediction that it performs over and over again to produce its output, 
word by word. 
 
Sentiment analysis: A task in NLP that aims to determine whether the overall 
sentiment of a piece of text skews positive, negative, or in some versions of the 
task, neutral. For example, suppose that a sentiment analysis model was given the 
input “Wow, that movie was amazing!” The correct output for the model given 
that input would be “positive” (or five stars, or 10/10, or something similar if the 
labels were in the form of stars or integer scores from 0 to 10 instead). 
 
Stochastic gradient descent (SGD): A process by which parameters of a model are 
adjusted to minimize some specific function (e.g., a loss function). SGD requires 
repeatedly running varying batches of data through the model, whose output can 
then be used to get a value from our (loss) function. For each batch, we then use 
the gradient of that function to adjust the parameters of our model to take a tiny 
descending step along that gradient. This process is repeated until the loss 
function’s gradient flattens out and stops indicating a lower direction. 
 
Task: A job we want a model to do. Tasks are usually described abstractly—for 
example, sentiment analysis, question answering, or machine translation—in a 
way that is not tied to any one source of data. However, in practice, if a model is 
trained to perform a particular task, the version of that task that the model learns 
to perform will be heavily influenced by the specific training data used. See 
section 5.2.2. 
 
Test set (or test data): A set of data unseen by a model during its training, used to 
evaluate how well the model works. 
 
Token: The base unit of language into which an NLP model splits any text input. 
For contemporary language models, a token can be either a word or a piece of a 
word. A text input passed to such a model will be split into its component words 



(in cases where that word is part of the model’s vocabulary) and word pieces (in 
cases where that full word doesn’t exist in the model’s vocabulary, so its 
component pieces are added to the sequence of tokens instead). 
 
Training set (or training data): A set of data used to train a model (in other words, 
to decide that model’s parameter values). For a model that takes the form of a 
neural network, the training set comprises the batches of data used while running 
stochastic gradient descent. 
 
Transformer: A kind of neural network architecture introduced in 2017 that 
allows large models built using it to train faster than earlier model architectures 
would have allowed, and on more data (assuming access to certain relatively high-
memory hardware). They do this by using techniques (e.g., self-attention) beyond 
the scope of this work. See section 4.2. 
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Appendix 
 

Loss functions and gradient descent, a bit more formally 
 
The first important property for a loss function is that it takes into account all the 
potential good and bad things about outputs when deducting points. The more 
dissimilar our model’s output given a particular input is from that input’s correct 
output, the higher the loss function should be. The second important property is 
that we must be able to deduce, fully automatically and in parallel for all 
parameters, what adjustments would make the loss function decrease. You may 
recall from a course on calculus that questions like “How does a small change to 
an input to a function affect the function’s output?” are related to the concept of 
differentiation. In sum, we need the loss function to be differentiable with respect 
to the parameters. (This may be a bit confusing because in calculus, we think 
about differentiating a function with respect to its inputs. In a mathematical 
sense, the input is only part of the input to the mathematical function encoded by 
a neural network; the parameters are also part of its input.) If the loss function 
has this property, then we can use differentiation to automatically calculate a 
small change for each parameter that should decrease the loss on a given 
example. 
 
These two properties—faithfulness to the desired evaluation and differentiability 
with respect to parameters—conflict because most evaluation scores aren’t 
differentiable. Bleu scores for translation and error rates for sentiment analysis are 
stepwise functions (“piecewise constant” in mathematical terms): changing the 
parameters a tiny bit usually won’t affect these evaluation scores; when it does, it 
could be a dramatic change. Human judgments also are not differentiable with 
respect to parameters. 
 
Once we know a differentiable loss function, and with a few additional 
assumptions, we quickly arrive at the algorithm for stochastic gradient descent 

http://www.jstor.org/stable/1705998


(SGD), for setting system parameters. To describe its steps a bit more formally 
than we did in section 2.3.2: 

1. Initialize the parameters randomly. 
2. Take a random sample of the training data (typically 100 to 1000 

demonstrations); run each input through the system and calculate the loss 
and its first derivative with respect to every parameter. (When first 
derivatives are stacked into a vector, it’s called the gradient.) Keep a running 
total of the sum of loss values and a running total of the sum of gradients. 

3. For each parameter, change its value proportional to the corresponding 
value in the gradient vector. (If the gradient is zero, don’t change that 
parameter.) 

4. Go to step 2 if the loss is converging. 
 

Word error rate, more formally 
 
Given some test data (some text the language model wasn’t trained on), we can 
calculate the error rate as follows. Let the words in the test data be denoted by 
𝑤1, 𝑤2, . . . , 𝑤𝑁  . 
 

1. Set 𝑚 =  0; this is the count of mistakes. 
2. For every word 𝑤𝑖  in the test data (𝑖 is its position): 

1. Feed 𝑤𝑖’s preceding context, which after the first few words will be the 
sequence by 𝑤 , 𝑤 , . . . , 𝑤 , into the language model as input. 1 2 𝑖−1

2. Let the language model predict the next word; call its prediction 𝑤pred. 

3. If 𝑤pred is anything other than 𝑤𝑖, the language model made an 

incorrect prediction, so add 1 to 𝑚. 
3. The error rate is 𝑚/𝑁. 

 

Perplexity, more formally 
 
Section 3.4 describes underlying properties of how LMs make “decisions” about 
next words. Here, to prepare for a deeper dive into perplexity, we summarize and 
build on those properties: 

• Based on the context of preceding words, a calculation is made by the 
neural network that assigns a probability to every word in the vocabulary, 
that is, every possible choice of what word could come next. These 
probabilities must always sum to one (that’s part of the definition of a 



probability distribution), and we also impose a “no zeros” rule: the 
probability of every vocabulary word must always be at least slightly 
positive. 

• To predict the next word, the model can either (a) choose the one with the 
highest probability (as assumed in the error rate calculation above) or (b) 
simulate a draw from the probability distribution, choosing a word at 
random such that each word’s chance of being drawn is given by its 
probability. To illustrate, imagine a pub trivia team where individual 
members have different past success rates of being correct. Approach (a) 
would correspond to the team always submitting the answer proposed by 
the trivia-whiz team member whose suggested answers had most often 
been correct before. Approach (b) would correspond to randomly picking 
who should answer, with the trivia whiz’s answer being most likely to be 
chosen, the second-best team member’s answer next most likely, then the 
third-best team member’s answer, and so on. Note that the most likely 
outcome from (b) is the same as the outcome from (a), but (b) will 
sometimes lead to another, lower-probability word. 

 
Whether (a), (b), or some other approach is used when an LM is deployed is an 
important design decision. In keeping with our earlier rejection of error rate, 
researchers try to avoid evaluating LMs in a way that makes unnecessary 
commitments to its eventual use.20

20 The technical term for our desired evaluation is “intrinsic” evaluation, meaning that we want 
a measure of the intrinsic quality of a model, not its performance in some extrinsic setting. 

 Option (b) is interesting because it suggests a 
workaround to the pitfalls of simply counting mistakes discussed in section 3.4. 
 
In the preceding appendix subsection’s error rate calculation procedure, we could 
apply option (b) in step 2.2. Suppose we do this not once, but many times for each 
context/word pair and average the error rate across these random draws. With 
enough draws, this approach would provide meaningful error rates because we’d 
expect to get each word right some of the time (no zeros rule). In practice, rather 
than actually carrying out the random draws, we instead use the LM’s 
probabilities directly to assign a score for every word in the test data. The results 
of this approach are that: 

• If the language model gave probability 1 to the correct next word, the score 
for that word would be 1. This can’t happen exactly because the 
probabilities of all the wrong words have to exceed zero (no zeros rule). But 

 



we can get arbitrarily close in principle if the probabilities of all the wrong 
words get infinitesimally small. 

• If the LM gave probability 0 to the correct next word, the score for that 
word would be 0. But this can’t happen either because of the no zeros rule. 

• In general, the greater the probability the LM assigns to the correct next 
word, even if it’s not the most probable word, the higher the score. 

 
Because of the no zeros rule, the per-word probability scores are always 
somewhere between 0 and 1. 
 
Given the test data, we can calculate the LM probability for every word given its 
preceding context. If we took a simple average of these probability scores and 
subtracted that from 1, we would get something like an error rate (technically, an 
“expected” error rate under prediction method (b)). What is done in practice is 
similar in spirit but slightly different: we take the geometric average of the 
inverses of these probability scores, a value known as (test data) perplexity. The 
reasons are partly practical (tiny numbers can lead to a problem in numerical 
calculations, called underflow), partly theoretical, and partly historical. For 
completeness, here’s the procedure: 
 

1. Set 𝑚 =  0. (This quantity is no longer a running tally of mistakes.) 
2. For every word 𝑤𝑖  in the test data (𝑖 is its position): 

1. Feed 𝑤𝑖’s preceding context, which after the first few words will be the 
sequence by 𝑤1, 𝑤2, . . . , 𝑤𝑖−1, into the language model as input. 

2. Let 𝑝 be the probability that the language model assigns to 𝑤𝑖  (the 
correct next word). 

3. Add −𝑙𝑜𝑔(𝑝)  to 𝑚. 
3. The perplexity is exp (𝑚/𝑁). 

 
Though it’s probably not very intuitive from the preceding procedure, perplexity 
does have some nice intuitive properties: 

• If our model perfectly predicted every word in the test data with probability 
1, we would get a perplexity of 1.21

21 To see this, note that −𝑙𝑜𝑔(1) = 0, so 𝑚 stays 0 throughout step 2. Note that 𝑒𝑥𝑝(0/𝑁)  =
 𝑒𝑥𝑝(0)  =  1. 

 This can’t happen because (1) there is 
some fundamental amount of uncertainty in fresh, unseen text data, and 
(2) some probability mass is reserved for every wrong word, too (no zeros 

 



rule). If perplexity comes very close to 1, the cardinal rule that test data 
must not be used for anything other than the final test, like training, should 
be carefully verified. 

• If our model ever assigned a probability of 0 to some word in the test data, 
perplexity would go to infinity.22

22 To see this, note that 𝑙𝑜𝑔(0) tends toward infinity. 

 This won’t happen because of the no zeros 
rule. 

• Lower perplexity is better. 

• The perplexity can be interpreted as an average “branch factor”; in a typical 
next word prediction instance, how many vocabulary words are 
“effectively” being considered? 
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