A Visual Dictionary Attack on Picture Passwords
Microsoft’s Picture Password provides a method to authenticate a user without the need of typing a character based password. The password consists of a set of gestures drawn on an image. The position, direction and order of these gestures constitute the password. Besides being more convenient to use on touch screen devices, this authentication method promises improved memorability in addition to improving the password strength against guessing attacks. However, how unpredictable is the picture password? In this paper we exploit the fact that different users are drawn to similar image regions, and therefore these passwords are vulnerable to guessing attacks. More specifically, we show that for portrait pictures users are strongly drawn to use facial features as gesture locations. We collect a set of Picture Passwords and, using computer vision techniques, derive a list of password guesses in decreasing probability order. We show that guessing in this order we are able to improve the likelihood of cracking a password within a certain number of guesses. For example, if each guess takes 1 millisecond, it would take on the order of 1000 years to guess 25% of the passwords using a brute force method. However, using our ranked guess list we are able to guess 25% of the passwords in about 16 minutes.
Fig 1. An example of four picture passwords given by four different people over the same image. The password consists of a series of three gestures. These can be any combination of taps (blue), lines (red) and circles (green). The user is allowed to draw the gestures anywhere in the image. However, it is clear from the examples that users tend to choose similar locations. In this paper we use computer vision techniques to exploit this weakness, and measure how quickly a picture password can be guessed.
Publication:
A. Sadovnik and T. Chen, “A Visual Dictionary Attack on Picture Passwords.“, IEEE International Conference on Image Processing (ICIP)2013.
Leave a Reply