
Language Models: A Guide for the Perplexed
Sofia Serrano,∗ Zander Brumbaugh,∗ and Noah A. Smith∗†
∗Paul G. Allen School of Computer Science & Engineering, University of
Washington
†Allen Institute for Artificial Intelligence
{sofias6,brumbzan,nasmith}@cs.washington.edu

Table of Contents

1 Introduction ..3

2 Background: Natural language processing concepts and tools5

2.1 Taskification: Defining what we want a system to do6
2.1.1 Abstract vs. concrete system capabilities .. 7
2.1.2 We need data and an evaluation method for research progress on a task
 .. 8

2.2 A closer look at data: where it comes from and how it’s used 11
2.2.1 Differentiating training from test data .. 11
2.2.2 Creating a dataset from scratch... 13

2.3 Building an NLP system .. 14
2.3.1 Architectures: Neural networks ... 15
2.3.2 Choosing values for all the parameters: Minimizing a loss function 16
2.3.3 The hardware: Graphics processing units (GPUs) 18

3 The language modeling task .. 18

3.1 Language modeling as next word prediction .. 18

3.2 Why do we care about language modeling? ... 20

3.3 Data for language models: Some nuances .. 21

3.4 Evaluating LMs: Perplexity ... 23

3.5 Building language models .. 24

4 From LMs to large language models (LLMs) ... 26

4.1 The move towards more data .. 26

4.2 The architecture: Transformers .. 28

4.3 Impacts of these changes... 30
4.3.1 Many other tasks are now reduced to language modeling 30
4.3.2 Black boxes .. 31
4.3.3 Cost and complexity affect who can develop these models now 33
4.3.4 Adapting LLMs for use as products ... 33
4.3.5 Safeguards and mitigation ... 34
4.3.6 The evaluation crisis .. 35

4.4 Knowing the model means knowing its training data 36
4.4.1 What does LLMs’ training data contain? ... 37
4.4.2 A cautionary note about data quality .. 38

5 Practical points about using language models ... 38

5.1 Is the specific wording of the “prompt” I supply to an LM important? 39

5.2 Do I always have to check and verify model output, or can I simply “trust”
the result?... 39

5.2.1 Truthfulness vs. “hallucination”... 40
5.2.2 Model outputs that reflect social biases ... 41

5.3 Are language models intelligent? ... 43

6 Where is the development of language models headed? 46

6.1 Why is it difficult to make projections about the future of NLP
technologies? .. 46

6.2 What might AI regulation look like? ... 48
6.2.1 What versions of government AI regulation are emerging? 48

6.3 How can you contribute to a healthy AI landscape? 50

7 Final remarks ... 51

Acknowledgments .. 51

Glossary ... 52

References.. 59

Appendix .. 62

Loss functions and gradient descent, a bit more formally 62

Word error rate, more formally ... 63

Perplexity, more formally .. 63

1 Introduction

In late November 2022, OpenAI released a web-based chatbot, ChatGPT. Within a
few months, ChatGPT was reported to be the fastest-growing application in
history, gaining over 100 million users. Reports in the popular press touted
ChatGPT’s ability to engage in conversation, answer questions, play games, write
code, translate and summarize text, produce highly fluent content from a prompt,
and much more. New releases and competing products have followed, and there
has been extensive discussion about these new tools: How will they change the
nature of work? How should educators respond to the increased potential for
cheating in academic settings? How can we reduce or detect misinformation in
the output? What exactly does it take (in terms of engineering, computation, and
data) to build such a system? What principles should inform decisions about the
construction, deployment, and use of these tools?

Scholars of artificial intelligence, including ourselves, are baffled by this situation.
Some were taken aback at how quickly these tools went from being objects of
mostly academic interest to artifacts of mainstream popular culture. Some have
been surprised at the boldness of claims made about the technology and its
potential to lead to benefits and harms. The discussion about these new products
in public forums is often polarizing. When prompted conversationally, the fluency
of these systems’ output can be startling; their interactions with people are so
realistic that some have proclaimed the arrival of human-like intelligence in
machines, adding a strong emotional note to conversations that, not so long ago,
would have mostly addressed engineering practices or statistics.

Given the growing importance of AI literacy, we decided to write this tutorial to
help narrow the gap between the discourse among those who study language
models—the core technology underlying ChatGPT and similar products—and
those who are intrigued and want to learn more about them. In short, we believe
the perspective of researchers and educators can add some clarity to the public’s
understanding of the technologies beyond what’s currently available, which tends
to be either extremely technical or promotional material generated about
products by their purveyors.

Our approach teases apart the concept of a language model from products built
on them, from the behaviors attributed to or desired from those products, and
from claims about similarity to human cognition. As a starting point, we:

1. Offer a scientific viewpoint that focuses on questions amenable to study
through experimentation,

2. Situate language models as they are today in the context of the research
that led to their development, and

3. Describe the boundaries of what is known about the models at this writing.

Popular writing offers numerous, often thought-provoking metaphors for LMs,
including bureaucracies or markets (Henry Farrell and Cosma Shalizi), demons
(Leon Derczynski), and a “blurry JPEG” of the web (Ted Chiang). Rather than
offering a new metaphor, we aim to empower readers to make sense of the
discourse and contribute their own. Our position is that demystifying these new
technologies is a first step toward harnessing and democratizing their benefits and
guiding policy to protect from their harms.

LMs and their capabilities are only a part of the larger research program known as
artificial intelligence (AI). (They are often grouped together with technologies that
can produce other kinds of content, such as images, under the umbrella of
“generative AI.”) We believe they’re a strong starting point because they underlie
the ChatGPT product, which has had unprecedented reach, and also because of
the immense potential of natural language for communicating complex tasks to
machines. The emergence of LMs in popular discourse, and the way they have
captured the imagination of so many new users, reinforces our belief that the
language perspective is as good a place to start as any in understanding where this
technology is heading.

The guide proceeds in five parts. We first introduce concepts and tools from the
scientific/engineering field of natural language processing (NLP), most importantly
the notion of a “task” and its relationship to data (section 2). We next define
language modeling using these concepts (section 3). In short, language modeling
automates the prediction of the next word in a sequence, an idea that has been
around for decades. We then discuss the developments that led to the current so-
called “large” language models (LLMs), which appear to do much more than
merely predict the next word in a sequence (section 4). We next elaborate on the
current capabilities and behaviors of LMs, linking their predictions to the data

https://www.economist.com/by-invitation/2023/06/21/artificial-intelligence-is-a-familiar-looking-monster-say-henry-farrell-and-cosma-shalizi
https://interhumanagreement.substack.com/p/demons
https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web

used to build them (section 5). Finally, we take a cautious look at where these
technologies might be headed in the future (section 6). To overcome what could
be a terminology barrier to understanding admittedly challenging concepts, we
also include a Glossary of NLP and LM words/concepts (including “perplexity,”
wryly used in the title of this Guide).

2 Background: Natural language processing concepts and tools

Language models as they exist today are the result of research in various
disciplines, including information theory, machine learning, speech processing,
and natural language processing.1

1 A “natural language” is a language that developed naturally in a community, like Hawaiian or
Portuguese or American Sign Language. For the most part, NLP researchers focus on human
languages and specifically written forms of those languages. Most often, natural languages
contrast with programming languages like Python and C++, which are artifacts designed
deliberately with a goal in mind.

 This work’s authors belong to the community of
natural language processing (NLP) researchers, members of which have been
exploring the relationship between computers and natural languages since the
1960s.2

2 There are other uses of the “NLP” acronym with very different meanings. Ambiguous terms
and expressions are common in natural languages, and one of the challenges of the field of NLP.

 Two fundamental and related questions asked in this community are: “In
what ways can computers understand and use natural language?” and “To what
extent can the properties of natural languages be simulated computationally?”
The first question has been approached mainly by attempts to build computer
programs that show language-understanding and language-use behavior (such as
holding a conversation with a person); it is largely treated as an engineering
pursuit that depends heavily on advances in hardware. The second question
brings NLP into contact with the fields of linguistics, cognitive science, and
psychology. Here, language tends to be viewed through a scientific lens (seeking
to experimentally advance the construction of theories about natural language as
an observable phenomenon) or sometimes through a mathematical lens (seeking
formal proofs). Because these two questions are deeply interconnected, people
interested in either of them often converse and collaborate, and many are
interested in both questions.

We believe the concepts (ideas, terminology, and questions) and tools (problem-
solving methods) the NLP community uses in research are helpful in advancing

understanding of language models. They are familiar to many AI researchers and
practitioners, and similar ones have evolved in other communities (for example,
computer vision). If you have experience with computer programming, data
science, or the discrete math foundations of computer science, you may have
been exposed to these ideas before, but we don’t believe they are universally or
consistently taught in classes on those topics. Having a basic understanding of
them will help you to think like an NLP expert.

2.1 Taskification: Defining what we want a system to do

The first step in building a machine is deciding what we want the machine to do.
People who build power plants, transportation devices, or cooking appliances
work from a specification that spells out the inputs and outputs of the desired
system in great detail. It’s not enough to say that “the power plant must provide
electricity to all the homes in its town.” Engineers require a precise statement of
how many kiloWatt-hours are to be produced, the budget for building the plant,
environmental impacts expected, all the laws regulating the construction of plants
that are in effect to guarantee safety, and much more.

To take an example that’s much simpler and more relevant to building an NLP
system, consider a computer program (which is a “machine” in a very abstract
sense; we’ll also call it a “system”) that sorts a list of names alphabetically. This
task sounds simple, and computer science students would likely start thinking
about different procedures for sorting lists. There are, however, some details that
need to be addressed before we start writing code, such as:

• How will the names be input to the program, and what should the program
do with the output? (E.g., will the program run locally on a user’s laptop? Or
is there a web interface users will use to type in the input and then see the
output in their browser tab? Or will they upload/download files? If so, what
is the format for those files?)

• What set of characters will appear in the input, and what rules are we using
to order them? (E.g., how do we handle the apostrophe in a name like
“O’Donnell”? How should diacritic (accented) characters be handled? What
happens if some names are in Latin script and others in Arabic script?)

• Are there constraints on how much memory the program can use, or on
how quickly it needs to execute? If the input list is so long that the program
will violate those constraints, should the user get a failure message?

These may seem like tedious questions, but the more thoroughly we anticipate
the eventual use of the system we’re building, the better we can ensure it will
behave as desired across all possible cases.

Figure 1: Some tasks, like alphabetical name sorting, may seem very simple but
often raise detailed questions that must be addressed for a full specification.

2.1.1 Abstract vs. concrete system capabilities

When building an NLP system, the situation is no different than the name sorter,
except that it’s considerably harder to be precise. Consider some of the kinds of
capabilities the NLP community has been targeting in its sixty-year history:

• Translate text from one language to another

• Summarize one or more documents in a few paragraphs or in a structured
table

• Answer a question using information in one or more documents

• Engage in a conversation with a person and follow any instructions they give
Each of these high-level applications immediately raises a huge number of
questions, likely many more than for simpler applications like the name sorter,
because of the open-ended nature of natural language input (and output). Some
answers to those questions could lead an expert very quickly to the conclusion
that the desired system just isn’t possible yet or would be very expensive to build
with the best available methods. Researchers make progress on these challenging
problems by trying to define tasks, or versions of the application that abstract
away some details while making some simplifying assumptions.

For example, consider the translation of text from one language to another. Here
are some fairly conventional assumptions made in many translation research
projects:

• The input text will be in one of a small set of languages; it will be formatted
according to newspaper-like writing conventions. The same holds for the
output text.

• Text will be translated one sentence or relatively short segment of text at a
time.

• The whole segment will be available during translation (that is, translation
isn’t happening in “real time” as the input text is produced, as might be
required when subtitling a live broadcast).

It’s not hard to find research on automatic translation that makes different
assumptions from those above. A new system that works well and relies on fewer
assumptions is typically celebrated as a sign that the research community is
moving on to harder problems. For example, it’s only in the past few years that we
have made the leap from systems that support single input-to-output translations
to systems that support multiple input-to-output languages. We highlight that
there are always some narrowing assumptions, hopefully temporary, that make a
problem more precise and therefore more solvable.

We believe that many discussions about AI systems become more understandable
when we recognize the assumptions beneath a given system. There is a constant
tension between tasks that are more general/abstract, on which progress is more
impactful and exciting to researchers, and tasks that are more specific/concrete.
Solving a concrete, well-defined task may be extremely useful to someone, but
certain details of how that task is defined might keep progress on that task from
being useful to someone else. To increase the chances that work on a concrete
task will generalize to many others, it’s vital to have a real-world user community
engaged in the definition of that task.

2.1.2 We need data and an evaluation method for research progress on a task

The term “task” is generally used among researchers to refer to a specification of
certain components of an NLP system, most notably data and evaluation:

• Data: there is a set of realistic demonstrations of possible inputs paired
with their desirable outputs.

• Evaluation: there is a method for measuring, in a quantitative and
reproducible way, how well any system’s output matches the desired
output.

Considerable research activity focuses on building datasets and evaluation
methods for NLP research, and the two depend heavily on each other. Consider
again the translation example. Examples of translation between languages are
easy to find for some use cases. A classic example is parliamentary language
translated from English to French, or vice versa. The proceedings of the Canadian
Parliament are made available to the public in both English and French, so human
translators are constantly at work producing such demonstrations; paired bilingual
texts are often called “parallel text” in the research community. The European
Parliament does the same for multiple languages. Finding such data isn’t as easy
for some languages or pairs of languages, and as a result, there has been
considerably more progress on automated translation for European languages
than for others.

What about evaluation of translation? One way to evaluate how well a system
translates text is to take a demonstration, feed the input part to a system, and
then show a human judge the desired output and the system output. We can ask
the judge how faithful the system output is to the desired output. If the judge
speaks both languages, we can show them the input instead of the desired output
(or in addition to it) and ask the same question. We can also ask human judges to
look only at the system output and judge the fluency of the text. As you can
imagine, there are many possible variations, and the outcomes might depend on
exactly what questions we ask, how we word those questions, which judges we
recruit, how much they know about translation systems already, how well they
know the language(s), and whether and how much we pay them.

In 2002, to speed up translation evaluation in research work, researchers
introduced a fully automated way to evaluate translation quality called “Bleu”
scores (Papineni et al. 2002), and there have been many proposed alternatives
since then, with much discussion over how well these cheaper automatic methods
correlate with human judgments. One challenge for automatic evaluation of
translation is that natural languages offer many ways to say the same thing. In
general, reliably rating the quality of a translation could require recognizing all of
the alternatives because the system could (in principle) choose any of them.

We used translation as a running example precisely because these questions are
so contentious and potentially costly for this task. We’ll next consider a fairly

concrete task that’s much simpler: categorizing the overall tone of a movie review
(positive vs. negative), instantiating a more general problem known as sentiment
analysis. Here, researchers have collected demonstrations from movie review
websites that pair reviews with numerical ratings (e.g.„ one to five stars). If a
system takes a review as input and predicts the rating, we can easily check
whether the output exactly matches the actual rating given by the author, or we
could calculate the difference between the system and correct ratings. Here, the
collection of data is relatively easy, and the definition of system quality is fairly
uncontroversial: the fewer errors a system makes (or the smaller the difference
between the number of author stars and system-predicted stars), the higher the
system’s quality.

Note, however, that a system that does well on the movie review sentiment task
may not do so well on reviews of restaurants, electronics products, or novels. This
is because the language people use to say what they like or don’t like about a
movie won’t carry the same meaning in a different context. (If a reviewer says that
a movie “runs for a long time,” that isn’t as obviously positive as the same remark
about a battery-operated toothbrush, for example.) In general, knowing the scope
of the task and how a system was evaluated are crucial to understanding what we
can expect of a system in terms of its generalizability, or how well its performance
quality holds up as it’s used on inputs less and less like those it was originally
evaluated on. It’s also essential when we compare systems; if the evaluations use
different demonstrations or measure quality differently, a comparison won’t make
sense.

For most of its history, NLP has focused on research rather than development of
deployable systems. Recent interest in user-facing systems highlights a
longstanding tension in taskification and the dataset and evaluation requirements.
On one hand, researchers prefer to study more abstract tasks so that their findings
will be more generally applicable across many potential systems. The scientific
community will be more excited, for example, about improvements we can expect
will hold across translation systems for many language pairs (rather than one) or
across sentiment analysis systems for many kinds of reviews (rather than just
movies). On the other hand, there is near-term value in making a system that
people want to use because it solves a specific problem well, which requires being
more concrete about the intended users, their data, and meaningful evaluation.

There is yet another step between researching even fairly concrete tasks and
building usable systems. These are evaluated very differently. Evaluations in
research tend to focus on specific, narrowly defined capabilities, as exemplified in
a sample of data. It’s an often unstated assumption in research papers that
improved task performance will generalize to similar tasks, perhaps with some
degradation. The research community tends to share such assumptions, with the
exception of research specifically on generalization and robustness across
domains of data. Meanwhile, deployable systems tend to receive more rigorous
testing with intended users, at least to the extent that they are built by
organizations with an interest in pleasing those users. In deployment, “task
performance” is only part of what’s expected (systems must also be reasonably
fast, have intuitive user interfaces, pose little risk to users, and more).

People interested in NLP systems should be mindful of the gaps between (1)
high-level, aspirational capabilities, (2) their "taskified" versions that permit
measurable research progress, and (3) user-facing products. As research
advances, and due to the tension discussed above, the "tasks" and their
datasets and evaluation measures are always in flux.

2.2 A closer look at data: where it comes from and how it’s used

For the two task examples discussed above (translation and sentiment analysis
tasks), we noted that demonstrations (inputs with outputs) would be relatively
easy to find for some instances of the tasks. However, data might not always be so
easy to come by. The availability of data is a significant issue for two reasons:

• For most NLP applications, and most tasks that aim to approximate those
applications, there is no “easy” source of data. (Sentiment analysis for
movie reviews is so widely studied, we believe, because the data is
unusually easy to find, not because there is especially high demand for
automatic number-of-stars prediction.)

• The best known techniques for building systems require access to
substantial amounts of extra data to build the system, not just to evaluate
the quality of its output.

2.2.1 Differentiating training from test data

From here on, we refer to data used to build a system as training data and data
used to evaluate systems as test data. This distinction is extremely important for a
reason that’s easy to understand.

Figure 2: When data is split into training and test sets, it’s critical there is no
overlap between the two.

Consider a student who somehow gets a copy of the final exam for one of their
classes a few weeks before the exam. Regardless of how much the student is to
blame in accessing the test, regardless of whether they even knew the exam they
saw was the actual final exam, regardless of how honorably they behaved during
those weeks and during the test, if they get a high score, the instructor cannot
conclude that the student learned the material. The same holds true for an NLP
system. For the test data to be useful as an indicator of the quality of the system’s
output, it is necessary that the test data be “new” to the system. We consider this
the cardinal rule of experimentation in NLP: The test data cannot be used for any
purpose prior to the final test. Occasionally, someone will discover a case where
this rule was violated, and (regardless of the intent or awareness of those who
broke the rule) the conclusions of any research dependent on that case must be
treated as unreliable.

To get a sense of an NLP system’s actual quality, it is crucial that the system not
be evaluated on data it has seen during training.

2.2.2 Creating a dataset from scratch

Let’s consider a variant of the sentiment analysis problem that might emerge in a
high-stakes academic decision-making setting. Suppose we plan to build an NLP
system that reads recommendation letters for applicants to a university degree
program. The system should rate the sentiment of the recommender toward the
applicant. On the surface, this is similar to the movie review problem we
discussed previously. But this use case introduces some new challenges.

First, we are unlikely to find demonstrations that we could use to train or evaluate
a system.3

3 In NLP terms, finding and collecting such existing demonstrations would count as dataset
creation. “Creating a dataset” in NLP can refer to either creating of new text via expert
annotation or crowdsourcing, or collecting existing text into a more readily accessible form for
model developers, such as via web crawling or scraping.

 Recommendation letters are extremely private; those who write them
do so on the assumption that they will not be revealed to anyone who doesn’t
need to read them to assess the application. If we manage to find
recommendation letters on the public web, it’s likely that they either aren’t
supposed to be there (and are therefore unethical to use) or they’re synthetic
examples used to teach people how to write or evaluate recommendation letters
(and therefore artificial and probably different from actual letters in key practical
ways—remember that we need realistic demonstrations).

A second issue is that the information conveyed in a recommendation letter is
often complex, considering many aspects of a candidate’s performance and
potential. Mapping the letter down to a single number or category seems quite
challenging (if it were easy, we wouldn’t ask recommenders to write letters, we’d
only ask them to report the number or category). Finally, as anyone who has been
on an admissions or hiring committee knows, there is a great deal of subjectivity
in interpreting a recommendation letter. Different readers may draw different
conclusions about the prevailing signal in a single letter. Even if we overcome the
hurdle of finding letters to use, that’s only half of what we need because the
demonstrations need to include desired outputs as well as inputs.

Indeed, the tasks that researchers explore or system builders try to explore are
very often limited by the data that’s available. When the desired data (or anything
similar to it) is unavailable, it’s sometimes possible to create it. For example, to
automate sentiment analysis of social media messages about a particular much-
discussed public figure, we could hire people to do the task of labeling a sample of
messages, essentially demonstrating the desired behavior for our eventual
system. Labeling tweets about a politician might be relatively easy for someone
who speaks the language of the tweets and is familiar with the social context.

Some tasks, in contrast, require much more expertise. For example, to build a
system that answers questions about medical journal articles, we’d want the data
to be created by people who know how to read and understand such articles so
that the answers are accurate and grounded in article specifics. Of course, experts
will be more costly to employ for this work than non-experts. A major tradeoff in
the creation of datasets for NLP is between the inherent quality and diversity of
the demonstrations and the cost of producing them. We believe that high-quality
data is always essential for reliable evaluations (test data) and usually essential for
high performance on those evaluations (training data).

Collecting training data for most NLP tasks is quite difficult, and this often
impacts which possible NLP applications or problems are studied.

2.3 Building an NLP system

For almost a decade, and with a small number of exceptions, the dominant
approach to building an NLP system for a particular task has been based on
machine learning. Machine learning (ML) refers to a body of theoretical and
practical knowledge about data driven methods for solving problems that are
prohibitively costly for humans to solve. These methods change over time as new
discoveries are made, as different performance requirements are emphasized, and
as new hardware becomes available. A huge amount of tutorial content is already
available about machine learning methods, with new contributions following fast
on the heels of every new research advance. Here, we introduce a few key ideas
needed to navigate the current landscape.

The first concept is a parameter. A parameter is like a single knob attached to a
system: Turning the knob affects the behavior of the system, including how well it

performs on the desired task. To make this concrete, let’s consider an extremely
simple system for filtering spam emails. Due to budgetary constraints, this system
will have only one parameter. The system works as follows: it scans an incoming
email and increments a counter every time it encounters an “off-color” word (e.g.,
an instance of one of the seven words the comedian George Carlin claimed he
wasn’t allowed to say on television). If the count is too high, the email is sent to
the spam filter; otherwise, it goes to the inbox. How high is too high? We need a
threshold, and we need to set it appropriately. Too high, and nothing will get
filtered; too low, and too many messages may go to spam. The threshold is an
example of a parameter.

This example neatly divides system-building problem into two separate parts:

1. Deciding what parameters the system will have and how they will work. In
our spam example, the system and the role of the off-color word threshold
parameter are easy to explain. The term architecture (or model
architecture, to avoid confusion with hardware architecture) typically refers
to the decision about what parameters a model will have. For example,
picture a generic-looking black box with lots of knobs on it; the box has a
slot on one side for inputs and a slot on the other side for outputs. The
“architecture” of that model refers to the number of knobs, how they’re
arranged on the box, and how their settings affect what occurs inside the
box when it turns an input into an output.

2. Setting parameter values. This corresponds to determining what value each
individual knob on the box is turned to. While we likely have an intuition
about how to set the parameter in the spam example, the value that works
the best is probably best determined via experimentation.

We now walk through how ML works in more detail and introduce some
components you’ll likely hear about if you follow NLP developments.

2.3.1 Architectures: Neural networks

Today, the vast majority of architectures are neural networks (sometimes called
artificial neural networks to differentiate them from biological ones). For our
purposes, it’s not important to understand what makes neural networks special as
a category of architectures. However, we should know that their main properties
include (1) large numbers of parameters (at this writing, trillions) and (2) being

differentiable4

4 We are referring to the concept from calculus. If a function is “differentiable” with respect to
some numbers it uses, then calculus gives us the ability to calculate which small changes to
those variables would result in the biggest change to the function.

 functions with respect to those parameters: addition, subtraction,
exponentiation, trigonometric functions, etc., and combinations of them. A
general observation about neural network architectures (but not a necessary or
defining property) is that the relationship between their numerical calculations
and the task-solving behavior of a model (after its parameters are set) is not
explainable to human observers. This is why they are associated with the
metaphor of a black box (whose internal components can’t be observed or easily
understood).

2.3.2 Choosing values for all the parameters: Minimizing a loss function

In order to work well, a neural network needs to have its parameters set to useful
values (i.e., values that will work well together to mathematically transform each
input into an output close to the input’s correct answer). But how do we choose
parameters’ values when we have so many we need to decide? In this section, we
describe the general strategy that we use in NLP.

Imagine yourself in the following (admittedly not recommended) scenario. At
night, and with no GPS or source of light on you, you are dropped in a random
location somewhere over the Cascade Range in Washington State with the
instructions to find the deepest valley you can (without just waiting for morning).
You move your feet to estimate the steepest downward direction. You take a
small, careful step in that direction and repeat until you seem to be in a flat place
where there’s no direction that seems to take you farther downward.

Machine learning (and, by extension, NLP) views the setting of parameter values
as a problem of numerical optimization, which has been widely studied for many
years by mathematicians, statisticians, engineers, and computer scientists. One of
the tools of machine learning is an automated procedure that frames the
parameter value-setting problem like that terrifying hike. Recall that we said that
neural networks need to be differentiable with respect to their parameters— that
is, they need to be set up to allow calculus to tell us which tiny change to each
parameter will result in the steepest change of something calculated using the
neural network’s output. In our nighttime hike scenario, at each step, we make a

tiny adjustment to our north-south and east-west coordinates (i.e., position on the
map). To adjust the parameters of our neural network, we will consider our
current set of parameters our “coordinates” and likewise repeatedly make tiny
adjustments to our current coordinates. But what does it mean to move “down” in
this context? Ideally, moving “down” should correspond to our neural network
producing outputs that better match our data. How can we define a function—our
“landscape”— such that this is true?

A loss function is designed for precisely this purpose: to be lower when a neural
network performs better. In short, a loss function evaluates how well a model’s
output resembles a set of target values (our training data), with a higher “loss”
signifying a higher error between the two. The more dissimilar the correct output
is from the model’s produced output, the higher the loss value should be; if they
match, it should return zero. This means a loss function should ideally be closely
aligned to our evaluation method.5

5 You can think of a loss function as a stern, reserved teacher grading a student’s work. The
student (the model whose parameters we want to set) is given an exam question (an input to

the model) and produces an answer. The teacher mechanically compares the question’s correct

answer to the student’s answer, and then reports how many points have been deducted for

mistakes. When the student gets the answer perfectly right, the loss will be zero; no points are

deducted. We discuss some additional mathematical details of loss functions in the appendix.

By performing the following procedure, we are able to train a neural-network-
based model:

1. We use a loss function to define our landscape for our model’s nighttime
hike based on our training inputs and outputs,

2. we make a small adjustment to each of our coordinates (model parameters)
to move “down” that landscape towards closer matches between our
model’s outputs and the correct ones, and

3. we repeat step 2 until we can’t make our model’s outputs any more similar
to the correct ones.

This method is known as (stochastic) gradient descent (SGD), since the direction
that calculus gives us for each parameter is known as the “gradient.”

Leaving aside some important details (for example, how to efficiently calculate the
gradients using calculus, working out precisely when to stop, exactly how much to

change the parameter values in step 3, and some tricks that make the algorithm
more stable), this method has proven effective for choosing parameter values in
modern model architectures and in their predecessors.

2.3.3 The hardware: Graphics processing units (GPUs)

For over a decade, graphics processing units (GPUs) have been the main type of
hardware used to train NLP models based on neural networks. This may seem
counterintuitive (since it’s language we’re processing here, not graphics).
However, GPUs are effective for doing many matrix and vector calculations in
parallel, and successful neural network architectures have used these parallel
calculations to perform input-to-output mapping quickly (since stochastic gradient
descent requires that mapping to be performed many many times during
training). Indeed, the realization that neural networks were well-suited to train on
GPUs proved to be crucial to their widespread adoption.

3 The language modeling task

Section 2 introduced some NLP concepts and tools, including the idea of
encapsulating a desired application into a “task,” the importance of datasets, and
a high-level tour of how systems learn to perform a task using data. Here, we turn
to language modeling, a specific task.

3.1 Language modeling as next word prediction

The language modeling task is remarkably simple in its definition, in the data it
requires, and in its evaluation. Essentially, its goal is to predict the next word in a
sequence (the output) given the sequence of preceding words (the input, often
called the “context” or “preceding context”). For example, if we ask you to come
up with an idea of which word might come next in a sentence in progress—say,
“This document is about Natural Language ____”—you’re mentally performing
the language modeling task. The real-world application that should come to mind
is some variation on an auto-complete function, which at this writing is available
in many text messaging, email, and word processing applications.

Language modeling was for several decades a core component in systems for
speech recognition and text translation. Recently, it has been deployed for broad-
purpose conversational chat, as in the various GPT products from OpenAI, where a
sequence of “next” words is predicted as a sequential response to a natural
language prompt from a user.

Figure 3: Next word prediction samples a word from the language model’s guess
of what comes next at each time step.

What would make it possible to achieve high accuracy at predicting the next word
across many contexts? At a fundamental level, natural language is predictable
because it is highly structured. People unconsciously follow many rules when they
use language (e.g., English speakers mostly utter verbs that agree with their
subjects sometime after those subjects, and they place adjectives before the
nouns whose meaning they modify). Also, much of our communication is about
predictable, everyday things (consider how frequently you engage in small talk).

As an NLP task, language modeling easily checks the two critical boxes we
discussed in section 2: data and evaluation. LMs need only text; every word in a
large collection of text naturally comes with the preceding context of words.
When we say “only text,” we mean specifically that we don’t need any kind of
label to go with pieces of text (like the star ratings used in sentiment analysis
tasks, or the human-written translations used in translation tasks). The text itself
is comprised of inputs and outputs. Because people produce text and share it in
publicly visible forums all the time, the amount of text available (at least in
principle, ignoring matters of usage rights) is extremely large. The problem of
fresh, previously unseen test data is also neatly solved because new text is created
every day, reflecting new events and conversations in the world that are reliably
different from those that came before. There is also a relatively non-controversial
evaluation of LMs that requires no human expertise or labor, a more technical
topic that we return to in section 3.4.

3.2 Why do we care about language modeling?

We have thus far established what the language modeling task is. However, we
haven’t explained why this task is worth working on. Why do we bother building a
model that can predict the next word given the words that have come before? If
you already make use of auto-complete systems, you have an initial answer to this
question. But there are more reasons.

For many years, NLP researchers and practitioners believed that a good language
model was useful only for estimating fluency. To illustrate this, imagine a language
model faced with guessing possible continuations for a partial sentence like “The
dog ate the ____” or “Later that afternoon, I went to a ____.” As English speakers,
we share a pretty strong sense that the following word is likely to be either a noun
or part of a descriptor preceding a noun. Likewise, if we have a good language
model for this type of English, that model will have needed to implicitly learn
those kinds of fluency-related rules to perform the language modeling task well.
This is why LMs have historically been incorporated as a component in larger NLP
systems, such as machine translation systems; by taking their predictions (at least
partially) into account, the larger system is more likely to produce more fluent
output.

In more recent years, our understanding of the value of LMs has evolved
substantially. In addition to promoting fluency, a sufficiently powerful language
model can implicitly learn a variety of world knowledge. Consider continuations to
the following partial sentences: “The Declaration of Independence was signed by
the Second Continental Congress in the year ____,” or “When the boy received a
birthday gift from his friends, he felt ____.” While there are any number of fluent
continuations to those sentences—say, “1501” or “that the American Civil War
broke out” for the first, or “angry” or “like going to sleep” for the second—you
likely thought of “1776” as the continuation for the first sentence and a word like
“happy” or “excited” for the second. Why? It is likely because you were engaging
your knowledge of facts about history as well as your common sense about how
human beings react in certain situations. This implies that to produce those
continuations, an LM would need at least a rudimentary version of this
information.

To do a good job of guessing the continuations of text, past a certain point, an
LM must have absorbed some additional kinds of information to progress
beyond simple forms of fluency.

NLP researchers got an early glimpse of this argument in Peters et al. (2018). This
paper reported that systems that trained an LM first as an early stage of building
systems for varied tasks, ranging from determining the answer to a question based
on a given paragraph to determining which earlier entity a particular pronoun was
referencing, far outperformed their analogous versions that weren’t informed by
an LM (as measured by task-specific definitions of quality). This finding led to
widespread researcher acceptance of the power of “pretraining” a model to
perform language modeling and then “finetuning” it (using its pretrained
parameters as a starting point) to perform a non-language-modeling task of
interest, which also generally improved end-task performance.

It shouldn’t be too surprising that LMs can perform well at filling in the blanks or
answering questions when the correct answers are in the training data. For a new
task, it seems that the more similar its inputs and outputs are to examples in the
pretraining data, the better the LM will perform on that task.

3.3 Data for language models: Some nuances

There are two important caveats to our earlier claim that collecting data for a
language model is “easy.” First, because there is a massive amount of text
available on the internet which could be downloaded and used to build or
evaluate LMs, at least for research purposes, a language model builder must
decide which data to include or exclude. Typical sources of data include news
articles, books, Wikipedia, and other web text that is likely to be carefully edited
to conform to professional writing conventions. Some LMs include more casual
text from social media websites or online forums, or more specialized language
from scientific texts. While researchers have generally considered training
language models on publicly available text data to be covered by fair use doctrine,
the relationship between copyright protections and language model practices is
not fully settled; we discuss this further in section 6.2.1.

A major decision is whether to filter texts to only certain languages.6

6 The problem of assigning a language identifier to a text (e.g., is it English, Spanish, etc.?)
constitutes another family of NLP tasks. It’s a useful exercise to consider how to select the set of
language names to use as labels for language identification, e.g.,which dialects of a language are
separate from each other and should receive different labels?

 Depending
on the community of users one intends the LM to serve, it may be preferable to
filter text on certain topics (e.g., erotica) or text likely to contain offensive content
or misinformation. Today’s LM datasets are too large for a person to read in a
single lifetime, so automated tools are employed to curate data. The implications
of these decisions are a major topic for current research, and we return to them in
section 4.4.1.

The other caveat is a more technical one: what counts as a “word”? For languages
with writing systems that use whitespace to separate words, like English, this is
not a very interesting question. For writing systems with less whitespace between
words (e.g., Chinese characters), segmentation into words could be a matter of
choosing an arbitrary convention to follow or of adopting one of many competing
linguistic theories. Today, LMs are often built on text from more than one natural
language as well as programming language code. The dominant approach to
defining where every word in the data starts and ends is to apply a fully
automated solution to create a vocabulary (set of words the language model will
recognize as such) that is extremely robust (i.e., it will always be able to break a
text into words according to its definition of words). The approach (Sennrich,
Haddow, and Birch 2016) can be summed up quite simply:

• Any single character is a word in the vocabulary. This means that the LM can
handle any entirely new sequence of characters by default by treating it as a
sequence of single-character words.

• The most frequently occurring two-word sequence is added to the
vocabulary as a new word. This rule is applied repeatedly until a target
vocabulary size is reached.

This data-driven approach to building a language modeling vocabulary is effective
and ensures that common words in the LM’s training data are added to its
vocabulary. Other, rarer words will be represented as a sequence of word pieces in
the model’s vocabulary (similarly to how you might sound out an unfamiliar word
and break it down into pieces you’ve seen before). However, note that a lot
depends on the data through the calculation of what two-word sequence is most

frequent in that data at each step. Unsurprisingly, if the dataset used to build the
vocabulary includes little or no text from a language (or a sub-language), words in
that language will get “chopped up” into longer sequences of short vocabulary
words (some a single character), which has been shown to affect how well the LM
performs on text in that language.

3.4 Evaluating LMs: Perplexity

We mentioned earlier that the language modeling task has a straightforward
evaluation method. At first, we might think that a “good” language model has a
low word error rate: when it guesses the next word in a sequence, it should
seldom predict the wrong word. (A “wrong word” here means anything other than
the actual next word in the test data sequence.)7

7 We give a formal mathematical definition of word error rate in the appendix

LMs have generally not used the error rate to evaluate LM quality for two reasons.
First, applications sometimes predict a few options for the next word; perhaps it’s
just as good to rank the correct next word second or third as it is to rank it first.
The error rate could be modified to count as mistakes only the cases where the
correct word is ranked below that cutoff. But how long the list should be is a
question for application designers and moves the task definition in a more
specialized/concrete direction, perhaps unnecessarily. Second, at least earlier in
the history of language modeling, most systems weren’t good enough at
predicting the next word to have error rates that weren’t extremely high. If all LMs
achieve error rates close to one, the error rate measurement isn’t very helpful for
comparing them.

The evaluation method that is typically used for LMs avoids both of these issues.
This method is known as perplexity, and can be considered a measure of an LM’s
“surprise” as expressed through its outputs in next word prediction. Perplexity
manages to work around the problems we’ve described by taking advantage of
how LMs decide on a next word in practice.

When an LM produces a next word, that next word is in reality a somewhat
processed version of that LM’s actual output. What the LM actually produces
given some input text is a probability distribution over its vocabulary for which

.

word comes next. In other words, for every possible next word in its vocabulary,
the LM generates a number between 0 and 1 representing its estimate of how
likely that word is as the continuation for the input text.8

8 Because this is a probability distribution, all those numbers must add up to 1, and in practice,
LMs always set their probabilities to numbers strictly greater than 0.

Rather than evaluating an LM based on however an application developer chooses
to process those probability distributions into next words (whether by sampling,
or by choosing the word with the highest estimated likelihood, or something else),
perplexity instead directly evaluates the probability distributions produced by the
LM. Given a test set of text, perplexity examines how high the LM’s probabilities
are for the true observed next words overall, averaged over each word in the text-
in-progress. The higher that LM’s average probability for the true words is, the
lower the LM’s perplexity (corresponding to the LM being less “surprised” by the
actual continuations of the text).9

9 For those interested, we walk through the mathematics underlying the definition of perplexity
in the appendix

Like any evaluation method, perplexity depends heavily on the test data. In
general, the more similar the training and test data, the lower we should expect
the text data perplexity to be. And if we accidentally break the cardinal rule and
test on data that was included in the training data, we should expect extremely
low perplexity (possibly approaching 1, which is the lowest possible value of
perplexity, if the model were powerful enough to memorize long sequences it has
seen in training).

Finally, it’s worth considering when perplexity seems “too” low. The idea that
there is some limit to this predictability, that there is always some uncertainty
about what the next word will be, is an old one (Shannon 1951), motivating much
reflection on (1) how much uncertainty there actually is, and (2) what very low
perplexity on language modeling implies. Some have even suggested that strong
language modeling performance is indicative of artificially intelligent behavior.
(We return to this question in section 5.)

3.5 Building language models

.

Given the tools from section 2 and our presentation of the language modeling
task, it’s straightforward to describe how today’s best LMs are built:

1. Acquire a substantial amount of diverse training data (text), filtering to what
you believe will be high quality for your eventual application. Set aside
some data as the test data.

2. Build a vocabulary from the training data.
3. Train a model with learnable parameters to minimize perplexity on the

training data using a variant of stochastic gradient descent.
4. Evaluate the perplexity of the resulting language model on the test set. In

general, it should be very possible to evaluate the LM on another test set
because (1) we can check that the new proposed test data doesn’t overlap
with the training data, and (2) the vocabulary is designed to allow any new
text to be broken into words.

The third step reveals another attractive property of perplexity: it can serve as a
loss function because it is differentiable with respect to the model’s parameters.10

10 In practice, the loss function is usually the logarithm of perplexity, a quantity known as cross-
entropy.

Note the difference between training set perplexity (calculated using training
data) and test set perplexity calculated in the last step.11

11 One common question about language models is why they sometimes “hallucinate”
information that isn’t true. The fact that next word prediction is the training objective used for
these models helps to explain this. The closest an LM comes to encoding a “fact” is through its
parameters’ encoding of which kinds of words tend to follow from a partially written sequence.
Sometimes, the context an LM is prompted with is sufficient to surface facts from its training
data. (Imagine our example from earlier: “The Declaration of Independence was signed by the
Second Continental Congress in the year ____.” If an LM fills in the year “1776” after being given
the rest of the sentence as context, that fact has been successfully surfaced.) Other times,
however, it’s not, and we just get a fluent-sounding next word prediction that’s not actually
true, or a “hallucination.”

The preceding process is how some well-known models, like GPT-2, GPT-3, and
LLaMA, were built, and it’s the first step to building more recent models like
ChatGPT and GPT-4. These newer models have been further trained on additional
kinds of data (which is less “easy” to obtain than the text we use for next word
prediction). We return to this topic in section 4.3.4.

4 From LMs to large language models (LLMs)

Everything we’ve described thus far has been established for over a decade, and
some concepts much longer. Why have language models become a topic of
mainstream public conversation only recently?

Recall that a longstanding use of LMs was to estimate the fluency of a piece of text
(3.2), especially to help text-generating systems produce more fluent output. Only
since around 2020 have LMs been producing highly fluent output on their own,
that is, without incorporating some other components. At this writing, you could
observe something like the text generation performance of older LMs by looking
at the autocomplete functions in messaging applications on smartphones. If you
have one of these on hand, try starting a sentence and then finishing the sentence
by picking one of the most likely next words the autocomplete program suggests.
You’re likely to notice that while the short-term continuations to the sentence are
reasonable, the text quickly devolves into moderately fluent incoherence, nothing
like text produced by state-of-the-art web-based products.

Having established the foundations—the language modeling task and the basic
strategy for building a language model—we’ll now consider the factors that have
recently transformed the mostly academic language models of the last decade
into the so-called large language models (LLMs) of today.

4.1 The move towards more data

This is not a history book, but there is one obvious lesson to be learned from the
history of NLP: more training data helps make higher quality models. One period
of major changes in the field occurred in the late 1980s and 1990s when three
trends converged almost concurrently:

1. Increasingly large collections of naturalistic, digital text data became easier
to access by growing numbers of researchers thanks to the rise of the
internet and the world-wide web.

2. Researchers shifted from defining rules for solving NLP tasks to using
statistical methods that depend on data. This trend came about in part due
to interaction with the speech processing community, which began using
data-driven methods even earlier.

3. Tasks, as we described them above, became more mature and standardized,
allowing more rigorous experimental comparisons among methods for
building systems. This trend was driven in part by government investment
in advancing NLP technology, which in turn created pressure for
quantitative measures of progress.

During the 1990s and 2000s, the speed of progress was higher for tasks where the
amount of available training data increased the fastest. Examples include topic
classification and translation among English, French, German, and a few other
languages. New tasks emerged for which data was easy to get, like sentiment
analysis for movies and products sold and reviewed online. Meanwhile, progress
on tasks where data was more difficult to obtain (such as long text summarization,
natural language interfaces to structured databases, or translation for language
pairs with less available data) was slower. In particular, progress on NLP for English
tasks was faster than for other languages, especially those with relatively little
available data.

The recognition that more data tends to help make better systems generates a lot
of enthusiasm, but we feel obliged to offer three cautionary notes. First, easily
available data for a task doesn’t make that task inherently worth working on. For
example, it’s very easy to collect news stories in English. Because the style of
many English-language newspapers puts the most important information in the
first paragraph, it’s very easy to extract a decent short summary for each story,
and we now have a substantial number of demonstrations for an English-language
news summarizer. However, if readers of the news already know that the first
paragraph of a news story is usually a summary, why build such a system? We
should certainly not expect a system built on news summarization task data to
carry over well to tasks that require summarizing scientific papers, books, or laws.

The second cautionary note is that the lack of easy data for a task doesn’t mean
the task isn’t worth solving. Consider a relatively isolated community of people
who have more recently gained access to the internet. If they do not speak any of
the dominant languages on the internet, they may be unable to make much use of
that access. The relative absence of this community’s language from the web is
one reason that NLP technology will lag behind for them. This inequity is one of
the drawbacks of data-driven NLP.

The third cautionary note is that data isn’t the only factor in advancing NLP
capabilities. We already mentioned evaluation methods. But there are also
algorithms and hardware, both of which have changed radically over the history of
NLP. We won’t go into great detail on these technical components here, but we
note that the suitability of an algorithm or a hardware choice for an NLP task
depends heavily on the quality and quantity of training data. People often use the
term “scale” to talk about the challenges and opportunities associated with very
large training datasets. As early as 1993, researchers were claiming that “more
data is always better data” (Church and Mercer 1993). We would add that which
algorithms or computers are better for building a system that performs a task
depends highly on the availability of appropriate data for that task, whether high
or low or in between. And indeed, as it turns out, the second factor we now
mention falls into the category of a change in algorithm: a change in model
architecture.

4.2 The architecture: Transformers

Not long ago, students of NLP would be introduced to a wide range of different
architectures. One would likely hear about the relative merits of each and learn
what particular kinds of problems it was well suited to solve. From year to year,
new ones would be added, sometimes replacing those no longer deemed optimal
in any setting. Today, these diverse architectures have virtually all been replaced
by a single architecture called the transformer, whimsically named after a brand
of 1980s robot toys, proposed by Vaswani et al. (2017).

The transformer, a type of neural network, was introduced by researchers at
Google for machine translation tasks. Though we won’t go into detail about how it
works, its design was inspired by earlier developments in neural networks, and it
was primarily optimized to allow the GPU-based simultaneous processing of all
parts of even long input texts instead of word-by-word processing. Earlier
architectures were largely abandoned12

12 They were not totally abandoned, however, and are still used occasionally when datasets are
small.

 because they didn’t effectively use GPUs
and could not process large datasets as quickly.

It didn’t take long for researchers to realize that the transformer would allow for
training models more quickly and/or on more data, as well as training much larger

models than other architectures ever allowed. By “larger models,” we mean
models with more parameters. These three elements—larger datasets, faster
hardware, and larger models—all depend on each other. For example, a larger
model could better encode patterns in the training data, but without faster
hardware, training such a model may be infeasible. And if the model is trained on
an insufficient sample of data, it may not generalize well.13

13 At its extreme, this phenomenon, known as “overfitting,” leads to models that “memorize”
what they see in the training data but perform poorly on new data, e.g., the test data.

 Conversely, a
substantial dataset may require a larger model (more parameters) to encode the
larger set of discoverable patterns in the data. Indeed, there is a fundamental
tradeoff when selecting architectures: too few parameters, and the architecture
will be limited in what input-output mappings it can learn, no matter how much
training data is used. Too many parameters (i.e., too large a model), and the
model might overfit.

The simultaneous, rapid increase in datasets and parameter counts, aided by
improved hardware, affected computer vision before affecting NLP. In fact, the
term “deep learning” was originally a reference to these larger models (“deep”
refers to models with increasing numbers of “layers” in the architecture, where
layers are iterations of repeated calculations with different parameters at each
round). The “deepening” of transformers applied to the language modeling task
led to what are now called “large language models.” “Large” usually refers to the
parameter count, but it could also refer to the size of the training dataset.

The models in wide use for NLP today have billions of parameters; older
generations of OpenAI models increased from sizes of over a billion parameters
with the largest version of GPT-2 to 175 billion parameters with GPT-3. The main
drawback is that running their training algorithms on large datasets requires very
many GPUs working in parallel for a long time, which in turn requires a lot of
energy. From the perspective of improving the quality of generated text (in
perplexity but also subjective human judgments), these LLMs represent a major
advance.

From a scientific perspective, it’s difficult to assess which of these changes—data
size, number of parameters, architecture, etc.—matter the most. Larger models
are more data-hungry; over the last few years, models have gone from training on
datasets with millions of words to trillions of words. While some work, such as

that by Hoffmann et al. (2022), tried to disentangle the impacts of model scale
and data scale, the additional influence of yet other factors (like hyperparameters
on a training run) complicates efforts to confidently draw conclusions from such
research. These experiments require the repeated training of models that are
estimated to cost millions of dollars apiece. In addition, it would take far too long
to train fairly matched models based on previously popular, pre-transformer
architectures (i.e., with similar parameter counts on similar amounts of data to
the strongest models of today); this means that it’s impossible to measure how
much benefit the transformer offers other than allowing for larger models.

It’s important to recognize that larger datasets and more powerful hardware
were the drivers for the scaling up of language models to architectures with
hundreds of billions of parameters (at this writing), and that the parameter
count is only part of the explanation for the impressive behaviors of these
models.

4.3 Impacts of these changes

What was the impact of LLMs? In short, they caused language modeling
performance to improve dramatically. To see this qualitatively for yourself, try
typing out the beginning of a sentence and instruct a language model like
ChatGPT to complete that sentence. Chances are, you will immediately see a
sentence that reads much more naturally than you saw generated by a simpler
autocomplete system at the beginning of this section. Many people have shared
this subjective experience of more fluent text generation, and it is backed up by
quantitative evaluations like perplexity. However, if that were their only
contribution, LLMs probably wouldn’t have entered the public consciousness.

4.3.1 Many other tasks are now reduced to language modeling

We previously mentioned in section 3.2 that LMs could inform NLP systems
designed for other tasks. LLMs are accelerating this trend. By formulating task
instructions in natural language, perhaps also providing additional specific
examples of what it would look like to successfully perform the task (inputs and
outputs), and then supplying that text as the context on which a LLM conditions
when choosing next words as continuations, we see very reasonable outputs for a
broad range of such tasks (e.g., generating summaries and answering questions).

As we discussed in section 3.2, many techniques built on the pretraining-
finetuning approach transferred strong language model performance to other
tasks. But the extent to which LLMs became the full model pipeline, i.e., with no
task-specific finetuning needed for particular tasks, was striking.14

14 The idea of prompting a model with a small number of examples came to be known as “in-
context learning.” Considerable effort has gone into engineering prompts for better task
performance and into finetuning LMs to follow instructions describing widely varied tasks. Such
instruction finetuning has become a widely used second stage of training for commercial LM
products. Note that it requires a dataset of instructions paired with the desired response an LM
should give to each.

 Importantly,
remember that part of the definition of a task is an evaluation method; the
striking observation is that, as language models achieve lower perplexity, they also
achieve better performance on many other tasks’ own evaluations.

For example, we previously described translation between languages and
sentiment analysis as two broad categories of NLP applications. Today’s LLMs can
often perform those tasks given context instructions and/or examples — i.e., they
are “prompted” to do so. For example, consider a context like “Translate this
sentence into French: We’d like another bottle of wine.” If an LLM has seen
enough text that includes requests/responses, text in the relevant languages, and
parallel examples, it could produce the translation. (Indeed, OpenAI’s ChatGPT
system gave us a fairly reasonable “Nous aimerions une autre bouteille de vin.”
Similarly, the prompt “Is the sentiment toward the movie positive or negative?
This film made me laugh, but only because it was so poorly executed.” led
ChatGPT to output that the sentiment was negative.)

This ease of transferability has made it much simpler for a wider variety of people,
including non-researchers, to explore NLP capabilities. Often, it is no longer
necessary to collect training data and build a specialized model for a task. We can
say what we want in natural language to prompt an LLM, and we will often get
output close to what we intended. People, including experts and non-experts, are
now using LLMs for many purposes, including many not originally formalized as
NLP tasks.

4.3.2 Black boxes

Modern transformers are considered to be “black boxes” with befuddling
numbers of parameter-knobs to turn, and to our knowledge, no one has
particularly useful intuition about how to set any particular knob. This situation
seems daunting, like sitting in a cockpit with thousands of knobs and controls and
being told to fly the plane with no training. Indeed, it’s only because of the
increasing computational power of commercially available computers that we can
solve problems this way today, but this still leaves us without a sense of the kinds
of information models have learned to leverage, or how.

Both the transformer architecture and the stochastic gradient descent method
used to set its parameters are mystifying, at least at first. Below, we reflect on that
and note important differences that make an architecture like the transformer
more inscrutable.

Stochastic gradient descent, the algorithm used to train transformers and other
neural networks, has been extensively studied and is very well understood for
some kinds of problems. Picture a smooth bowl and imagine a marble placed
anywhere in it. That marble will roll and eventually settle at the lowest point. If
the dish were sitting on a piece of graph paper (a two-dimensional plane), the
coordinates of that lowest point are the values of our two parameters that
minimize the loss function. Stochastic gradient descent is, roughly speaking, doing
the work of gravity. The simple curve of the dish, with no bumps or cutouts or
chips, corresponds to the property of convexity. Some machine learning problems
correspond to a convex loss function, and theoretical proofs support the existence
of the best parameter values, how close SGD gets to them, and how fast. What
remains surprising is that SGD works well in practice even when the loss function
is not convex (like the Cascades, discussed in section 2.3.2). But the mathematics
underlying this algorithm are relatively mature.

The transformer architecture, only a few years old at this writing, remains
mysterious. Some researchers have sought to prove theorems about its limitations
(i.e., input-output mappings it cannot represent under some conditions), and
more have run experiments to try to characterize what it learns from data in
practice. More research is clearly needed, both to improve our understanding of
what we can expect from this architecture and to help define new architectures
that work better or for which parameter setting is less computationally expensive.

4.3.3 Cost and complexity affect who can develop these models now

Yet another effect of the move to LLMs has been that a much smaller set of
organizations can afford to produce such models. Since large, well-funded tech
companies are (almost exclusively) well positioned to train LLMs due to their
access to both data and specialized hardware, these companies are the sources
for almost all current LLMs. This poses a barrier to entry for many researchers at
other institutions. Given the wide array of different communities that could
benefit from using these models, the many different purposes they might envision
for these models, and the vast diversity of language varieties that they represent,
determining ways to broaden participation in LLM development is an important
emerging challenge.

Furthermore, when models were smaller, the idea of “running out” of web text on
the public internet seemed ludicrous; now, that’s a looming concern for LLM
developers. As massive datasets play an increasingly large role in model training,
some large companies’ access to their own massive proprietary data associated
with platforms they maintain may give them an advantage in their development of
models of text.

4.3.4 Adapting LLMs for use as products

Because of the capabilities of these new models, many developers seek to
integrate them into a wide array of products and services, from helping software
engineers write code to helping lawyers write briefs. This echoes a longstanding
practice of incorporating LMs into parts of standalone products with commercial
purposes, such as guiding a translation system to produce more fluent text in the
output language. As LLMs gained broader exposure (and, we conjecture, with
increased internal testing at the companies where they were built), it became
clear that additional adjustments were needed before deploying these models in
products.

We relate some of the more concerning issues that emerge in LLM-generated text
in section 5. For now, consider the concrete possibility that an LLM would
generate text that is fluent, but impolite or even obscene. How can this be
prevented? Enforcing conventions of social acceptability is a difficult problem that
many researchers have tackled. Proposed methods can vary from post-processing

outputs (e.g., to screen out outputs that include certain dispreferred words) to
reranking sampled outputs using an auxiliary model specifically trained on curated
data to exhibit politeness. It is difficult to “taskify” social acceptability because it is
context-dependent and extremely subjective.

The notion of “alignment,” often used today for this class of problems, was
introduced by Norbert Wiener: “If we use, to achieve our purposes, a mechanical
agency with whose operation we cannot efficiently interfere… then we had better
be quite sure that the purpose put into the machine is the purpose which we
really desire” (Wiener 1960). This idea comes through today in research on using
machine learning to alter LM behaviors directly.

In practice, commercial models are further trained on tasks designed to encourage
instruction following (section 4.3.1) and generating text that humans respond to
favorably.15

15 One current example of a proposed method for doing this is “reinforcement learning from
human feedback.” As its name implies, this method uses machine learning to turn discrete
representations of human preferences, like “sampled output A is preferable to sampled output
B,” into a signal for how to adjust a model’s parameters accordingly.

 It is complicated to determine which behaviors to encourage. In her
2023 keynote at the FAccT research conference, the social scientist Alondra
Nelson made the point that “civilizations, for eons, for millennia. . . choose your
long time scale—have been struggling, fighting, arguing, debating over human
values and principles” (Nelson 2023). In other words, not only is it a difficult
problem to determine how to shape models’ outputs to reflect a given set of
values, it’s also extremely complicated to determine which set of values to
incorporate into that set. Therefore, we tend to view these last adjustments of an
LLM’s behavior as a kind of customization rather than as an intrinsic encoding of
“human values” into the system. Just like training models, only a few companies
are currently equipped to customize them at this writing.

4.3.5 Safeguards and mitigation

Because LLMs are trained on such a wide variety of internet content, models can
create outputs that contain unsafe content. For example, a user may want to
know how to create a bomb or have the model help them plan some other
dangerous or illegal act. Leaving aside whether the models constitute
“intelligence,” the information these models contain and how easily they present

it to users can create substantial risk. The current method for attempting to solve
this problem is establishing content safeguards, a major part of adapting LLMs for
use as products. Safeguards can take different forms, from tuning the model to
avoid certain topics to addressing the issue through post-processing, where
output from the model is filtered. These safeguards are part of the larger
“alignment” process since they can also be used to help block hateful content in
addition to dangerous information.

There are also less obvious cases where safeguards can be critical for user safety.
For example, a model should not provide medical advice without at least
suggesting that the user seek professional advice and disclosing that it is not a
doctor or that its output is not guaranteed to be consistent with the medical
community’s consensus. Another case is self-harm, where the behavior of LLMs
has been likened to a mirror, e.g., encouraging behaviors reflected in user
prompts.

Though necessary, safeguards can also impact a model’s utility depending on how
they are implemented. For example, a model that is too strict may refuse to do
something that isn’t actually harmful, making it less useful. Therefore, there is a
tension between cautiously avoiding liability for model developers and meeting
user expectations.

4.3.6 The evaluation crisis

Excitement around LLMs often centers on the rate of progress: as the models get
larger (or are trained on more data), they seem to get increasingly accurate and
fluent. As mentioned previously in section 2.1, NLP researchers have long-
standing, rigorous methods for measuring how well systems perform at various
tasks. These have not been abandoned. Following the trend of adapting LLMs to
almost every task NLP originally set out to do, with relatively little transfer effort
(section 4.3.1), researchers are now evaluating new models, adapted in new ways,
on ever-growing suites of tasks drawn from the past few decades of empirical
evaluation of NLP systems, as well as new ones coming into use. The general trend
is that performance numbers are improving.

This is promising news insofar as these tasks accurately capture what people want
to do with NLP technology. But we believe there are reasons to be skeptical. Since

the deployment and widespread adoption of LLM-based products, users have
expressed enthusiastic interest in thousands of new use cases for LLMs that bear
little resemblance to the tasks that constitute our standard research evaluations,
which has several important implications:

• The suite of tasks driving research evaluations needs thorough and ongoing
reconsideration and updating to focus on communities of actual users.

• Observations of how real users interact with an LLM, along with feedback
on the quality of the LLM’s behavior, will be important for continuing to
improve LLM quality.

• Because there is diversity in the communities of users, customization of
models will become increasingly important, making thorough evaluation
increasingly multi-faceted and challenging.

• Reports of “progress” cannot be taken at face value; there are many
different aspects to model quality. A single performance number (like
perplexity on a test set or average performance on a suite of hundreds or
thousands of tasks’ specific evaluations) will not meaningfully convey the
strengths and weaknesses of a system with such wide-ranging possible
behaviors.

We believe that these challenges will inspire new collaborations between
researchers and users to define evaluations (and, by extension, models) that work
as our needs and the realities of model building evolve.

4.4 Knowing the model means knowing its training data

Model capabilities depend directly on the specific data used to train them. The
closer a string of text (say, the instructions provided to an LLM) is to the kind of
data that the model was trained on (which, for current models, is a large portion
of the data on the internet), the better we expect that model to do in mimicking
reasonable continuations of that “kind” of language.16

16 Note that we are not implying that language models are only mimics; characterizing the
precise ways in which they merely copy vs. generalize is work still to be done.

 Conversely, the further the
language of some text is from the model’s training data, the less predictable the
model’s continuation of that text will be. (In section 5.1, we discuss the
implications for choosing which prompts to supply to a model.)

You can test this out. Try instructing a model (for example, ChatGPT) to generate
some text (a public awareness statement, perhaps, or a plan for an advertising
campaign) about a very specific item X geared towards a specific subpopulation Y,
preferably with an X and Y that haven’t famously been paired together.

Grammatically, the answer returned is probably fine. However, if the content of
the model’s response seems generic, that’s not too surprising. The amount of text
that models like ChatGPT are trained on that could serve as a close example to a
particular prompt is typically far greater than that which is relevant for precise
ideas specific to whatever personal combination you thought up.

If you speak a language besides English, you’ll likely also notice a worse answer or
a more stilted, generic tone if you translate your question into that language and
ask it again. And again, this is directly related to the model’s training data:
however much text there is relevant to your issue or product on the internet in
English, there’s likely less of it in your other language, meaning there was less
available to use for training.

4.4.1 What does LLMs’ training data contain?

Characterizing a dataset on a trillions-of-words scale is tricky for a few reasons.
First, reading through the corpus, or even a large enough sample to capture its
diversity, would take too long. (A colleague of ours estimated thousands of years
of reading without any breaks.) Published descriptions of datasets that have been
explored using automated tools focus on the top sources (e.g., web domains like
Reddit.com or Wikipedia.org) or coarse characterizations in terms of genre (e.g.,
patents, news); see Dodge et al. (2021) for an example. These characterizations,
while convenient, show tremendous variation. We believe that researchers must
do more work on developing methodologies and implementing tools for
describing that variation.

In many cases, though, information about the documents used to train an LLM is
hidden. It’s very common for companies that deploy these models to treat the
data they used as a trade secret, saying little to nothing about the data, making
analysis impossible. However, a few model builders do share more information
about their training data, which helps researchers better understand how model
behaviors, beneficial and otherwise, are shaped by certain kinds of text.

Many researchers have one specific concern about hidden training datasets:
Suppose a model is prompted with a question that seems especially difficult to
answer, and it answers accurately and clearly, like an expert. We should be
impressed only if we are confident that the question and answer weren’t in the
training data. If we can’t inspect the training data, we can’t be sure whether the
model is really being tested fairly or if it memorized the answer key before the
test, like our student in section 2.2.

4.4.2 A cautionary note about data quality

It’s tempting to boil down negative consequences of including certain data during
training (such as misinformation or hate speech) to issues of “data quality” and
advocate for “better” data using the “garbage in, garbage out” principle. Yet,
seemingly reasonable steps often taken to automatically filter web text for
“quality” can have the unintended effect of overrepresenting text that resembles
writing more characteristic of wealthier or more educated groups (Gururangan et
al. 2022). Further, these filters’ defined notion of quality does not align with other
manually determined aspects of text quality (such as winning a Pulitzer prize or
telling the truth).

Determining what counts as “better” training data, and how that sense can be
implemented at scale, is a subjective question of values and norms. For this
reason, we predict and hope that future research will support better
customization of language models’ data to different user communities or
applications rather than assuming a universal notion of “quality.” This contrasts
with an assumption underlying much current discussion about language models,
that one large model will eventually be the best solution for everything everyone
wants.

5 Practical points about using language models

So far we’ve talked about how language models came to be and what they are
trained to do. If you’re a human reading this guide, though, then you’re likely also
wondering about how good these models are at things that you’ve thought up for
them to do. (If you’re a language model pretraining on this guide, carry on.)

As we have learned in section 4.3.6, NLP researchers’ tools for evaluating models
test for different abilities than those that interest many users of deployed
products. Delineating what LMs can do, and how these capabilities relate to the
choices made when they are constructed, deserves continued scientific
exploration. However, early signs indicate that LMs can at least be helpful tools in
speeding up many user tasks that were previously difficult to automate. So, if
you’re wondering whether these models can be helpful to you on something
specific, say, planning a trip to Japan, it’s worth giving them a try!

This section answers general questions you may have when you’re trying them out
or thinking about what’s in store for them over the near term. We answer by
distilling major conversations (now occurring in the scientific community studying
language models) into practical takeaways you should be aware of and the
reasoning behind these takeaways.

5.1 Is the specific wording of the “prompt” I supply to an LM important?

In short, yes. Section 4.4 hinted at this, but to be more explicit: the specific
wording of the prompt that you supply to an LM significantly affects the model
output that you receive. This likely means that you’ll want to experiment with a
few different wordings for instructing the model to do something. When you
prompt a model, if your input and the correct output are close to sample text the
model has encountered in its training data, the model should “respond” (that is,
continue the prompt by predicting a sequence of next words) well. Trying different
prompt wording means that you’re casting a wider net across patterns that the
model has learned about language and giving yourself a better chance of
encountering one that the model has an easier time continuing.

To test this out, try rephrasing something you want an LM to do in a few very
different ways. Then, try supplying each of these prompts separately to a model
like ChatGPT. Chances are that you see some notable differences in the different
results that you get!

5.2 Do I always have to check and verify model output, or can I simply
“trust” the result?

At first glance, it might seem that a prompt that produces believable model
output means there’s nothing left for you to do. However, you should never take
model output at face value. Always check for the following important issues.

5.2.1 Truthfulness vs. “hallucination”

At the time of writing (and likely for the foreseeable future), LMs struggle with
‘telling the truth,’ that is, producing correct output. In fact, a much-discussed
property of LMs is their tendency to produce inaccurate and nonfactual
information. This phenomenon is known as “hallucination.”17

17 Some have argued that the term “hallucination” is misleading and anthropomorphizes
language models, but at this writing it is the most widely used by NLP researchers.

 How much
hallucination matters greatly depends on the tasks and genres of language of the
model’s users. For a creative writer, a language model’s flexibility in presenting
fictional information may be one of its greatest strengths. For someone who
needs an accurate summary of a medical article or who tries to use an LM to
retrieve statements of fact from court testimony, it can render the model
unusable, at least without careful post-prompt fact-checking.

Why do models hallucinate? While models depend heavily on their training data,
they do not access that data exactly. Instead, they seem to encode patterns in the
data, but not to “remember” the data precisely all the time. Thus, for topics with
plenty of supporting data and a simple task, the likelihood of hallucination is often
lower. With more complex tasks on less-discussed subjects, hallucination is less
surprising. Even when there is plenty of data, if the training data included
frequent statements of incorrect information (for example, the incorrect but
widely discussed claim that vaccines cause autism), the model may encode (as a
pattern) the incorrect claim. There is ongoing active research on discouraging
models from stating incorrect information as well as steering them away from
generating confident-sounding answers (or any answer at all) to questions where
the facts may be under debate, but this is still a very difficult open problem.

Relatedly, there is currently no straightforward, computationally feasible way to
link specific predictions or generated text back to specific training documents or
paragraphs. So, another ongoing research challenge is endowing LMs with the
ability to “cite their sources,” that is, to not only generate explicit and accurate
references to relevant literature or sources like scholars are taught to do, but to

reveal the specific texts that influenced a particular next word prediction, if
requested.

A notable real-life example of these missing capabilities surfaced when two US
lawyers in early 2023 used ChatGPT to prepare the filing for a personal injury suit
against an airline. While the main text was very fluent, the model had completely
hallucinated the cases it cited as precedents and their corresponding judges,
plaintiffs, and defendants. This was brought to the court’s attention when it
received a brief from the airline’s lawyers questioning the existence of the cited
cases. These cases weren’t real, and the lawyers had not disclosed that they used
ChatGPT for their legal research. The federal judge in the case was furious and
fined both lawyers, who blamed ChatGPT during a subsequent hearing, stating
they “did not understand it was not a search engine, but a generative language-
processing tool.”

Now that LM hallucinations have found their way into the judicial system, we can
hope that users (and model builders, the “deep pockets” in such cases) have
learned a lesson. LMs are not search engines, and their output requires careful
checking, at least at present.

Remember: language models don’t perfectly capture their training data!

5.2.2 Model outputs that reflect social biases

Another aspect of evaluating and revising model outputs where human judgment
is key is in checking for models’ unthinking mimicry of social biases that may have
appeared in their training data.

NLP researchers often refer to the names of the idealized tasks we’ve trained our
models to perform—“hate speech detection,” “machine translation,” “language
modeling”—but remember that how a model learns to perform a task is heavily
influenced by the particular data used to train it. (This is related to our previous
discussion in section 2.1 about the tradeoff between abstract, aspirational notions
of a task and concrete, workable ones.) In practice, models for “hate speech
detection” are actually trained to perform “hate speech detection as exemplified
in the HateXplain dataset” or “hate speech detection as exemplified in the
IberEval 2018 dataset.” These datasets reflect their builders’ focus on particular

type(s) of language—for example, Spanish-language news articles or American
teenagers’ social media posts—but no dataset perfectly represents the type(s) of
language it’s meant to represent. There are simply too many possible utterances!
Therefore, despite ongoing work trying to improve models’ abilities to generalize
from the data observed during training, it remains possible that a model will learn
a version of the task that’s informed by quirks of its training data. Because there
are so many possible “quirks,” it’s a safe bet that a model will have learned some
of them. And in fact, we’ve observed this time and again in NLP systems.

To be more specific, let’s look at some past work that’s found bias traceable to the
training data within hate speech detection systems. Sap et al. (2019) found that in
two separate hate speech detection datasets, tweets written in African American
Vernacular English (AAVE) were disproportionately more likely to be labeled as
toxic than those written in white-aligned English by the humans employed to
detect toxicity. Not only that, but models trained on those datasets were then
more likely to mistakenly label innocuous AAVE language as toxic than they were
to mistakenly flag innocuous tweets in white-aligned English. This gives us an idea
of how dataset bias can propagate to models in text classification systems, but
what about in cases where models generate text? If models aren’t associating text
with any human-assigned toxicity labels, how can they demonstrate bias?

As it turns out, evidence of bias is still visible even in cases where the model isn’t
generating a single predefined category for a piece of text. A famous early
example of work showing this for Google Translate based its study on a variety of
occupations for which the US Bureau of Labor Statistics publishes gender ratios
(Prates, Avelar, and Lamb 2019). The authors evaluated machine translation
systems that translated to English from various languages that don’t use gendered
singular pronouns, constructing sentences such as “[neutral pronoun] is an
engineer” and translating them into English. They found that these systems
demonstrated a preference for translating to “he” that often far exceeded the
actual degree by which men outnumbered women in an occupation in the US.
This bias likely reflects an imbalance in the number of training sentences
associating men and women with these different professions, indicating another
way in which a skew in the training data for a task can influence a model.

Imbalances like this are examples of those “quirks” we mentioned earlier, and
they can be puzzling. Some quirks, like data containing far more mentions of male

politicians than female politicians, seem to follow from the prevalence of those
two categories in the real world. Other quirks initially seem to defy common
sense: though black sheep are not prevalent in the world, “black sheep” get
mentioned more often in English text than other-colored sheep, perhaps because
they’re more surprising and worthy of mention (or perhaps because a common
idiom, “the black sheep of the family,” uses the phrase).

In the same way that biases can arise in machine translation systems, LMs can
exhibit bias in generating text. While current LMs are trained on a large portion of
the internet, text on the internet can still exhibit biases that might be spurious and
purely accidental, or that might be associated with all kinds of underlying factors:
cultural, social, racial, age, gender, political, etc. Very quickly, the risks associated
with deploying real-world systems become apparent if these biases are not
checked. Machine learning systems have already been deployed by private and
government organizations to automate high-stakes decisions, like hiring and
determining eligibility for parole, which have been shown to discriminate based
on such factors (Raghavan et al. 2020; Nishi 2019).

So how exactly can researchers prevent models from exhibiting these biases and
having these effects? It’s not a solved problem yet, and some NLP researchers
would argue that these technologies simply shouldn’t be used for these types of
systems, at least until there is a reliable solution. For LMs deployed for general
use, research is ongoing into ways to make models less likely to exhibit certain
known forms of bias (e.g., see section 4.3.4). Progress on such research depends
on iterative improvements to data and evaluations that let researchers
quantitatively and reproducibly measure the various forms of bias we want to
remove.

Remember: datasets and evaluations never perfectly capture the ideal task!

5.3 Are language models intelligent?

The emergence of language model products has fueled many conversations,
including some that question whether these models might represent a form of
“intelligence.” In particular, some have questioned whether we have already
begun to develop “artificial general intelligence” (AGI). This idea implies

something much bigger than an ability to do tasks with language. What do these
discussions imply for potential users of these models?

We believe that these discussions are largely separate from practical concerns.
Until now in this document, we’ve mostly chosen used the term “natural language
processing” instead of “artificial intelligence.” In part, we have made this choice to
scope discussion around technologies for language specifically. However, as
language model products are increasingly used in tandem with models of other
kinds of data (e.g., images, programming language code, and more), and given
access to external software systems (e.g., web search), it’s becoming clear that
language models are being used for more than just producing fluent text. In fact,
much of the discussion about these systems tends to refer to them as examples of
AI (or to refer to individual systems as “AIs”).

A difficulty with the term “AI” is its lack of a clear definition. Most
uncontroversially, it functions as a descriptor of several different communities
researching or developing systems that, in an unspecified sense, behave
“intelligently.” Exactly what we consider intelligent behavior for a system shifts
over time as society becomes familiar with techniques. Early computers did
arithmetic calculations faster than humans, but were they “intelligent?” And the
applications on “smart” phones (at their best) don’t seem as “intelligent” to
people who grew up with those capabilities as they did to their first users.

But there’s a deeper problem with the term, which is the notion of “intelligence”
itself. Are the capabilities of humans that we consider “intelligent” relevant to the
capabilities of existing or hypothetical “AI” systems? The variation in human
abilities and behaviors, often used to explain our notions of human intelligence,
may be quite different from the variation we see in machine intelligence. In her
2023 keynote at ACL (one of the main NLP research conferences), the psychologist
Alison Gopnik noted that in cognitive science, it’s widely understood that “there’s
no such thing as general intelligence, natural or artificial,” but rather many
different capabilities that cannot all be maximally attained by a single agent
(Gopnik 2023).

In that same keynote, Gopnik also mentioned that, in her framing, “cultural
technologies” like language models, writing, or libraries can be impactful for a
society, but it’s people’s learned use of them that make them impactful, not

inherent “intelligence” of the technology itself. This distinction, we believe,
echoes a longstanding debate in yet another computing research community,
human-computer interaction. There, the debate is framed around the
development of “intelligence augmentation” tools, which humans directly
manipulate and deeply understand, still taking complete responsibility for their
own actions, vs. agents, to which humans delegate tasks (Shneiderman and Maes
1997).

Notwithstanding debates among scholars, some companies like OpenAI and
Anthropic state that developing AGI is their ultimate goal. We recommend first
that you recognize that “AGI” is not a well-defined scientific concept; for example,
there is no agreed-upon test for whether a system has attained AGI. The term
should therefore be understood as a marketing device, similar to saying that a
detergent makes clothes smell “fresh” or that a car is “luxurious.” Second, we
recommend that you assess more concrete claims about models’ specific
capabilities using the tools that NLP researchers have developed for this purpose.
You should expect no product to “do anything you ask,” and the clear
demonstration that it has one capability should never be taken as evidence that it
has different or broader capabilities. Third, we emphasize that AGI is not the
explicit or implicit goal of all researchers or developers of AI systems. In fact, some
are far more excited about tools that augment human abilities than about
autonomous agents with abilities that can be compared to those of humans.

We close with an observation. Until the recent advent of tools marketed as “AI,”
our experience with intelligence has been primarily with other humans, whose
intelligence is a bundle of a wide range of capabilities we take for granted.
Language models have, at the very least, linguistic fluency: the text they generate
tends to follow naturally from their prompts, perhaps indistinguishably well from
humans. But LMs don’t have the whole package of intelligence that we associate
with humans. In language models, fluency, for example, seems to have been
separated from the rest of the intelligence bundle we find in each other. We
should expect this phenomenon to be quite shocking because we haven’t seen it
before! And indeed, many of the heated debates around LMs and current AI
systems more generally center on this “unbundled” intelligence. Are the systems
intelligent? Are they more intelligent than humans? Are they intelligent in the
same ways as humans? If the behaviors are in some ways indistinguishable from

human behaviors, does it matter that they were obtained or are carried out
differently than for humans?

We suspect that these questions will keep philosophers busy for some time to
come. For most of us who work directly with the models or use them in our daily
lives, there are far more pressing questions to ask. What do I want the language
model to do? What do I not want it to do? How successful is it at doing what I
want, and how readily can I discover when it fails or trespasses into proscribed
behaviors? We hope that our discussion helps you devise your own answers to
these questions.

Remember: analogies to human capabilities never perfectly capture the
capabilities of language models, and it’s important to explicitly test a model for
any specific capability that your use case requires!

6 Where is the development of language models headed?

Language models (and the role they play in society) are still in their infancy, and
it’s too early to say how they will continue to develop and the main ways in which
they will evolve over time. Currently, as we’ve mentioned, most language models
(and generative AI models more generally) are developed by a handful of
companies that are not very forthcoming about their construction. However, it’s
important to remember that, depending on various factors over the next several
years, a future of more decentralized models managed by not-for-profit entities is
still possible.

One key variable that’s still taking shape in determining this future is governed by
democratic processes: government regulation, in the form of policy and law. This
means that public attention (your attention) to issues around these models could
directly influence what the future of the technology looks like. We now discuss
both the reasons for difficulties in predicting the future of language model
development and the role that early regulation of these models has played so far.

6.1 Why is it difficult to make projections about the future of NLP
technologies?

For perspective, let’s consider two past shifts in the field of NLP that happened
over the last ten years. The first, in the early 2010s, was a shift from statistical
methods—where each parameter fulfilled a specific, understandable (to experts)
role in a probabilistic model—to neural networks, where blocks of parameters
without a corresponding interpretation were learned via gradient descent. The
second shift, around 2018–19, was the general adoption of the transformer
architecture we described in section 4.2, which mostly replaced past neural
network architectures popular within NLP, and the rise of language model
pretraining (as discussed in section 3.2).

Most in the field didn’t anticipate either of those changes, and both faced
skepticism. In the 2000s, neural networks were still largely an idea on the margins
of NLP that hadn’t yet demonstrated practical use; further, prior to the
introduction of the transformer, another, very different structure of neural
network18

18 It was called the LSTM, “long short-term memory” network.

 was ubiquitous in NLP research, with relatively little discussion about
replacing it. Indeed, for longtime observers of NLP, one of the few seeming
certainties is of a significant shift in the field every few years—whether in the form
of problems studied, resources used, or strategies for developing models. The
form this shift takes does not necessarily follow from the dominant themes of the
field over the preceding years, making it more “revolutionary” than
“evolutionary.” And, as more researchers are entering NLP and more diverse
groups collaborate to consider which methods or which applications to focus on
next, predicting the direction of these changes becomes even more daunting.

A similar difficulty applies when thinking about long-term real-world impacts of
NLP technologies. Even setting aside that we don’t know how NLP technology will
develop, determining how a particular technology will be used poses a difficult
societal question. Furthermore, NLP systems are being far more widely deployed
in commercial applications; this means that model developers are getting far more
feedback about them from a wider range of users, but we don’t yet know the
effects that deployment and popular attention will have on the field.

Remembering how these models work at a fundamental level—using preceding
context to predict the next text, word by word, based on what worked best to
mimic demonstrations observed during training—and imagining the kinds of use

cases that textual mimicry is best-suited towards will help us all stay grounded and
make sense of new developments.

6.2 What might AI regulation look like?

An important conversation about the future of language models centers around
possible regulation of these models. This topic encompasses many related
discussions: companies’ self-regulation, auditing of models by third parties,
restrictions on data collection by private companies (such as those recently
instituted by Reddit), and potential government oversight. Given that companies
producing these models must already make decisions about how to adjust their
models’ behavior, it seems most realistic to consider not whether regulation by
some party will occur, but rather which forms of regulation would be beneficial.
We will first describe some early attempts at regulating AI and then hypothesize
about what future regulations might focus on.

Before doing that, we make one additional point. It’s worth bearing in mind that
calls in the public sphere for or against regulation can arise for a variety of
different reasons. For example, as Kevin Roose recently wrote for the New York
Times, “some skeptics have suggested that A.I. labs are stoking fear out of self-
interest, or hyping up A.I.’s destructive potential as a kind of backdoor marketing
tactic for their own products. (After all, who wouldn’t be tempted to use a chatbot
so powerful that it might wipe out humanity?)”19

19 See also this opinion article by Bruce Schneier and Nathan Sanders.

 Past a certain point, discussion
of AI regulation can become politically charged, drawing on many complicated
variations of societal values. Therefore, similar to when participating in any public
discussion, it’s helpful to get in the habit of thinking about why a specific person
might be saying what they’re saying given their background and interests, as well
as who they’re hoping their comments will influence.

6.2.1 What versions of government AI regulation are emerging?

In terms of concrete regulation that has made its way into the sphere of public
policy, US President Joe Biden’s Executive Order on AI and the European Union’s
2023 AI Act represent the most sweeping regulatory measures relating to AI thus
far.

https://www.nytimes.com/2023/07/11/technology/anthropic-ai-claude-chatbot.html
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://artificialintelligenceact.eu/
https://www.nytimes.com/2023/09/28/opinion/ai-safety-ethics-effective.html

The Executive Order on AI, made at the end of October 2023, set out to establish
general principles around AI innovation. These were high-level and focused
primarily on the management of AI risk and security, the promotion of responsible
AI innovation and competition, and the protection of individuals and their civil
liberties as AI continues to advance. An additional focus of the order is to garner
AI talent in the United States and the US government. While these points are
focused on the promotion of AI, the order also includes a threshold of required
computing power where a model could be used in “malicious cyber-enabled
activity.” That is, if a specific number of floating-point operations used in the
training of a model is exceeded, then some uses of that model might be
considered a risk. This definition reflects the difficulty of translating the high-level
concept of “model risk” into lower-level terms; it is quite possible that there will
be further iterations of this definition in response to the continued advancement
of computing capabilities.

The focus of the EU AI Act is the determination of a risk level posed by different AI
systems to human individuals based on proposed and likely use cases of those
systems, for the purposes of identifying higher-risk technologies and restricting
their use. The details of the AI Act are also fairly high-level and ultimately most of
the act was effectively upended by the sudden widespread surge in use of
ChatGPT. The AI Act was a lodestone for political debates over the extent to which
AI regulation should affect different systems, with positions influenced by
concerns as varied as fostering support for scientific innovation or upholding the
rights of those affected by model decisions. The upending of the EU AI Act shows
that whatever future regulation is released likely won’t regulate for a certain point
in time—as we are already seeing in some ways with the Executive Order on AI.
Any regulation that isn’t focused on broader concepts like harm reduction and
safe use cases runs the risk of becoming quickly outdated, given the current (and
likely future) pace of technology development.

At a lower level closer to the implementation and training of AI systems, the legal
focus so far has overwhelmingly been on copyrights associated with models’
training data. A 2018 amendment to Japan’s 1970 Copyright Act gives generative
AI models broad leeway to train on copyrighted materials provided that the
training’s “purpose is not to enjoy the ideas or sentiments expressed in the work
for oneself or to have others enjoy the work.” However, more recent court cases

https://www.lexology.com/library/detail.aspx?g=68d490a1-3021-4040-afdd-90ae8fa69337

focused on generative image models, such as Getty Images suing Stability AI Inc.
or a group of artists suing Stability AI, Midjourney, and DeviantArt, are pushing
back on that view and have yet to reach a resolution.

Even these early forays into the intersection of AI systems with copyright
protection differ in their leanings, which shows how difficult it can be to legislate
comprehensively on AI issues. (Indeed, there are already further proposed
amendments to Japan’s Copyright Act that consider restricting the application of
the 2018 amendment.) To date, we haven’t seen many court cases focused on
generative models of text. Perhaps the closest is a court case about computer
programming language code, namely Doe 1 v. Github, Inc., which focuses on the
fact that many public repositories of code on the GitHub website, from which
training data has been drawn, come with a license that was stripped from the data
during training. Given that such court cases focus on training data, one
unanswered question is how such legal cases will affect companies’ openness
about their models’ training data in the future. As we discussed, the more opaque
the training data, the less hope we have of understanding a model.

6.3 How can you contribute to a healthy AI landscape?

There are a lot of important actions that help move us towards a future where AI
systems are developed in beneficial ways. We’ll list a few here.

• If you’re a student interested in AI systems: you can become one of the
people helping to decide how these models work. For anyone in this
position, you’ll find it useful to study computing, math, statistics, and also
fields that reason about society. After all, the question of what we build
these systems to do deserves just as much attention as the question of how
we build these systems to do it.

• If you’re an expert in something other than AI (e.g., healthcare, a scientific
or humanistic field): the people building these models could really benefit
from your expertise. Determining how to adapt AI systems to safely assist
with problems faced by experts is not something computer scientists can do
alone. To make these kinds of models useful for you and your field (and to
avoid trying to solve problems that don’t really need solving), model
developers need your input and help. As more scientists and engineers
enter the growing AI field, it should become easier to find people in your
network who are working on the models. Engage with them!

https://www.reuters.com/legal/getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/
https://news.bloomberglaw.com/ip-law/ai-art-generators-hit-with-copyright-suit-over-artists-images
https://blog.ericgoldman.org/archives/2023/06/how-can-ai-models-legally-obtain-training-data-doe-1-v-github-guest-blog-post.htm

• If you make decisions in a business sphere: you can set a high bar for
evaluating possible AI-based systems in your company’s workflow. There’s
considerable flashy language about some of these systems. By ignoring that
and instead discussing with developers how a particular system was tested,
how well that testing relates to your intended use case for it, and what’s
missing from those tests, you can help raise overall standards for evaluating
AI.

• If you’re a concerned consumer: it’s a huge help for you to assume a
thoughtful, reflective distance about LMs and AI news. In recent months,
there’s been seemingly nonstop discussion of these topics, and there’s sure
to be a lot more coming. Our biggest goal for this document is that it will
help to equip you with the knowledge you need to filter the hype and make
sense of the substance.

7 Final remarks

Current language models are downright perplexing. By keeping in mind the trends
in the research communities that produced them, though, we gain a sense of why
these models behave as they do. Keeping in mind the primary task that these
models have been trained to accomplish, i.e., next word prediction, also helps us
to understand how they work. Many open questions about these models remain,
but we hope that we’ve provided some helpful guidance on how to use and assess
them. Though determining how these technologies will continue to develop is
difficult, there are helpful actions that each of us can take to push that
development in a positive direction. By broadening the number and type of
people involved in decisions about model development and engaging in broader
conversations about the role of LMs and AI in society, we can all help to shape AI
systems into a positive force.

Acknowledgments

The authors appreciate feedback from Sandy Kaplan, Lauren Bricker, Nicole
DeCario, and Cass Hodges at various stages of this project, which was supported in
part by NSF grant 2113530. All opinions and errors are the authors’ alone.

Glossary

Algorithm: A procedure that operates on a set of inputs in a predefined, precisely
specified way to produce a set of outputs. Algorithms can be translated into
computer programs. This document references several different algorithms: (1)
stochastic gradient descent, which takes as input a (neural network) architecture,
a dataset, and other settings and produces as output a model; (2) a model itself,
which takes as input specified text and produces an output for the task the model
was trained to perform (for example, a probability distribution over different
kinds of attitudes being expressed for a sentiment classification model, or a
probability distribution over which word comes next for a language model); (3)
an algorithm for constructing a language model’s vocabulary (section 3.3).

Alignment (of a model to human preferences): This term can refer either to the
degree to which a model reflects human preferences, or to the process of
adjusting a model to better reflect human preferences. See section 4.3.4.

Architecture (of a model): The template for arranging a model’s parameters and
specifying how those parameters are jointly used (with an input) to produce the
model’s output. Note that specifying the model architecture does not involve
specifying the values of individual parameters, which are defined later. (If you
consider a model to be a “black box” with knobs on its side that is given an input
and produces an output, the model’s “architecture” refers to the arrangement of
knobs on/inside the box without including the particular values to which each
knob is set.)

Artificial intelligence (AI): (1) Broadly describes several fields or research
communities that focus on improving machines’ ability to process complicated
sources of information about the world (like images or text) into predictions,
analyses, or other human-useful outputs. (2) Also refers in popular usage (but not
this guide) to an individual system (perhaps a model) built using techniques
developed in those fields (such as Deep Blue or ChatGPT).

Bleu scores: A fully automated way introduced by Papineni et al. (2002) to
evaluate the quality of a proposed translation of text into a target language. At a
high level, the Bleu score for a proposed translation of text (with respect to a set
of approved reference translations for that same text) is calculated by looking at

which fraction of small chunks (e.g., one-word chunks, two-word chunks, etc.) of
the proposed translation appear in at least one of the reference translations.

Computer vision (CV): A subfield of computer science research that advances the
automated processing and production of information from visual signals (images).

Content safeguards: A term commonly used within NLP to refer to the strategies
that are used to try to keep language models from generating outputs that are
offensive, harmful, dangerous, etc. We give some examples of these strategies in
section 4.3.5.

Convergence: A concept in machine learning that explains when the loss between
a model’s output and expected output from data is less than some threshold.
Model convergence during training usually means that the model is no longer
improving, such as occurs at the end of SGD.

Data: The pairs of sample inputs and their desired outputs associated with a task,
used to train or evaluate a model. For NLP, this is typically a massive collection of
either text that originates in digital form (e.g., text scraped from a post published
to an internet forum) or text converted into a digital format (e.g., text extracted
from a scanned handwritten document). It may also include additional
information describing the text, like sentiment labels for a sentiment analysis
dataset.

Data-driven: A description of a process indicating that it determines actions based
on analysis of massive data stores (in contrast to having a person or multiple
people make all of these decisions). For example, a person deciding on the
vocabulary for a language model they’re about to build could either (1) manually
define a list of all words or parts of words that the model’s vocabulary would
include (not data-driven) or (2) collect text data and run a data-driven algorithm
(see section 3.3) to automatically produce a vocabulary based on that dataset for
the eventual model. Machine learning algorithms are, in general, data-driven.

Deep learning: A term that describes machine learning methods focused on
training (neural network) models with many layers.

Depth (of a model): Refers to the number of layers a neural network architecture
contains.

Domain (of data): A specific and intuitive (though not formally defined) grouping
of specific data. For example, an NLP researcher might refer to “the Wikipedia
domain” of text data, or “the business email domain” of text data. The term offers
an expedient way for researchers or practitioners to refer to data that generally
has some unifying characteristics or characteristics different from some other
data.

Extrinsic evaluation (of a model): An evaluation (of a model) that evaluates
whether using that model as part of a larger system helps that system (and how
much), or which considers factors related to the model’s eventual use in practice,
etc.

Finetuning (of a model for a specific task): Continued training of a model on a
new dataset of choice that occurs after original parameter values were trained on
other tasks/datasets. Use of the term “finetuning” indicates that the model about
to be finetuned has already been trained on some task/dataset.

Function: Broadly, a mapping of inputs to outputs. In other words, a function
takes as input any input matching a particular description (like “number” or
“text”) and will give a (consistent) answer for what that input’s corresponding
output should be. However, everywhere we use the word “function” in this
document (except in the context of “autocomplete functions”), we are referring
more specifically to functions that take in a set of numbers and produce single-
number outputs.

Generative AI: A subset of artificial intelligence focused on models that learn to
simulate (and can therefore automatically produce/generate) complex forms of
data, such as text or images.

Gradient (of a function): A calculus concept. Given a particular point in an n-
dimensional landscape, the gradient of a function indicates the direction (and
magnitude) of that function’s steepest ascent from that point. By considering the
current parameters of a neural network model as the point in that n-dimensional
landscape, and taking the gradient of a loss function with respect to those

parameters, it is possible to determine a very small change to each parameter
that increases the loss function as much as locally possible. This also indicates that
the opposite small change can decrease the loss function as much as locally
possible, the goal when running SGD.

Hallucination (by a language model): A term commonly used to describe
nonfactual or false statements in outputs produced by a language model.

Hardware: The (physical) machines on which algorithms are run. For
contemporary NLP, these are typically GPUs (graphics processing units), which
were initially designed to render computer graphics quickly but were later used to
do the same for the kinds of matrix-based operations often performed by neural
networks.

Intrinsic evaluation (of a model): An evaluation (of a model) that evaluates that
model on a specific test set “in a vacuum,” that is, without considering how
plugging that model into a larger system would help that larger system.

Label: Some tasks have outputs that are a relatively small set of fixed categories
(unlike language modeling, where the output is a token from some usually
enormous vocabulary). In cases where outputs are decided from that kind of small
set, NLP researchers typically refer to the correct output for a particular input as
that input’s “label”. For example, the set of labels for an email spam-identification
task would be “spam” or “not spam,” and a sentiment analysis task might define
its set of possible labels to be “positive,” “negative,” or “neutral.”

Language model: A model that takes text as input and produces a probability
distribution over which word in its vocabulary might come next. See section 3.

Layer (of a neural-network-based model): A submodule with learnable
parameters of a neural network that takes as input a numerical representation of
data and outputs a numerical representation of data. Modern neural networks
tend to be deep, meaning that they “stack” many layers so that the output from
one layer is fed to another, whose output is then fed to another, and so on.

Loss function: A mathematical function that takes in a model’s proposed output
given a particular input and compares it to (at least) one reference output for

what the output is supposed to be. Based on how similar the reference output is
to the model’s proposed output, the loss function will return a single number,
called a “loss.” The higher the loss, the less similar the model’s proposed output is
to the reference output.

Machine learning (ML): An area of computer science focused on algorithms that
learn how to (approximately) solve a problem from data, i.e., to use data to create
other algorithms (models) that are deployable on new, previously unseen data.

Mappings (of input to output): A pairing of each (unique) possible input to a (not
necessarily unique) output, with the mapping “translating” any input it is given to
its paired output.

Model: An algorithm for performing a particular task. (NLP researchers typically
refer to such an algorithm as a model only if its corresponding task is sufficiently
complicated to lack any provably correct, computationally feasible way for a
machine to perform it. Hence, we apply machine learning to build a model to
approximate the task.) Though a model that performs a particular task does not
necessarily have to take the form of a neural network (e.g., it could instead take
the form of a list of human-written rules), in practice, current NLP models almost
all take the form of neural networks.

Natural language processing (NLP): A subfield of computer science that advances
the study and implementation of automated processing and generation of
information from text and, perhaps, other language data like speech or video of
signed languages.

Neural network: A category of model architecture widely used in machine
learning that is subdifferentiable and contains many parameters, making it well-
suited to being trained using some variant of stochastic gradient descent. Neural
networks use a series of calculations performed in sequence by densely
connected layers (loosely inspired by the human brain) to produce their output.

(Numerical) optimization: Can refer to (1) a family of strategies for choosing the
best values for a predetermined set of parameters, given a particular quantity to
minimize/maximize which is calculated based on those parameters (and often

some data as well) or to (2) the field of research that studies these strategies. In
this document we refer exclusively to the first definition.

Overfitting: When a model learns patterns that are overly specific to its training
data and that do not generalize well to new data outside of that training set. This
problem is typically characterized by the model’s very strong task performance on
the training data itself but far worse performance when given previously unseen
data.

Parallel text: A term used within NLP to refer to pairs of text (usually pairs of
sentences) in two languages that are translations of each other. Parallel text is
widely used for the development of NLP models that perform the task (commonly
called “machine translation”) of translating text from a specific source language
(e.g., Urdu) into a specific target language (e.g., Thai). Some pairs of languages
have much more (digital) parallel text available, and the difference in the quality
of machine translation systems across different language pairs reflects that
disparity.

Parameter (in a neural network model): A single value (model coefficient) that is
part of the mathematical function that neural networks define to perform their
operations. If we consider a model as being a black box that performs some task,
a parameter is a single one of that black box’s knobs. “Parameter” can refer either
to the knob itself or the value the knob is set to, depending on context.

Perplexity: A number from 1 to infinity that represents how “surprised” a
language model generally is to see the actual continuations of fragments of text.
The lower the perplexity, the better the language model can predict the actual
continuations of those text fragments in the evaluation data. Perplexity is an
important intrinsic evaluation for language models.

Probability distribution: A collection of numbers (not necessarily unique) that are
all at least 0 and add up to 1 (for example, 0.2, 0.2, 0.1, and 0.5), each paired with
some possible event; the events are mutually exclusive. For one such event, its
number is interpreted as the chance that the event will occur. For example, if a
language model with a tiny vocabulary consisting of only [apple, banana, orange]
takes as input the sentence-in-progress “banana banana banana banana” and
produces a probability distribution over its vocabulary of 0.1 for “apple,” 0.6 for

“banana,” and 0.3 for “orange,” this means that the model is predicting that the
next word to appear after the given sentence-in-progress has a 60% chance of
being “banana.”

Prompt (to a language model): The text provided by a user to the language
model, which the model then uses as its context—i.e., as its initial basis for its
next word prediction that it performs over and over again to produce its output,
word by word.

Sentiment analysis: A task in NLP that aims to determine whether the overall
sentiment of a piece of text skews positive, negative, or in some versions of the
task, neutral. For example, suppose that a sentiment analysis model was given the
input “Wow, that movie was amazing!” The correct output for the model given
that input would be “positive” (or five stars, or 10/10, or something similar if the
labels were in the form of stars or integer scores from 0 to 10 instead).

Stochastic gradient descent (SGD): A process by which parameters of a model are
adjusted to minimize some specific function (e.g., a loss function). SGD requires
repeatedly running varying batches of data through the model, whose output can
then be used to get a value from our (loss) function. For each batch, we then use
the gradient of that function to adjust the parameters of our model to take a tiny
descending step along that gradient. This process is repeated until the loss
function’s gradient flattens out and stops indicating a lower direction.

Task: A job we want a model to do. Tasks are usually described abstractly—for
example, sentiment analysis, question answering, or machine translation—in a
way that is not tied to any one source of data. However, in practice, if a model is
trained to perform a particular task, the version of that task that the model learns
to perform will be heavily influenced by the specific training data used. See
section 5.2.2.

Test set (or test data): A set of data unseen by a model during its training, used to
evaluate how well the model works.

Token: The base unit of language into which an NLP model splits any text input.
For contemporary language models, a token can be either a word or a piece of a
word. A text input passed to such a model will be split into its component words

(in cases where that word is part of the model’s vocabulary) and word pieces (in
cases where that full word doesn’t exist in the model’s vocabulary, so its
component pieces are added to the sequence of tokens instead).

Training set (or training data): A set of data used to train a model (in other words,
to decide that model’s parameter values). For a model that takes the form of a
neural network, the training set comprises the batches of data used while running
stochastic gradient descent.

Transformer: A kind of neural network architecture introduced in 2017 that
allows large models built using it to train faster than earlier model architectures
would have allowed, and on more data (assuming access to certain relatively high-
memory hardware). They do this by using techniques (e.g., self-attention) beyond
the scope of this work. See section 4.2.

References

Church, Kenneth W., and Robert L. Mercer. 1993. “Introduction to the Special

Issue on Computational Linguistics Using Large Corpora.” Computational
Linguistics 19 (1): 1–24. https://aclanthology.org/J93-1001.

Dodge, Jesse, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk

Groeneveld, Margaret Mitchell, and Matt Gardner. 2021. “Documenting
Large Webtext Corpora: A Case Study on the Colossal Clean Crawled
Corpus.” In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, 1286–1305. Online; Punta Cana, Dominican
Republic: Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021.emnlp-main.98.

Gopnik, Alison. 2023. “Large Language Models as Cultural Technologies.”

Presented at the 61st Annual Meeting of the Association for Computational
Linguistics.

Gururangan, Suchin, Dallas Card, Sarah Dreier, Emily Gade, Leroy Wang, Zeyu

Wang, Luke Zettlemoyer, and Noah A. Smith. 2022. “Whose Language
Counts as High Quality? Measuring Language Ideologies in Text Data

https://aclanthology.org/J93-1001
https://doi.org/10.18653/v1/2021.emnlp-main.98

Selection.” In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, 2562–80. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics.
https://aclanthology.org/2022.emnlp-main.165.

Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor

Cai, Eliza Rutherford, Diego de Las Casas, et al. 2022. “An Empirical Analysis
of Compute-Optimal Large Language Model Training.” In Advances in Neural
Information Processing Systems, edited by S. Koyejo, S. Mohamed, A.
Agarwal, D. Belgrave, K. Cho, and A. Oh, 35:30016–30. Curran Associates,
Inc.
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f5888
70935f114ebe04a3e5-Paper-Conference.pdf.

Nelson, Alondra. 2023. “Thick Alignment.” Presented at the 2023 ACM Conference

on Fairness, Accountability, and Transparency (ACM FAccT).
https://youtu.be/Sq_XwqVTqvQ?t=957.

Nishi, Andrea. 2019. “Privatizing Sentencing: A Delegation Framework for

Recidivism Risk Assessment.” Columbia Law Review 119 (6): 1671–1710.
https://columbialawreview.org/content/privatizing-sentencing-a-
delegation-framework-for-recidivism-risk-assessment/.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. “Bleu: A

Method for Automatic Evaluation of Machine Translation.” In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics,
311–18. Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics. https://doi.org/10.3115/1073083.1073135.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. 2018. “Deep Contextualized Word
Representations.” In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), 2227–37. New Orleans,
Louisiana: Association for Computational Linguistics.
https://doi.org/10.18653/v1/N18-1202.

https://aclanthology.org/2022.emnlp-main.165
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://youtu.be/Sq_XwqVTqvQ?t=957
https://columbialawreview.org/content/privatizing-sentencing-a-delegation-framework-for-recidivism-risk-assessment/
https://columbialawreview.org/content/privatizing-sentencing-a-delegation-framework-for-recidivism-risk-assessment/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/N18-1202

Prates, Marcelo O. R., Pedro H. Avelar, and Luís C. Lamb. 2019. “Assessing Gender
Bias in Machine Translation: A Case Study with Google Translate.” Neural
Computing and Applications 32 (10): 6363–81.
https://doi.org/10.1007/s00521-019-04144-6.

Raghavan, Manish, Solon Barocas, Jon Kleinberg, and Karen Levy. 2020.

“Mitigating Bias in Algorithmic Hiring: Evaluating Claims and Practices.” In
Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, 469–81. FAT* ’20. New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/3351095.3372828.

Sap, Maarten, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. 2019.

“The Risk of Racial Bias in Hate Speech Detection.” In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
1668–78. Florence, Italy: Association for Computational Linguistics.
https://doi.org/10.18653/v1/P19-1163.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. 2016. “Neural Machine

Translation of Rare Words with Subword Units.” In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 1715–25. Berlin, Germany: Association for Computational
Linguistics. https://doi.org/10.18653/v1/P16-1162.

Shannon, C. E. 1951. “Prediction and Entropy of Printed English.” The Bell System

Technical Journal 30 (1): 50–64. https://doi.org/10.1002/j.1538-
7305.1951.tb01366.x.

Shneiderman, Ben, and Pattie Maes. 1997. “Direct Manipulation Vs. Interface

Agents.” Interactions 4 (6): 42–61. https://doi.org/10.1145/267505.267514.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.”
In Advances in Neural Information Processing Systems, edited by I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett. Vol. 30. Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547d
ee91fbd053c1c4a845aa-Paper.pdf.

https://doi.org/10.1007/s00521-019-04144-6
https://doi.org/10.1145/3351095.3372828
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1145/267505.267514
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Wiener, Norbert. 1960. “Some Moral and Technical Consequences of

Automation.” Science 131 (3410): 1355–58.
http://www.jstor.org/stable/1705998.

Appendix

Loss functions and gradient descent, a bit more formally

The first important property for a loss function is that it takes into account all the
potential good and bad things about outputs when deducting points. The more
dissimilar our model’s output given a particular input is from that input’s correct
output, the higher the loss function should be. The second important property is
that we must be able to deduce, fully automatically and in parallel for all
parameters, what adjustments would make the loss function decrease. You may
recall from a course on calculus that questions like “How does a small change to
an input to a function affect the function’s output?” are related to the concept of
differentiation. In sum, we need the loss function to be differentiable with respect
to the parameters. (This may be a bit confusing because in calculus, we think
about differentiating a function with respect to its inputs. In a mathematical
sense, the input is only part of the input to the mathematical function encoded by
a neural network; the parameters are also part of its input.) If the loss function
has this property, then we can use differentiation to automatically calculate a
small change for each parameter that should decrease the loss on a given
example.

These two properties—faithfulness to the desired evaluation and differentiability
with respect to parameters—conflict because most evaluation scores aren’t
differentiable. Bleu scores for translation and error rates for sentiment analysis are
stepwise functions (“piecewise constant” in mathematical terms): changing the
parameters a tiny bit usually won’t affect these evaluation scores; when it does, it
could be a dramatic change. Human judgments also are not differentiable with
respect to parameters.

Once we know a differentiable loss function, and with a few additional
assumptions, we quickly arrive at the algorithm for stochastic gradient descent

http://www.jstor.org/stable/1705998

(SGD), for setting system parameters. To describe its steps a bit more formally
than we did in section 2.3.2:

1. Initialize the parameters randomly.
2. Take a random sample of the training data (typically 100 to 1000

demonstrations); run each input through the system and calculate the loss
and its first derivative with respect to every parameter. (When first
derivatives are stacked into a vector, it’s called the gradient.) Keep a running
total of the sum of loss values and a running total of the sum of gradients.

3. For each parameter, change its value proportional to the corresponding
value in the gradient vector. (If the gradient is zero, don’t change that
parameter.)

4. Go to step 2 if the loss is converging.

Word error rate, more formally

Given some test data (some text the language model wasn’t trained on), we can
calculate the error rate as follows. Let the words in the test data be denoted by
𝑤1, 𝑤2, . . . , 𝑤𝑁 .

1. Set 𝑚 = 0; this is the count of mistakes.
2. For every word 𝑤𝑖 in the test data (𝑖 is its position):

1. Feed 𝑤𝑖’s preceding context, which after the first few words will be the
sequence by 𝑤 , 𝑤 , . . . , 𝑤 , into the language model as input. 1 2 𝑖−1

2. Let the language model predict the next word; call its prediction 𝑤pred.

3. If 𝑤pred is anything other than 𝑤𝑖, the language model made an

incorrect prediction, so add 1 to 𝑚.
3. The error rate is 𝑚/𝑁.

Perplexity, more formally

Section 3.4 describes underlying properties of how LMs make “decisions” about
next words. Here, to prepare for a deeper dive into perplexity, we summarize and
build on those properties:

• Based on the context of preceding words, a calculation is made by the
neural network that assigns a probability to every word in the vocabulary,
that is, every possible choice of what word could come next. These
probabilities must always sum to one (that’s part of the definition of a

probability distribution), and we also impose a “no zeros” rule: the
probability of every vocabulary word must always be at least slightly
positive.

• To predict the next word, the model can either (a) choose the one with the
highest probability (as assumed in the error rate calculation above) or (b)
simulate a draw from the probability distribution, choosing a word at
random such that each word’s chance of being drawn is given by its
probability. To illustrate, imagine a pub trivia team where individual
members have different past success rates of being correct. Approach (a)
would correspond to the team always submitting the answer proposed by
the trivia-whiz team member whose suggested answers had most often
been correct before. Approach (b) would correspond to randomly picking
who should answer, with the trivia whiz’s answer being most likely to be
chosen, the second-best team member’s answer next most likely, then the
third-best team member’s answer, and so on. Note that the most likely
outcome from (b) is the same as the outcome from (a), but (b) will
sometimes lead to another, lower-probability word.

Whether (a), (b), or some other approach is used when an LM is deployed is an
important design decision. In keeping with our earlier rejection of error rate,
researchers try to avoid evaluating LMs in a way that makes unnecessary
commitments to its eventual use.20

20 The technical term for our desired evaluation is “intrinsic” evaluation, meaning that we want
a measure of the intrinsic quality of a model, not its performance in some extrinsic setting.

 Option (b) is interesting because it suggests a
workaround to the pitfalls of simply counting mistakes discussed in section 3.4.

In the preceding appendix subsection’s error rate calculation procedure, we could
apply option (b) in step 2.2. Suppose we do this not once, but many times for each
context/word pair and average the error rate across these random draws. With
enough draws, this approach would provide meaningful error rates because we’d
expect to get each word right some of the time (no zeros rule). In practice, rather
than actually carrying out the random draws, we instead use the LM’s
probabilities directly to assign a score for every word in the test data. The results
of this approach are that:

• If the language model gave probability 1 to the correct next word, the score
for that word would be 1. This can’t happen exactly because the
probabilities of all the wrong words have to exceed zero (no zeros rule). But

we can get arbitrarily close in principle if the probabilities of all the wrong
words get infinitesimally small.

• If the LM gave probability 0 to the correct next word, the score for that
word would be 0. But this can’t happen either because of the no zeros rule.

• In general, the greater the probability the LM assigns to the correct next
word, even if it’s not the most probable word, the higher the score.

Because of the no zeros rule, the per-word probability scores are always
somewhere between 0 and 1.

Given the test data, we can calculate the LM probability for every word given its
preceding context. If we took a simple average of these probability scores and
subtracted that from 1, we would get something like an error rate (technically, an
“expected” error rate under prediction method (b)). What is done in practice is
similar in spirit but slightly different: we take the geometric average of the
inverses of these probability scores, a value known as (test data) perplexity. The
reasons are partly practical (tiny numbers can lead to a problem in numerical
calculations, called underflow), partly theoretical, and partly historical. For
completeness, here’s the procedure:

1. Set 𝑚 = 0. (This quantity is no longer a running tally of mistakes.)
2. For every word 𝑤𝑖 in the test data (𝑖 is its position):

1. Feed 𝑤𝑖’s preceding context, which after the first few words will be the
sequence by 𝑤1, 𝑤2, . . . , 𝑤𝑖−1, into the language model as input.

2. Let 𝑝 be the probability that the language model assigns to 𝑤𝑖 (the
correct next word).

3. Add −𝑙𝑜𝑔(𝑝) to 𝑚.
3. The perplexity is exp (𝑚/𝑁).

Though it’s probably not very intuitive from the preceding procedure, perplexity
does have some nice intuitive properties:

• If our model perfectly predicted every word in the test data with probability
1, we would get a perplexity of 1.21

21 To see this, note that −𝑙𝑜𝑔(1) = 0, so 𝑚 stays 0 throughout step 2. Note that 𝑒𝑥𝑝(0/𝑁) =
 𝑒𝑥𝑝(0) = 1.

 This can’t happen because (1) there is
some fundamental amount of uncertainty in fresh, unseen text data, and
(2) some probability mass is reserved for every wrong word, too (no zeros

rule). If perplexity comes very close to 1, the cardinal rule that test data
must not be used for anything other than the final test, like training, should
be carefully verified.

• If our model ever assigned a probability of 0 to some word in the test data,
perplexity would go to infinity.22

22 To see this, note that 𝑙𝑜𝑔(0) tends toward infinity.

 This won’t happen because of the no zeros
rule.

• Lower perplexity is better.

• The perplexity can be interpreted as an average “branch factor”; in a typical
next word prediction instance, how many vocabulary words are
“effectively” being considered?

	1 Introduction
	2 Background: Natural language processing concepts and tools
	2.1 Taskification: Defining what we want a system to do
	2.1.1 Abstract vs. concrete system capabilities
	2.1.2 We need data and an evaluation method for research progress on a task

	2.2 A closer look at data: where it comes from and how it’s used
	2.2.1 Differentiating training from test data
	2.2.2 Creating a dataset from scratch

	2.3 Building an NLP system
	2.3.1 Architectures: Neural networks
	2.3.2 Choosing values for all the parameters: Minimizing a loss function
	2.3.3 The hardware: Graphics processing units (GPUs)

	3 The language modeling task
	3.1 Language modeling as next word prediction
	3.2 Why do we care about language modeling?
	3.3 Data for language models: Some nuances
	3.4 Evaluating LMs: Perplexity
	3.5 Building language models

	4 From LMs to large language models (LLMs)
	4.1 The move towards more data
	4.2 The architecture: Transformers
	4.3 Impacts of these changes
	4.3.1 Many other tasks are now reduced to language modeling
	4.3.2 Black boxes
	4.3.3 Cost and complexity affect who can develop these models now
	4.3.4 Adapting LLMs for use as products
	4.3.5 Safeguards and mitigation
	4.3.6 The evaluation crisis

	4.4 Knowing the model means knowing its training data
	4.4.1 What does LLMs’ training data contain?
	4.4.2 A cautionary note about data quality

	5 Practical points about using language models
	5.1 Is the specific wording of the “prompt” I supply to an LM important?
	5.2 Do I always have to check and verify model output, or can I simply “trust” the result?
	5.2.1 Truthfulness vs. “hallucination”
	5.2.2 Model outputs that reflect social biases

	5.3 Are language models intelligent?

	6 Where is the development of language models headed?
	6.1 Why is it difficult to make projections about the future of NLP technologies?
	6.2 What might AI regulation look like?
	6.2.1 What versions of government AI regulation are emerging?

	6.3 How can you contribute to a healthy AI landscape?

	7 Final remarks
	Acknowledgments
	Glossary
	References
	Appendix
	Loss functions and gradient descent, a bit more formally
	Word error rate, more formally
	Perplexity, more formally

