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Abstract  

Attention mechanisms have recently boosted performance on a range of NLP 
tasks. Because attention layers explicitly weight input components’ 
representations, it is also often assumed that attention can be used to identify 
information that models found important (e.g., specific contextualized word 
tokens). We test whether that assumption holds by manipulating attention 
weights in already-trained text classification models and analyzing the resulting 
differences in their predictions. While we observe some ways in which higher 
attention weights correlate with greater impact on model pre- dictions, we also 
find many ways in which this does not hold, i.e., where gradient-based rankings of 
attention weights better predict their effects than their magnitudes. We conclude 
that while attention noisily predicts input components’ overall importance to a 
model, it is by no means a fail-safe indicator.1 

1 Code is available at https://github.com/serrano-s/attn-tests.  

1 Introduction  

Interpretability is a pressing concern for many current NLP models. As they be- 
come increasingly complex and learn decision-making functions from data, 
ensuring our ability to understand why a particular decision occurred is critical.  

Part of that development has been the incorporation of attention mechanisms 
(Bahdanau et al., 2015) into models for a variety of tasks. For many different 
problems—to name a few, machine translation (Luong et al., 2015), syntactic 
parsing (Vinyals et al., 2015), reading comprehension (Hermann et al., 2015), and 
language modeling (Liu and Lapata, 2018)—incorporating attention mechanisms 
into models has proven beneficial for performance. While there are many variants 

 

https://github.com/serrano-s/attn-tests


of attention (Vaswani et al., 2017), each formulation consists of the same high-
level goal: calculating nonnegative weights for each input component (e.g., word) 
that together sum to 1, multiplying those weights by their corresponding 
representations, and summing the resulting vectors into a single fixed-length 
representation.  

Since attention calculates a distribution over inputs, prior work has used attention 
as a tool for interpretation of model decisions (Wang et al., 2016; Lee et al., 2017; 
Lin et al., 2017; Ghaeini et al., 2018). The existence of so much work on visualizing 
attention weights is a testament to attention’s popularity in this regard; to name 
just a few examples of these weights being examined to understand a model, 
recent work has focused on goals from explaining and debugging the current 
system’s decision (Lee et al., 2017; Ding et al., 2017) to distilling important traits 
of a dataset (Yang et al., 2017; Habernal et al., 2018).  

Despite this, existing work on interpretability is only beginning to assess what 
computed attention weights actually communicate. In an independent and 
contemporaneous study, Jain and Wallace (2019) explore whether attention 
mechanisms can identify the relative importance of inputs to the full model, 
finding them to be highly inconsistent predictors. In this work, we apply a 
different analysis based on intermediate representation erasure to assess 
whether attention weights can in- stead be relied upon to explain the relative 
importance of the inputs to the attention layer itself. We find similar cause for 
concern: attention weights are only noisy predictors of even intermediate 
components’ importance, and should not be treated as justification for a decision.  

2 Testing for Informative Interpretability  

We focus on five- and ten-class text classification models incorporating attention, 
as explaining the reasons for text classification has been a particular area of 
interest for recent work in interpretability (Yang et al., 2016; Ribeiro et al., 2016; 
Lei et al., 2016; Feng et al., 2018).  

In order for a model to be interpretable, it must not only suggest explanations 
that make sense to people, but also ensure that those explanations accurately 
represent the true reasons for the model’s decision. Note that this type of 
analysis does not rely on the true labels of the data; if a model produces an 



incorrect output, but a faithful explanation for which factors were important in 
that calculation, we still consider it interpretable.  

We take the implied explanation provided by visualizing attention weights to be a 
ranking of importance of the attention layer’s input representations, which we 
denote ℐ: if the attention allocated to item 𝑖 ∈ ℐ is higher than that allocated to 
item 𝑗 ∈ ℐ, then 𝑖 is presumed “more important” than 𝑗 to the model’s output. In 
this work, we focus on whether the attention weights’ suggested importance 
ranking of ℐ faithfully describes why the model produced its output, echoing 
existing work on explanation brittleness for other model components (Ghorbani 
et al., 2017).  

2.1 Intermediate Representation Erasure  
 

 

Figure 1: Our method for calculating the importance of representations 
corresponding to zeroed-out attention weights, in a hypothetical setting with four 
output classes.  



We are interested in the impact of some contextualized inputs to an attention 
layer, ℐ′ ⊂ ℐ, on the model’s output. To examine the importance of ℐ′, we run the 
classification layer of the model twice (Figure 1): once without any modification, 
and once after renormalizing the attention distribution with ℐ′’s attention weights 
zeroed out, similar to other erasure-based work (Li et al., 2016; Feng et al., 2018). 
We then observe the resulting effects on the model’s output. We erase at the 
attention layer to isolate the effects of the attention layer from the encoder 
preceding it. Our reasoning behind renormalizing is to keep the output document 
representation from artificially shrinking closer to 0 in a way never encountered 
during training, which could make subsequent measurements unrepresentative of 
the model’s behavior in spaces to which it does map inputs.  

One point worth noting is the facet of interpretability that our tests are designed 
to capture. By examining only how well attention represents the importance of 
intermediate quantities, which may themselves already have changed 
uninterpretably from the model’s inputs, we are testing for a relatively low level 
of interpretability. So far, other work looking at attention has examined whether 
attention suffices as a holistic explanation for a model’s decision (Jain and 
Wallace, 2019), which is a higher bar. We instead focus on the lowest standard of 
interpretability that attention might be expected to meet, ignoring prior model 
layers.  

We denote the output distributions (over labels) as 𝒑 (the original) and 𝒒ℐ′  

(where we erase attention for ℐ′). The question now becomes how to 

operationalize “importance” given 𝒑 and 𝒒ℐ′  . There are many quantities that 

could arguably capture information about importance. We focus on two: the 

Jensen-Shannon (JS) divergence between output distributions 𝒑 and 𝒒ℐ′ , and 

whether the argmaxes of 𝒑 and 𝒒ℐ′  differ, indicating a decision flip.  

3 Data and Models  

We investigate four model architectures on a topic classification dataset (Yahoo 
Answers; Zhang et al., 2015) and on three review ratings datasets: IMDB (Diao et 



al., 2014),2 Yelp 2017,3 and Amazon (Zhang et al., 2015). Statistics for each dataset 
are listed in Table 1.  

2 downloaded from github.com/nihalb/JMARS 
3 from www.yelp.com/dataset_challenge

Table 1: Dataset statistics. 

Dataset 
Average 

Number of 
Words (s.d.) 

Average 
Number of 
Sentences 

(s.d.) 

Number of 
Train + Dev 
Instances 

Number of 
Test 

Instances 

Number of 
Classes 

Yahoo 
Answers 

104 (114) 6.2 (5.9) 1,400,000 50,000 10 

IMDB 395 (259) 16.2 (10.7) 122,121 13,548 10 
Amazon 73 (48) 4.3 (2.6) 3,000,000 650,000 5 

Yelp 125 (109) 7.0 (5.6) 650,000 50,000 5 

Figure 2: Flat attention network (FLAN) demonstrating a convolutional encoder. 
Each contextualized word representation is the concatenation of two sizes of 
convolutions: one applied over the input representation and its two neighbors to 
either side, and the other applied over the input representation and its single 
neighbor to either side. For details, see Appendix A.1.  



Our model architectures are inspired by the hierarchical attention network (HAN; 
Yang et al., 2016), a text classification model with two layers of attention, first to 
the word tokens in each sentence and then to the resulting sentence 
representations. The layer that classifies the document representation is linear 
with a softmax at the end.  

We conduct our tests on the softmax formulation of attention,4 which is used by 
most models, including the HAN. Specifically, we use the additive formulation 
originally defined in Bahdanau et al. (2015). Given attention layer ℓ’s learned 
parameters, element 𝑖 of a sequence, and its encoded representation 𝐡𝑖, the 
attention weight 𝛼𝑖 is computed using ℓ’s learned context vector 𝐜ℓ as follows:  

𝐮𝑖 = tanh(𝐖ℓ𝐡𝑖 + 𝐛ℓ) 

𝛼𝑖 =  
exp(𝐮𝑖

⊤𝐜ℓ)

∑ exp(𝐮𝑗
⊤𝐜ℓ)𝑗

4 Alternatives such as sparse attention (Martins and Astudillo, 2016) and unnormalized 
attention (Ji and Smith, 2017) have been proposed. 

We evaluate on the original HAN architecture, but we also vary that architecture 
in two key ways:  

1. Number of attention layers: besides exploring models with a final layer of
attention over sentence representations (which we denote with a “HAN”
prefix), we also train “flat” attention networks with only one layer of
attention over all contextualized word tokens (which we denote with a
“FLAN” prefix). In either case, though, we only run tests on models’ final
layer of attention.

2. Reach of encoder contextualization: The original HAN uses recurrent
encoders to contextualize input tokens prior to an attention layer
(specifically, bidirectional GRUs running over the full sequence). Aside from
biRNNs, we also experiment with models that instead contextualize word
vectors by convolutions on only a token’s close neighbors, inspired by Kim



(2014). See Figure 2 for a diagram of the FLAN architecture using a 
convolutional encoder. We denote this variant of an architecture with a 
“conv” suffix. Finally, we also test models that are trained with no 
contextualizing encoder at all; we denote these with a “noenc” suffix.  

The classification accuracy of each of our trained models is listed in Table 3 in the 
appendix, along with training details for the different models.  

4 Single Attention Weights’ Importance  

As a starting point for our tests, we investigate the relative importance of 
attention weights when only one weight is removed. Let 𝑖∗ ∈ ℐ be the component 
with the highest attention and let 𝛼𝑖∗ be its attention. We compare 𝑖∗’s 
importance to some other attended item’s importance in two ways.   

4.1 JS Divergence of Model Output Distributions  

We wish to compare how 𝑖∗’s impact on the model’s output distribution 
compares to the impact corresponding to a random attended item 𝑟 drawn 
uniformly from ℐ. Our first approach to this will be to calculate two JS 
divergences—one being the JS divergence of the model’s original output 
distribution from its output distribution after removing only 𝑖∗, and the other 
after removing only 𝑟 —and compare them to each other. We subtract the output 
JS divergence after removing 𝑟 from the output JS divergence after removing 𝑖∗:  

Equation 1 

ΔJS = JS(𝒑, 𝒒{𝑖∗}) −  JS(𝒑, 𝒒{𝑟}) 

We plot this quantity against the difference Δ𝛼 = 𝛼𝑖∗ −  𝛼𝑟 in Figure 3. We show 
results on the HANrnn, as the trends for the other models are very similar; see 
Figures 7–8 and the tables in Figure 9 in the Appendix for full results.  



 

 

Figure 3: Difference in attention weight magnitudes versus ΔJS for HANrnns, 
comparable to results for the other architectures; for their plots, see Appendix 
A.2. 



 

Figure 4: These are the counts of test instances for the HANrnn models for which 
𝑖∗’s JS divergence was smaller, binned by Δ𝛼. These counts comprise a small 
fraction of the test set sizes listed in Table 1.  

Intuitively, if 𝑖∗ is truly the most important, then we would expect Eq. 1 to be 
positive, and that is what we find the vast majority of the time. In addition, 
examining Figure 3, we see that nearly all negative ΔJS values are close to 0. By 
binning occurrences of negative ΔJS values by the difference between 𝛼𝑖∗ and 𝛼𝑟 
in Figure 4, we also see that in the cases where 𝑖∗ had a smaller effect, the gap 
between 𝑖∗’s attention and 𝑟’s tends to be small. This is encouraging, indicating 
that in these cases, 𝑖∗ and 𝑟 are nearly “tied” in attention.  

However, the picture of attention’s interpretability grows somewhat more murky 
when we begin to consider the magnitudes of positive ΔJS values in Figure 3. We 
notice across datasets that even for quite large differences in attention weights 
like 0.4, many of the positive ΔJS are still quite close to zero. Although we do 



finally see an upward swing in ΔJS values once ∆𝛼 gets even larger, indicating only 
one very high attention weight in the distribution, this still leaves many open 
questions about exactly how much difference in impact 𝑖∗ and 𝑟 can typically be 
expected to have.  

4.2 Decision Flips Caused by Zeroing Attention  
 

Table 2: Percent of test instances in each decision-flip indicator variable category 
for each HANrnn.  

 

Table 2a: Yahoo Answers, HANrnn 
 
 

Yahoo Answers 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.5 8.7 

No 1.3 89.6 

Table 2b: IMDB, HANrnn 

IMDB 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 2.2 12.2 

No 1.4 84.2 

 

Table 2c: Amazon, HANrnn 

Amazon 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 2.7 7.6 

No 2.7 87.1 

Table 2d: Yelp, HANrnn 

Yelp 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 1.5 8.9 

No 1.9 87.7 

Since attention weights are often interpreted as an explanation for a model’s 
argmax decision, our second test looks at another, more immediately visible 
change in model outputs: decision flips. For clarity, we limit our discussion to 
results for the HANrnns, which reflect the same patterns observed for the other 
architectures. (Results for all other models are in Appendix A.2.)  



Table 2 shows, for each dataset, a contingency table for the two binary random 
variables (i) does zeroing 𝛼𝑖∗ (and renormalizing) result in a decision flip? and (ii) 
does doing the same for a different randomly chosen weight 𝛼𝑟 result in a 
decision flip? To assess the comparative importance of 𝑖∗ and 𝑟, we consider 
when exactly one erasure changes the decision (off-diagonal cells). For attention 
to be interpretable, the blue, upper-right values (𝑖∗, not 𝑟, flips a decision) should 
be much larger than the orange, lower-left values (𝑟, not 𝑖∗, flips a decision), 
which should be close to zero.5  

5 We see this pattern especially strongly for FLANs (see Appendix), which is unsurprising since ℐ 
is all words in the input text, so most attention weights are very small.  

Although for some datasets in Table 2, the “orange” values (the lower-left values, 
where 𝑟, not 𝑖∗, flips a decision), are non-negligible, we mostly see that their 
fraction of total off-diagonal values mirrors the fraction of negative occurrences 
of Eq. 1 in Figure 4. However, it’s somewhat startling that in the vast majority of 
cases, erasing 𝑖∗ does not change the decision (“no” row of each table). This is 
likely explained in part by the signal pertinent to the classification being 
distributed across a document (e.g., a “Sports” question in the Yahoo Answers 
dataset could signal “sports” in a few sentences, any one of which suffices to 
correctly categorize it). However, given that these results are for the HAN models, 
which typically compute attention over ten or fewer sentences, this is surprising.  

Altogether, examining importance from a single-weight angle paints a tentatively 
positive picture of attention’s interpretability, but also raises several questions 
about the many cases where the difference in impacts between 𝑖∗ and 𝑟 is almost 
identical (i.e., ΔJS values close to 0 or the many cases where neither 𝑖∗ nor 𝑟 
cause a decision flip). To answer these questions, we require tests with a broader 
scope.  

5 Importance of Sets of Attention Weights  

Often, we care about determining the collective importance of a set of 
components ℐ′. To address that aspect of attention’s interpretability and close 
gaps left by single-weight tests, we introduce tests to determine how multiple 
attention weights perform together as importance predictors.  

 



5.1 Multi-Weight Tests  

For a hypothesized ranking of importance, such as that implied by attention 
weights, we would expect the items at the top of that ranking to function as a 
concise ex- planation for the model’s decision. The less concise these explanations 
get, and the farther down the ranking that the items truly driving the model’s 
decision fall, the less likely it becomes for that ranking to truly describe 
importance. In other words, we expect that the top items in a truly useful ranking 
of importance would comprise a minimal necessary set of information for making 
the model’s decision.  

The idea of a minimal set of inputs necessary to uphold a decision is not new; Li et 
al. (2016) use reinforcement learning to attempt to construct such a minimal set 
of words, Lei et al. (2016) train an encoder to constrain the input prior to 
classification, and much of the work that has been done on extractive 
summarization takes this concept as a starting point (Lin and Bilmes, 2011). 
However, such work has focused on approximating minimal sets, instead of 
evaluating the ability of other importance-determining “shortcuts” (such as 
attention weight orderings) to identify them. Nguyen (2018) leveraged the idea of 
minimal sets in a much more similar way to our work, comparing different input 
importance orderings.  

Concretely, to assess the validity of an importance ranking method (e.g., 
attention), we begin erasing representations from the top of the ranking 
downward until the model’s decision changes. Ideally, we would then enumerate 
all possible sub- sets of that instance’s components, observe whether the model’s 
decision changed in response to removing each subset, and then report whether 
the size of the minimal decision-flipping subset was equal to the number of items 
that had needed to be removed to achieve a decision flip by following the 
ranking. However, the exponential number of subsets for any given instance’s 
sequence of components (word or sentence representations, in our case) makes 
such a strategy computationally prohibitive, and so we adopt a different 
approach.  

Instead, in addition to our hypothesized importance ranking (attention weights), 
we consider alternative rankings of importance; if, using those, we repeatedly 
discover cases where removing a smaller subset of items would have sufficed to 



change the decision, this signals that our candidate ranking is a poor indicator of 
importance.  

5.2 Alternative Importance Rankings  

Exhaustively searching the space of component subsets would be far too time- 
consuming in practice, so we introduce three other ranking schemes.  

The first is to randomly rank importance. We expect that this ranking will perform 
quite poorly, but it provides a point of comparison by which to validate that 
ranking by descending attention weights is at least somewhat informative.  

The second ranking scheme, inspired by Li et al. (2015) and Feng et al. (2018), is to 
order the attention weights by the gradient of the decision function with respect 
to each calculated attention weight, in descending order. Since each of the 
datasets on which we evaluate has either five or ten output classes, we take the 
decision function given a real-valued model output vector to be  

𝑑(𝒙) =  
exp(max

𝑖
(𝒙𝑖))

∑ exp 𝒙𝑖𝑖
 

Unlike the last two proposed rankings, our third ranking scheme uses attention 
weights, but supplements them with information about the gradient. For this 
ranking, we multiply each of our calculated gradients from our previous proposed 
ranking scheme by their corresponding attention weight magnitude. Under this 
ordering, attended items that have both a high attention weight and a high 
calculated gradient with respect to their attention weight will be ranked most 
important.  

We introduce these last two rankings as an attempt to discover smaller sets not 
produced by the attention weight ranking. Note, however, that we still do not 
take either as a gold-standard indicator of importance to the model, as with the 
gradient in Ross et al. (2017) and Melis and Jaakkola (2018), but merely as an 
alternative ordering method. The “gold standard” in our case would be the 
minimal set of attention weights to zero out for the decision to change, which 
none of our ordering methods will necessarily find for a particular instance.  



5.3 Instances Excluded from Analysis  

In cases where removing all but one input to the attention layer still does not 
produce a decision flip, we finish the process of removing components by 
removing the final representation and replacing the output of the attention layer 
with an arbitrary vector; we use the zero vector for our tests. Even so, since every 
real-valued vector output by the attention layer is mapped to an output 
distribution, removing this final item will still not change the classification 
decision for instances that the model happened to originally map to that same 
class. We exclude such instances for which the decision never changed from all 
subsequent analyses.  

 

Figure 5: The distribution of fractions of items removed before first decision flips 
on three model architectures under different ranking schemes. Boxplot whiskers 
represent the highest/lowest data point within 1.5 IQR of the higher/lower 
quartile, and dataset names at the bottom apply to their whole column. In several 
of the plots, the median or lower quartile aren’t visible; in these cases, the 
median/lower quartile is either 1 or very close to 1. 



We also set aside any test instances with a sequence length of 1 for their final 
attention layer, as there is only one possible ordering for such cases.  

5.4 Attention Does Not Optimally Describe Model Decisions  

Examining our results in Figure 5, we immediately see that ranking importance by 
descending attention weights is not optimal for our models with encoders. While 
removing intermediate representations in decreasing order by attention weights 
often leads to a decision flip faster than a random ranking, it also clearly falls 
short of matching (or even approaching) the decision-flipping efficiency of either 
the gradient ordering or gradient-attention-product ordering in many cases.  

In addition, although the product-based ranking often (but not always) requires 
slightly fewer removed items than the gradient ranking, we see that the purely 
gradient-based ranking ignoring attention magnitudes comes quite close to it, far 
outperforming purely attention-based orderings. For ten of our 16 models with 
encoders, removing by gradient found a smaller decision-flipping set of items 
than attention for over 50% of instances in that model’s test set, with that 
percentage often being much higher. In fact, for every model with an encoder 
that we tested, there were at least 1.6 times as many test instances where the 
purely gradient-based ranking managed a decision flip faster than the attention-
based ranking than vice versa.  

We do not claim that ranking importance by either descending gradients or 
descending gradient-attention products is optimal, but in many cases they 
discover much smaller decision-flipping sets of items than attention weights. 
Therefore, ranking representations in descending order by attention weight 
clearly fails to uncover a minimal set of decision-flipping information much of the 
time, which is a warning sign that we should be skeptical of trusting groups of 
attention weight magnitudes as importance indicators.  

5.5 Decision Flips Often Occur Late  

For all ordering schemes we tried, we were struck by the large fraction of items 
that had to be removed to achieve a decision flip in many models. This is slightly 
less surprising for the HANs, as they compute attention over shorter sequences of 
sentences (see Table 1). For the FLAN models, though, this result is highly 
unexpected. The sequences across which FLANs compute attention are usually 



hundreds of tokens in length, meaning most attention weights will likely be 
minuscule.  

The distributions of tokens removed by our different orderings that we see for the 
FLANrnns in Figure 5 are therefore remarkably high, especially given that all of our 
classification tasks have at least five output classes. We also note that due to the 
exponential nature of the softmax, softmax attention distributions typically 
contain only a few high-weighted items before the calculated weights become 
quite small, which can be misleading. In many cases, flipping the model’s original 
decision requires digging deep into the small attention weights, with the high-
weighted components not actually being the reason for the decision.  

For several of our models, especially the FLANs (which typically compute 
attention over hundreds of tokens), this fact is concerning from an explainability 
perspective. Lipton (2016) describes a model as “transparent” if “a person can 
contemplate the entire model at once.” Applying this insight to the explanations 
suggested by attention, if an explanation rests on simultaneously considering 
hundreds of attended tokens necessary for a decision– even if that set were 
minimal—that would still raise serious transparency concerns.  

5.6 Effects of Contextualization Scope on Attention’s 
Interpretability  

One last question we consider is whether the large number of items that are re- 
moved before decision flips can be explained in part by the scope of each model’s 
contextualization. In machine translation, prior work has observed that recurrent 
encoders over a full sequence can “shift” tokens’ signal in ways that cause sub- 
sequent attention layers to compute unintuitive off-by-one alignments (Koehn 
and Knowles, 2017). We hypothesize that in our text classification setting, the 
bidirectional recurrent structure of the HANrnn and FLANrnn encoders might 
instead be redistributing operative signal from a few informative input tokens 
across many others’ contextualized representations.  



 

 

Comparing the decision flip results for the FLANconvs in Figure 5 to those for the 
FLANrnns supports this theory. We notice decision flips happening much faster 
than for either of the RNN-based model architectures, indicating that the biRNN 
effectively does learn to widely redistribute the classification signal. In contrast, 
the convolutional encoders only allow contextualization with respect to an input 
token’s two neighbors to either side. We see similar results when comparing the 
two HAN architectures, albeit much more weakly (see Figure 10 in Appendix A.2); 
this is likely due to the smaller number of tokens being contextualized by the 
HANs (sentence representations instead of words), so that contextualization with 
respect to a token’s close neighbors encompasses a much larger fraction of the 
full sequence.  

Figure 6: The distribution of fractions of items removed before decision flips on 
the encoderless model architectures under different ranking schemes. The 
Amazon FLANnoenc results have a very long tail; using the legend’s order of 
rankings, the percentage of test instances with a removed fraction above 0.50 for 
that model is 12.4%, 2.8%, 0.9%, and 0.5%, respectively.  

We see this difference even more strongly when we compare to the encoderless 
model architectures, as shown in Figure 6. Compared to both other model 
architectures, we see the fraction of necessary items to erase for flipping the 
decision plummet. We also see random orderings mostly do better than before, 



indicating more brittle decision boundaries, especially on the Amazon dataset.6 In 
this situation, we see attention magnitudes generally indicate importance on par 
with (or better than) gradients, but that the product-based ordering is still often a 
more efficient explanation.  

6 This is likely due to the fact that with no contextualization, the final attended representations 
are just a linear combination of the input embeddings, so the embeddings themselves are 
responsible for learning to directly encode a decision. Since Amazon has the largest ratio of 
documents (which probably vary in their label) to unique word embeddings by a factor of more 
than two times any other dataset’s, and the final attended representations in the FLANnoencs 
are unaggregated word embeddings, it stands to reason that the lack of encoders would be a 
much bigger obstacle in its case. 

While these differences themselves are not an argument against attention’s 
interpretability, they highlight the distinction between attention’s weighting of 
inter- mediate, contextualized representations and the model’s use of the original 
input tokens themselves. Our RNN-based models’ ability to maintain their original 
decision well past the point at which models using only local or no context have 
lost the signal driving their original decisions confirms that attention weights for a 
contextualized representation do not necessarily map neatly back to the original 
tokens. This might at least partly explain the striking near-indifference of the 
model’s decision to the contributions of particular contextualized representations 
in both our RNN-based models and in Jain and Wallace (2019), who also use 
recurrent encoders.  

However, the results from almost all models continue to support that ranking 
importance by attention is still not optimal; our non-random alternative rankings 
still uncover many cases where fewer items could be removed to achieve a 
decision flip than the attention weights imply.  

6 Limitations  

There are important limitations to the work we describe here, perhaps the most 
important of which is our focus on text classification. By choosing to focus on this 
task, we use the fact that decision flips are often not trivially achieved to ground 
our judgments of importance in model decision changes. However, for a task with 
a much larger output space (such as language modeling or machine translation) 
where almost anything might flip the decision, decision flips are likely too coarse a 

 



signal to identify meaningful differences. Determining an analogous informative 
threshold in changes to model outputs would be key to expanding this sort of 
analysis to other groups of models.  

A related limitation is our reliance in many of these tests on a fairly strict 
definition of importance tied to the output’s argmax; an alternative definition of 
importance might assert that the highest attention weights should identify the 
most influential representations in pushing towards any output class, not just the 
argmax. Two of the core challenges that would need to be solved to test for how 
well attention meets this relaxed criterion would be meaningfully evaluating a 
single at- tended item’s “importance” to multiple output classes for comparison 
to other at- tended items and, once again, determining what would truly indicate 
being “most influential” in the absence of decision flips as a guide to the output 
space.  

Also, while we explore several model architectures in this work, there exist other 
attention functions such as multi-headed and scaled dot-product (Vaswani et al., 
2017), as well as cases where a single attention layer is responsible for producing 
more than one attended representation, such as in self-attention (Cheng et al., 
2016). These variants could have different interpretability properties. Like- wise, 
we only evaluate on final layers of attention here; in large models, lower-level 
layers of attention might learn to work differently.  

7 Related and Future Work  

We have adopted an erasure-based approach to probing the interpretability of 
computed attention weights, but there are many other possible approaches. For 
example, recent work has focused on which training instances (Koh and Liang, 
2017) or which human-interpretable features were most relevant for a particular 
decision (Ribeiro et al., 2016; Arras et al., 2016). Others have explored alternative 
ways of comparing the behavior of proposed explanation methods (Adebayo et 
al., 2018). Yet another line of work focuses on aligning models with human 
feedback for what is interpretable (Fyshe et al., 2015; Subramanian et al., 2017), 
which could refine our idea of what defines a high-quality explanation derived 
from attention.  

Finally, another direction for future work would be to extend the importance-
ranking comparisons that we deploy here for evaluation purposes into a method 



for deriving better, more informative rankings, which in turn could be useful for 
the development of new, more interpretable models.  

8 Conclusion  

It is frequently assumed that attention is a tool for interpreting a model, but we 
find that attention does not necessarily correspond to importance. In some ways, 
the two correlate: comparing the highest attention weight to a lower weight, the 
high attention weight’s impact on the model is often larger. However, the picture 
becomes bleaker when we consider the many cases where the highest attention 
weights fail to have a large impact. Examining these cases through multi-weight 
tests, we see that attention weights often fail to identify the sets of 
representations most important to the model’s final decision. Even in cases when 
an attention- based importance ranking flips the model’s decision faster than an 
alternative ranking, the number of zeroed attended items is often too large to be 
helpful as an explanation. We also see a marked effect of the contextualization 
scope preceding the attention layer on the number of attended items affecting 
the model’s decision; while attention magnitudes do seem more helpful in 
uncontextualized cases, their lagging performance in retrieving decision rationales 
elsewhere is cause for concern. What is clear is that in the settings we have 
examined, attention is not an optimal method of identifying which attended 
elements are responsible for an output. Attention may yet be interpretable in 
other ways, but as an importance ranking, it fails to explain model decisions.  
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A Appendices 

 
A.1 Model Hyperparameters and Performance  

We lowercased all tokens during preprocessing and used all hyperparameters 
specified in (Yang et al., 2016), except for those related to the optimization 
algorithm or, in the case of the convolutional or no-encoder models, the encoder. 
For each convolutional encoder, we trained two convolutions: one sweeping over 
five to- kens, and one sweeping over three. As the output representation of token 
𝑥, we then concatenated the outputs of the five-token and three-token 
convolutions centered on 𝑥. Unless otherwise noted, to train each model, we 
used Adam (Kingma and Ba, 2014) with gradient clipping of 10.0 and a patience 
value of 5, so we would stop training a model if five epochs elapsed without any 
improvement in validation set accuracy. In addition, for each model, we specified 
a learning rate for training, and dropout before each encoder layer (or attention 
layer, for the encoderless models) and also within the classification layer. For the 
HAN models, these are the values we used:  

• Yahoo Answers HANrnn, Yahoo Answers HANconv  
– Pre-sentence-encoder dropout: 0.4445  
– Pre-document-encoder dropout: 0.2202  
– Classification layer dropout: 0.3749 
– Learning rate: 0.0004  

• IMDB HANrnn  
– Pre-sentence-encoder dropout: 0.4445  
– Pre-document-encoder dropout: 0.2202  
– Classification layer dropout: 0.2457 
– Learning rate: 0.0004  

• Amazon HANrnn, Amazon HANconv  
– Pre-sentence-encoder dropout: 0.6  
– Pre-document-encoder dropout: 0.2 
– Classification layer dropout: 0.4 
– Learning rate: 0.0002  

• Amazon HANnoenc  
– Pre-sentence-encoder dropout: 0.6 
– Pre-document-encoder dropout: 0.2  
– Classification layer dropout: 0.4 



– Learning rate: 0.0002 
– Patience: 10  

• Yelp HANrnn, Yelp HANconv  
– Pre-sentence-encoder dropout: 0.7  
– Pre-document-encoder dropout: 0.1 
– Classification layer dropout: 0.7 
– Learning rate: 0.0001  

• Yelp HANnoenc  
– Pre-sentence-encoder dropout: 0.7  
– Pre-document-encoder dropout: 0.1 
– Classification layer dropout: 0.7 
– Learning rate: 0.0001 
– Patience: 10  

• Yahoo Answer HANnoenc  
– Pre-sentence-encoder dropout: 0.4445  
– Pre-document-encoder dropout: 0.2202  
– Classification layer dropout: 0.3749 
– Learning rate: 0.0004 
– Patience: 10  

• IMDB HANconv  
– Pre-sentence-encoder dropout: 0.4445  
– Pre-document-encoder dropout: 0.2202  
– Classification layer dropout: 0.2457 
– Learning rate: 0.0004 

• IMDB HANnoenc  
– Pre-sentence-encoder dropout: 0.4445  
– Pre-document-encoder dropout: 0.2202  
– Classification layer dropout: 0.2457 
– Learning rate: 0.0004 
– Patience: 10  

 
For the FLAN models, these are the values we used: 
 

• Yahoo Answers FLANrnn, Yahoo Answers FLANconv  
– Pre-document-encoder dropout: 0.4445  
– Classification layer dropout: 0.4457 
– Learning rate: 0.0004  



• IMDB FLANrnn, IMDB FLANconv  
– Pre-document-encoder dropout: 0.4445  
– Classification layer dropout: 0.3457 
– Learning rate: 0.0004  

• Amazon FLANrnn, Amazon FLANconv  
– Pre-document-encoder dropout: 0.6 
– Classification layer dropout: 0.4 
– Learning rate: 0.0002  

• Amazon FLANnoenc  
– Pre-document-encoder dropout: 0.6  
– Classification layer dropout: 0.4 
– Learning rate: 0.0002 
– Patience: 10  

• Yelp FLANrnn, Yelp FLANconv  
– Pre-document-encoder dropout: 0.7  
– Classification layer dropout: 0.7 
– Learning rate: 0.0001  

• Yelp FLANnoenc 
– Pre-document-encoder dropout: 0.7 
– Classification layer dropout: 0.7  
– Learning rate: 0.0001 
– Patience: 10  

• Yahoo Answers FLANnoenc  
– Pre-document-encoder dropout: 0.4445  
– Classification layer dropout: 0.4457 
– Learning rate: 0.0004 
– Patience: 10  

• IMDB FLANnoenc  
– Pre-document-encoder dropout: 0.4445  
– Classification layer dropout: 0.3457 
– Learning rate: 0.0004 
– Patience: 10  

 

 

 



Table 3: Classification accuracy of the different trained models on their respective 
test sets  

Dataset HANrnn HANconv HANnoenc FLANrnn FLANconv FLANnoenc 
Yahoo 

Answers 
74.6 72.8 73.1 75.5 73.1 72.3 

IMDB 50.3 48.9 46.1 49.1 48.2 45.4 
Amazon 56.9 55.3 51.2 56.6 54.4 50.2 

Yelp 63.0 61.0 58.6 62.3 60.7 58.2 

Trained model classification accuracies are reported in Table 3. We note that our 
IMDB data and Yelp data are different sets of reviews from those used by Yang et 
al. (2016), so our reported performances are not directly comparable to theirs. 
We were unable to reach a comparable performance for the Amazon dataset (and 
Yelp dataset, although different) to that in (Yang et al., 2016). We suspect that 
this is due to not pretraining the word2vec embeddings used by the model for 
long enough, combined with memory limitations on our hardware that 
necessitated decreasing our batch size in many cases. However, as noted in 
section 3, the analysis that we perform does not depend on model accuracy. It’s 
also worth noting that for the datasets for which we are able to get results that 
either pass or come close to the accuracies listed in the original HAN paper, the 
patterns we see in the results for the tests that we run are the same as the 
patterns that we see for the others. 

A.2 Full Sets of Plots  

Here we include the full sets of result plots for all models for all tests we describe 
in the paper, in order of appearance.  

In Figure 7, we see that the majority of ∆JS values continue to fall above 0, and 
that most are still close to 0. One point not stated in the paper, though, is that the 
upswing in ∆JS values as the difference between 𝑖∗’s weight and a randomly 
chosen weight increases tends to occur slightly earlier for models with less 
contextualization, implying that the improving efficiency of the attention-based 
ranking at flipping the decision as contextualization scope shrinks is also reflected 
in single-weight test results.  

 



                    

Figure 7: Differences in attention weight magnitude plotted against ∆JS for all 
datasets and architectures. 

 

                    

                  



 

 

 

Figure 8: Counts of negative ∆JS values grouped by the difference in their 
corresponding attention weights for all datasets and architectures. 



Figure 9 (on the pages following this description): Using the definition of 𝑖∗ given 
in section 4 (the highest-attention-weight attended item) and comparing to a 
different randomly selected attended item, these were the percentages of test 
instances that fell into each decision-flip indicator variable category for each of 
the four test sets on all models. Since we require our random item not to be 𝑖∗, 
we exclude any instances with a final sequence length of 1 (one sentence for the 
HANs, one word for the FLANs) from analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 9, HANrnn table: Yahoo 

Yahoo Answers 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.5 8.7 

No 1.3 89.6 

Figure 9, HANrnn table: IMDB 

IMDB 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 2.2 12.2 

No 1.4 84.2 

Figure 9, HANrnn table: Amazon 

Amazon 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 2.7 7.6 

No 2.7 87.1 

Figure 9, HANrnn table: Yelp 

Yelp 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 1.5 8.9 

No 1.9 87.7 

Figure 9, FLANrnn table: Yahoo 

Yahoo Answers 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.3 9.0 

No 0.3 90.3 

Figure 9, FLANrnn table: IMDB 

IMDB 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.1 14.5 

No 0.1 85.3 

Figure 9, FLANrnn table: Amazon 

Amazon 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.6 7.3 

No 0.5 91.6 

Figure 9, FLANrnn table: Yelp 

Yelp 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.3 8.0 

No 0.3 91.4 

 



Figure 9, HANconv table: Yahoo 

Yahoo Answers 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 1.2 3.3 

No 2.1 93.4 

Figure 9, HANconv table: IMDB 

IMDB 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 3.4 14.7 

No 2.6 79.3 

Figure 9, HANconv table: Amazon 

Amazon 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 4.4 13.1 

No 5.4 77.0 

Figure 9, HANconv table: Yelp 

Yelp 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 3.3 11.1 

No 4.0 81.6 

Figure 9, FLANconv table: Yahoo 

Yahoo Answers 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.4 6.8 

No 0.8 91.9 

Figure 9, FLANconv table: IMDB 

IMDB 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.2 17.3 

No 0.3 82.2 

Figure 9, FLANconv table: Amazon 

Amazon 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 1.3 6.8 

No 1.6 90.2 

Figure 9, FLANconv table: Yelp 

Yelp 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.8 12.1 

No 0.7 86.3 

 



Figure 9, HANnoenc table: Yahoo 

 

Yahoo Answers 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 2.5 18.2 

No 3.7 75.7 

Figure 9, HANnoenc table: IMDB 

IMDB 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 6.7 34.7 

No 3.2 55.4 

Figure 9, HANnoenc table: Amazon 

Amazon 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 13.8 25.8 

No 6.0 54.3 

Figure 9, HANnoenc table: Yelp 

Yelp 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 8.4 18.0 

No 5.2 68.4 

Figure 9, FLANnoenc table: Yahoo 

Yahoo Answers 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.7 5.8 

No 1.1 92.4 

Figure 9, FLANnoenc table: IMDB 

IMDB 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 0.3 27.6 

No 0.3 71.8 

Figure 9, FLANnoenc table: Amazon 

Amazon 

   
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 2.5 24.8 

No 1.6 71.0 

Figure 9, FLANnoenc table: Yelp 

Yelp 

  
Remove random: 

Decision flip? 

  Yes No 

Remove 𝑖∗: 
Decision 

flip? 

Yes 1.4 14.1 

No 1.3 83.2 



Looking at where negative ∆JS values tend to occur in Figure 8, we once again see 
that they tend to cluster around cases where the difference between the highest 
and randomly chosen attention weights is close to 0. There are some exceptions, 
however; perhaps the most obvious are the fat tails of these counts for the Yahoo 
Answer HAN models. Considering the highest-attention-weight ranking of 
importance for all Yahoo Answers HAN models in Figure 10 struggle in flipping the 
decision quickly, it may be that attention is less helpful than usual in identifying 
importance in its case, which could explain this discrepancy.  

In Figure 9, we list contingency tables for all 𝑖∗-versus-random single-weight 
decision-flip tests. We continue to see higher values overall in our blue cells 
(upper-right values, where 𝑖∗, not 𝑟, flips a decision) than orange (lower-left 
values, where 𝑟, not 𝑖∗, flips a decision), as described in section 4.2. The most 
general change we notice across all the tables is that in the encoderless case, 
there are more test instances (often many more) where at least one of 𝑖∗or our 
random attended item flipped the decision than for any other architecture, 
except in the case of the Yahoo Answers FLAN. Thinking about why this might be, 
we recall that in the encoderless case, word embeddings are much more directly 
responsible for encoding a decision. Yahoo Answers is our only topic classification 
dataset, where keywords like “computer” or “basketball” might be much clearer 
indicators of a topic than, say, “like” or “love” would be indicators of a rating of 8 
versus 9. This likely leads to much less certain decisions being encoded in the 
word embeddings of the non-Yahoo Answers datasets. For all other models, and 
in the case where potentially contradictory Yahoo Answers word embeddings are 
blended together before the final layer of attention (its HANnoenc), it is likely that 
decisions are simply more brittle overall.  

Finally, in Figure 10, we include the full set of fraction-removed distributions for 
the first decision flips reached under the different rankings we explored.  

 

A.3 Additional Tests  

Besides the tests we describe in the main paper, some of the other tests that we 
ran provide additional insights into our results. We briefly describe those here.  



In Figure 11, we provide the distributions of the original attention probability 
distributions that were zeroed at the point when different ranking schemes 
achieved their first decision flips. (Equivalently, these are the distributions of the 
sums of the zeroed attention weights described in Figure 10, only without 
repeated normalization.) We include these results to give a sense of which 
attention magnitudes the different rankings typically place towards the top. We 
notice that this probability mass required to change a decision is often quite high, 
which is unsurprising for the attention-based ranking, given that it frequently 
requires removing many items to flip decisions and attention distributions tend to 
have just a few high weights.  

Besides that, the main takeaway that we see here is that for most models, the 
distribution of attention probability masses zeroed by our gradient-based ranking 
or our product-based ranking is often shifted down by around 0.25 or more 
compared to the corresponding attention probability mass distribution for the 
attention-based ranking, which is a fairly large difference. This would seem to 
imply that these alternative rankings (which usually flip decisions faster) tend to 
differ in relatively substantial ways from the rankings suggested by the pure 
attention weights, not just in the long tail of their orderings, which is another 
warning sign against attention’s interpretability.  

The final set of tests that we include in Figures 12 and 13 consist of rerunning our 
single-weight decision-flip tests on the single “most important” attention weights 
in their respective attention distributions as suggested by our alternative rankings 
(gradient-based and product-based rankings) instead of attention magnitudes. 
These results serve two functions: first, they imply still more information about 
when the top weight suggested by an alternative, faster-decision-flipping ranking 
differs from the top attention weight. Intuitively, if we observe large differences 
between the sum of the “yes” row for one contingency table and the “yes” rows 
for the other rankings’ tables on that same model, this is likely due to differences 
in the frequencies with which the highest-ranked items achieve a decision flip, 
indicating differences in highest-ranked items (“likely” because of the noise added 
by the random sampling).  

The second piece of information that these tests provide is a lower bound (via the 
sum of the “yes” rows) for the number of cases where rankings flip a decision as 
quickly as possible (i.e., in the first item). For context, the sum of the “yes” row is 
higher than the corresponding sum in Figure 9 for all contingency tables using our 



product-based ordering. For the gradient-based ordering, however, this sum is 
actually lower than for the attention-based ranking’s tables in 14 out of our 24 
models. This tells us that our gradient-based method often finds fewer single- 
item ways of flipping decisions than the attention-based ranking, so in order to 
achieve its more efficient overall distribution of flips that we see for many models 
in Figure 10, it must usually flip decisions faster than attention in cases where 
both its ranking and the attention-based ranking require multiple removed 
weights.  



 

Figure 10: Distribution of fraction of attention weights that had to be removed by 
different ranking schemes to change each model architecture’s decisions for each 
of the four datasets. The different rankings (aside from “Attention”, which 
corresponds to the attention weight magnitudes in descending order) are 
described in section 5.2.  



 
Figure 11: Distribution of probability masses that had to be removed by different 
ranking schemes to change each model architecture’s decisions for each of the 
four datasets. While we do not discuss these in the paper due to space 
constraints, we notice that in most cases, a high fraction of the original attention 
distribution’s probability mass must be zeroed before the (renormalized) 
modified attended representation results in a changed decision using the 
Attention ranking.  



Figure 12 (on the pages following this description): Let 𝑖𝑔
∗  be the highest-ranked 

attended item using our purely gradient-based ranking of importance described in 
section 5.2. We rerun our single-weight decision flip tests using this new 𝑖𝑔

∗ , 

comparing to a different randomly selected attended item. These were the 
percentages of test instances that fell into each decision-flip indicator variable 
category for each of the four test sets on all models. Since we require our random 
item not to be 𝑖𝑔

∗ , we exclude any instances with a final sequence length of 1 (one 

sentence for the HANs, one word for the FLANs) from analysis. 
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Figure 13 (on the pages following this description): Let 𝑖𝑝
∗  be the highest-ranked 

attended item using our attention-gradient product ranking of importance 
described in section 5.2. Once again, we rerun our single-weight decision flip tests 
using this new 𝑖𝑝

∗ , comparing to a different randomly selected attended item. 

These were the percentages of test instances that fell into each decision-flip 
indicator variable category for each of the four test sets on all models. Since we 
require our random item not to be 𝑖𝑝

∗ , we exclude any instances with a final 

sequence length of 1 (one sentence for the HANs, one word for the FLANs) from 
analysis. 
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