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1. INTRODUCTION

Graphical representations of quantitative information play an important role in the dissemination of
information in both public and scientific forums. R.W. Jones and Carreras [1996] estimated that 2.2
trillion graphs were published via print media in 1994 alone. Zacks et al. [2002] sampled academic
journals and newspapers across 10 years (1985-1994). They found that the average number of graphs
published per issue in academic journals rose from 34.7 to 61.2 during the sampled time period, while
the average number of graphs appearing in newsprint rose from 10.1 to 24.5 per issue. Not surprisingly,
Peden and Hausmann [2000] found an average of 67.73 graphs per book in a sample of introductory
psychology texts.
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Graphical information displays pervade published material, because they can offer a relatively concise
visual summary of data. Furthermore, properly designed graphs can facilitate the emergence of data
features (e.g., patterns; see Sanderson et al. [1989]) that are not immediately evident in nongraphical
data depictions; thus, researchers (e.g., Kosslyn [1989]) have theorized such data features in graphical
displays are automatically perceived by the viewer. As a result of their prevalence and advantages over
text for quantitative information display, graphs have been empirically studied and discussed both as
instructional aids for learning in children or novice populations [Gobbo 1994; Lee and Gerber 1999;
Liu et al. 1999; Moore 1993] and more generally as communicative information displays (see Butler
[1993]; Carpenter and Shah [1998]; Carswell [1992]; Gillan and Lewis [1994]; Kosslyn [1989]; Meyer
et al. [1997]). The representation of quantitative data, however, need not be confined to visual displays;
scientists began to investigate the potential to represent data in the auditory modality over 50 years ago
(for a brief review, see Frysinger [2005]). More recently, researchers have begun to examine auditory
graphs as tools for data exploration and analysis.

1.1 Rationale: The Need for Auditory Graphs

Digital technology has allowed for the economical and widespread production and implementation of
sounds via personal computers [Flowers et al. 2005]. The most obvious motivation for pursuing sound
as a means of quantitative information display has been the inability of some individuals to access
graphical visualizations (e.g., blind and visually impaired people). Kramer [1994], however, reviewed a
number of users, tasks, and scenarios where auditory displays could be advantageous, and researchers
have argued that auditory graphs have the potential to facilitate comprehension of graphical informa-
tion for both blind and sighted students and scientists [Flowers et al. 2005; Walker and Nees 2005a].
Some environmental conditions or constraints of a system can render visual displays unusable (such
as when a person’s line of sight with the display is obscured [Kramer 1994]) or insufficient (like in
cellular phones or other mobile devices where screen sizes are exceedingly small; see Brewster [2002]).
On the other hand, technological and computing advances have also allowed for substantial increases
in the size and number of visual displays in the typical computing workstation. This extra screen space
can introduce problems, particularly with the overabundance and disorganization of visual informa-
tion (for a discussion, see Grudin [2001]). Indeed, Wickens’ [2002] description of multiple resources
makes theoretical predictions that suggest less dual task interference when information can be spread
across modalities rather than processed within a single modality (e.g., by vision alone). Studies have
confirmed that auditory displays can be beneficial in scenarios where the display is small [Brewster
2002; Brewster and Murray 2000] or when the display is such that vision may be overtaxed [Brewster
1997; M. L. Brown et al. 1989].

For blind or visually impaired users of software and the world wide web, screen readers display
information through a text-to-speech conversion. Images may be “tagged” with a hidden text description
of the image, such as when a screen reader encounters a picture of a dog and reads aloud the tag “picture
of dog.” This commonly used and often recommended (e.g., Massachusetts Institute of Technology [n.d.];
Quesenbery [1999]; W3C [2000]) tagging strategy may make some media (i.e., pictures and photographs)
suitably accessible for the blind. Graphs like those that pervade print media, however, are not easy to
represent with a simple text tag. Furthermore, any attempt to verbally describe a graphical display
of quantitative information results in a lengthy text description of the graph that may remove the
advantages of the graphical display. To make the quantitative information “accessible,” tables have
often been used to represent data in lieu of more appropriate line graphs, a practice that also may
remove the advantages of graphical representations (for some guidelines for presenting information
in graphical form, see American Psychological Association [2001]; Gillan et al. [1998]; Oliver [1998]),
Other current practices in graphing for the visually impaired include the use of tactile or Braille graphs,
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but the hardware to produce tangible graphics has been cost prohibitive. Auditory representations of
quantitative information could fill a gap in data accessibility for the blind or help sighted people interact
with computers and other digital technologies more efficiently.

1.2 What Is An Auditory Graph?

Auditory graphs are a class of displays that rely on sonification—nonspeech auditory information dis-
play [Kramer et al. 1999]. Auditory graphs most commonly map data changes along the visual y-axis
to changes in the frequency of sounds, while visual x-axis changes are mapped to the temporal pre-
sentation of the sound (see, for example, Bonebright et al. [2001]; L. M. Brown and Brewster [2003];
L. M. Brown et al. [2003]; Childs [2005]; Flowers and Hauer [1995]; Mansur et al. [1985]; Smith and
Walker [2002; 2005]; Walker and Nees [2005b]). Empirical evidence has suggested that changes in au-
ditory frequency can be a perceptual analog for graphical spatial position, and theoretical approaches
to the perception of pitch have described a dimension that corresponds to the “height” of frequency
(see Shepard [1982]). Kubovy’s Theory of Indispensable Attributes (TIA; see Kubovy [1981]) proposed
that “visual spatial location is analogous to auditory frequency” (pp. 78). Frequency, then, is perhaps
the most compelling dimension of sound for representations of quantitative data. Nees and Walker
[2007] offered further discussion of this topic; they argued that the frequency mapping allows for the
emergence of patterns in data. Much like the primary display advantage of visual graphs lies in their
ability to efficiently communicate otherwise unnoticed patterns based on Gestalt perceptual grouping
phenomena, the perceptual grouping of tones is susceptible to the formation of Gestalts based upon
tonal relationships (see, e.g., Bregman [1990]; Deutsch and Feroe [1981]; M. R. Jones [1976]).

An early study of auditory graphs found them to be comparable in efficacy to the tactile displays
traditionally used to present quantitative information to the blind [Mansur et al. 1985]. Tactile data
representations yielded slightly more accurate responses, while auditory graphs resulted in faster reac-
tion times. Flowers and Hauer [1993] found that auditory graphical representations were better than
visual representations of the same data for imparting information regarding central tendency and
range. They later demonstrated that participants categorized sets of visual graphs and their auditory
counterparts as perceptually similar or dissimilar along the same dimensions, namely, shape, slope,
and degree of linearity [1995]. Another study by Flowers, Buhman, and Turnage [1997] gave further
evidence for the comparability of auditory and visual presentations of scatterplots. Participants esti-
mated the same Pearson correlation r value for visual scatterplots and their corresponding auditory
graphs. More recently, Bonebright et al. [2001] determined that, in general, participants were able to
match an auditory graph to a visual line graph or scatterplot of the same data. Brown and Brewster
[2003] found that people could produce a visual rendition of a graph that was over 80% accurate (on
average) after hearing an auditory presentation.

1.3 Complexity of Graphical Displays

Despite the promise of auditory graphs as a viable information display, studies of the data properties
that contribute to auditory graph complexity are lacking. The extensive literature on visual graph
comprehension, however, can potentially offer insight into those factors affecting graph complexity.
Several models and theories of graph comprehension have been proposed [Carpenter and Shah 1998;
Carswell 1992; Gillan and Lewis 1994; Kosslyn 1989; Pinker 1990]. Such theories and models cannot
necessarily be directly applied to auditory graphs, but auditory graph researchers would be remiss to
ignore the extensive literature and theory on visual graph comprehension.

An early study of visual graph comprehension found that performance on a trend identification task
decreased as the number of data points portrayed in a line graph increased [Schutz 1961], which sug-
gested that the number of data points in a graph contributes to complexity. Carswell et al. [1993;
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Carswell and Ramzy 1997] have operationally defined graphical complexity as a function of the graph’s
number of data points, symmetry, and number of trend reversals, whereby more data points, asymmet-
rical functions, and more trend reversals were factors associated with greater graphical complexity.
Meyer [2000; Meyer et al. 1997] defined graphical complexity according to the number of data points
in the graph (more data points being more complex), the number of data series concurrently presented
(where increasing the number of series leads to greater complexity), and the graphed data’s pattern
(e.g., the presence of meaningful data trends reduces complexity). Similarly, Friel et al. [2001] claimed
that graphical complexity “refers not only to the number of data items or categories, but also to the
kinds of data types (e.g., discrete versus continuous), the spread and variation within the data set,
and so on” (from paragraph 3 of their section “Progression of Graphs for Instruction”). Clearly, as Friel
et al’s “and so on” conclusion elucidates, even in the well-established literature of visual graph compre-
hension, descriptions of the factors contributing to the complexity of graphs vary, although researchers
seem to agree that the number of data points, the number of data series, and the trend and shape of
data patterns should impact graph comprehension.

To date, auditory graph studies have not manipulated fundamental characteristics of sonified data to
investigate the data properties that contribute to complexity. Previous research, however, has suggested
some data characteristics that might contribute to difficulty of comprehension. Consistent with sugges-
tions from visual graph literature, Bonebright et al. [2001] found that auditory graphs portraying two
data series (where data series were separated spatially such that one data series was presented simul-
taneously to each ear) were more difficult and took longer to match to their visual counterparts. They
also found that more disperse scatterplots were more difficult to accurately match to their visual rep-
resentations. Roth et al. [2002] found that participants had great difficulty (only a 25% rate of success)
at identifying an auditory line graph as linear increasing; most participants mistook this function for a
parabola. Performance for identifying auditory representations of parabola and sine wave functions was
better (both had 75% rates of success). Roth et al.’s curious findings regarding poor performance for the
identification of a simple linear increasing function, however, may be an artifact of their sonification
technique. They mapped y-axis values not only to frequency changes, but also to changes in spatial
elevation in the headphones. Although such redundant mappings are generally believed to be helpful
in sonification [Kramer 1994], auditory spatial elevation judgments are known to be susceptible to in-
accuracies (see, for example, Folds [2006]; Wenzel et al. [1993]). It seems likely that the unusual choice
of a secondary spatial mapping led to the decrement in performance observed for simpler functions,
as no theory of graph or auditory pattern comprehension would predict this pattern of results for a
frequency mapping alone. Furthermore, previous auditory graph research had found that participants
could distinguish linear from exponential functions with 84% accuracy [Mansur et al. 1985].

The studies mentioned above may offer insight into properties of data that might contribute to graph
comprehension difficulty, but the majority of published auditory graph studies focus on comparisons
across modalities or evaluations of different methods of sonification. No investigations that system-
atically manipulate data properties have been performed and meta-analytic comparisons of different
properties of sonified data sets that contribute to complexity (such as the number of data points, trend
reversals, or data series displayed) are not possible across studies.

1.4 Considerations from Auditory Pattern Perception Literature

While the literature specific to auditory graphs is sparse, stimuli that resemble auditory graphs have
been examined in other contexts in psychology and related disciplines, such as information theory and
auditory pattern perception. Although the study of the perception of frequency in time is not new, soni-
fication and auditory graph studies have required listeners to perform novel tasks with sounds (e.g.,
data exploration and monitoring; see Kramer [1994]) as compared to past research on basic auditory
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perception. Despite the unique tasks required of auditory graph listeners, existing theoretical ap-
proaches may provide valuable insights and make relevant predictions regarding the perception of
auditory graphs.

Martin [1972] suggested that rhythm—the “temporal patterning” (p. 487) of events in the
environment—was central to information processing. He proposed that many serial stimuli (like speech,
music, sequences of tones, etc.) are structured patterns in time that can be described in terms of a hierar-
chy of relative time and relative accents, which may involve nontemporal aspects of the stimulus. Martin
posited a role for the cyclical focusing of attention in anticipation of rhythmic events and suggested
that certain stimulus configurations—namely those that propagate rhythms that follow a listener’s
expectancies within the context of the hierarchy—were more amenable to processing than others.

M.R. Jones [1976] greatly expanded upon the work of Martin [1972] by elaborating a rhythmic theory
that was derived from studies of auditory perception. The relevant dimensions of Jones’ theory were
frequency, loudness, and time, and the interactive nature of relational changes in the frequency and
loudness dimensions of auditory stimuli as they occur in time was emphasized. Jones theorized that
certain stimulus configurations would be more favorable to processing than others and the relative
ease of comprehension of the patterns was described along a continuum ranging from nominal to
interval perceptual relations. For sounds that are nominally related, the listener can perceive only
that the sounds are the same or different. Ordinal relations allow for the perception of one sound as
having higher or lower frequency than its comparator. Finally, interval relationships between tones
are perceived as having both a direction and a magnitude. While, objectively, all sound relations could
be described in interval terms (i.e., direction and magnitude of frequency differences between sounds
can always be objectively quantified), rhythmic theory described the subjective, perceptual experience
of listeners as a function of the interactions of dimensions, of which frequency and time are most
relevant to the current discussion. Jones’ theory suggested a continuum leading up to an upper limit
for veridical perception of frequency changes in time (also see Bregman [1990]), whereby greater and
more irregular frequency changes per unit of time in an auditory pattern are more difficult to process
than unidirectional, regular frequency changes per unit of time.

Deutsch and Feroe [1981] proposed a model of the perception of tone sequences that was very similar
in concept to M.R. Jones’[1976] theory. Deutsch and Feroe suggested that the initial perceptual grouping
of sequences of tones is determined by Gestalt principles like proximity (in either frequency or time)
and good continuation (such as when a series of sounds consistently increase in frequency). Their model
predicted that patterns that better follow Gestalt grouping principles are easier to perceive. Deutsch
and Feroe also suggested that large and more frequent changes in frequency intervals from tone to
tone are detrimental to grouping. Tones that match anticipated patterns strengthen the representation
of the sequence, and mismatches serve to elaborate the representation, often at higher levels in the
hierarchy (provided a hierarchical rhythmic structure is present).

Auditory pattern perception theories (i.e., Deutsch and Feroe [1981]; M. R. Jones [1976]) make explicit
predictions about the ease with which auditory patterns can be perceived. Specifically, they suggest that
easily perceivable patterns are characterized by frequency changes over time that allow for the grouping
of tones based on Gestalt principals, such as temporal proximity, frequency proximity, and expectations
of good continuation of the pattern. Simple (e.g., monotonically increasing) data patterns in auditory
graphs, then, should allow for better performance of auditory graphing tasks than more complex data
patterns with more trend reversals per unit of time. Despite the fairly straightforward predictions of
these theories regarding ease and difficulty in auditory pattern perception, these theories did not con-
ceive of auditory patterns as graphs, nor were they intended to address the exact types of tasks (e.g.,
point estimation and trend identification) that are required of auditory graph listeners. The auditory
perception literature suggests, however, that greater and more irregular frequency changes per unit of
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time should generally result in sound patterns that are more difficult to perceive, and these predictions
should translate to performance tasks with auditory graphs. The systematic examination of the funda-
mental data properties that affect auditory graph comprehension should provide valuable insights for
sonification researchers. Kosslyn [1989] suggested that visual graphs provide for the automatic percep-
tion of some data features, as Gestalt patterns (based on spatial proximity, good continuation, etc.) can
emerge from visual graphs of data. Certain data features (e.g., a simple increasing trend) likewise may
be readily perceivable from an auditory graph, while more complex data features may make informa-
tion extraction more difficult. The identification of those properties of the data that may affect auditory
graph comprehension should permit auditory graph designers and listeners to better understand and
predict the attributes of data (e.g., patterns) that will be easily perceived from an auditory graph.

1.5 The Current Research

In the present pair of studies, we manipulated two fundamental properties of auditory graph stimuli—
the density of data points and number of trend reversals displayed—to examine the effects of graph
complexity for both point-estimation (Experiment 1) and trend-identification (Experiment 2) tasks. For
both studies, participants listened to auditory graph stimuli that depicted the price of a fictitious stock
over the course of a 10-hr trading day. Participants in the point-estimation experiment were asked to
estimate the price of the stock at a given hour of the day on each trial. For the trend-identification
experiment, participants identified the stock price’s direction of change (i.e., increasing or decreasing)
for a given 1-hr segment of the trading day.

Of note, these studies examined auditory line graphs, where no more than one y-axis value was
displayed for a given x-axis value. Although auditory graph researchers have investigated auditory
scatterplots [Bonebright et al. 2001; Flowers et al. 1997], box-whisker plots [Flowers and Hauer 1992;
Peres and Lane 2003, 2005], histograms [Flowers and Hauer 1993], and tabular data [Stockman et al.
2005], the majority of auditory graph research has examined auditory line graphs [Bonebright et al.
2001; Brewster and Murray 2000; L. M. Brown et al. 2002; L. M. Brown and Brewster 2003; Flowers and
Hauer 1995; Mansur et al. 1985; Roth et al. 2002; Smith and Walker 2002, 2005; Turnage et al. 1996;
Walker and Nees 2005b]. This is not surprising, considering that line graphs accounted for 72.5% of
graphs appearing in academic journals and 50.1% of all graphs appearing in newspapers in the sample
obtained by Zacks et al. [2002]. Likewise, Peden and Hausmann [2000] found that 63% of the graphs
appearing in introductory psychology textbooks were line graphs.

We frame our hypotheses with respect to the tasks studied: point estimation (Experiment 1) and
trend identification (Experiment 2). Although many different tasks can be required of graph users,
the identification of trends and the estimation of a y-axis value for a given x-axis value are common
activities that are representative of some of the typical graph user’s basic information needs. Other data
attributes such as symmetry and the initial direction of change were held constant or counterbalanced
in these studies.

1.6 Hypotheses

1.6.1 Hypothesis la: Point Estimation and Data Density. For the point-estimation task (Experi-
ment 1), performance was predicted to decline as data density increased (i.e., as more data points were
presented). This prediction was consistent with empirical findings and theoretical predictions from
visual graph comprehension literature (e.g., Carswell et al. [1993]; Carswell and Ramzy [1997]; Friel
et al. [2001]; Meyer [2000]; Meyer et al. [1997]; Schutz [1961]) and makes intuitive sense, because with
more data points the listener must select the target from a larger array of discrete tones. This predic-
tion is somewhat in conflict with the predictions of rhythmic theories like those of Martin [1972], which
predicted no perceptual decrements no matter the density of tones per second in auditory patterns, and
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of M.R. Jones, [1976], which predicted a decrement under circumstances of fast rates of presentation
coupled with extreme frequency jumps (rather than as a function of the rate of presentation per se).
Neither rhythmic theory, however, was intended to predict performance for this particular task (point
estimation) with auditory patterns.

1.6.2 Hpypothesis 1b: Point Estimation and Trend Reversals. Performance on the point-estimation
task was also predicted to decline as the number of trend reversals in the displayed data increased.
This prediction was consistent with empirical findings and theoretical predictions from visual graph
comprehension literature (e.g., Carswell et al. [1993]; Carswell and Ramzy [1997]). This hypothesis
was also consistent with predictions regarding auditory pattern complexity proposed by the theories of
M.R. Jones [1976] and Deutsch and Feroe [1981].

1.6.3 Hypothesis 2a: Trend Identification and Trend Reversals. Regarding trend identification with
auditory graphs (Experiment 2), performance on trend identification was predicted to decrease as the
number of trend reversals increased. This prediction was consistent with research in the visual graph
comprehension literature that has posited a role for trend reversals in the complexity of graphical
displays (e.g., Carswell et al. [1993]; Carswell and Ramzy [1997]). This prediction was also consistent
with predictions regarding auditory pattern complexity proposed by the theories of M.R. Jones [1976]
and Deutsch and Feroe [1981], which both suggested that directional changes in frequency create more
elaborate, complicated auditory patterns than stimuli with unidirectional frequency change.

1.6.4 Hypothesis 2b: Trend Identification Interaction of Density and Trend Reversals. For the trend-
identification task, an interaction was also predicted such that lower data density (i.e., fewer data
points presented per second in the display) would result in worse trend-identification performance as
the number of trend reversals increased. The lower data density auditory graphs offer less information
for participants to discern the data trends in the face of increasing trend reversals; M.R. Jones [1976]
generally suggested that the perception of sequences of tones is more difficult when frequency changes
are greater or occur more often per unit of time.

2. EXPERIMENT 1: POINT ESTIMATION

Experiment 1 examined the effects of data density and the number of trend reversals within the sonified
data on performance of a point estimation task with auditory graphs.

2.1 Method

2.1.1 Participants. Participants (N = 32; 16 males and 16 females) were recruited from undergrad-
uate psychology courses at the Georgia Institute of Technology. Participants’ mean age was 19.1 (SD =
1.6) years, and the ages sampled ranged from 18 to 25 years old. Participants reported having played a
musical instrument for an average of 3.5 (SD = 3.9) years, with 9 participants having never played an
instrument and 11 having played an instrument for 5 years or more. They reported a mean of 2.9 (SD =
3.5) years of formal musical training (i.e., private or class instruction), and a mean of 3.19 (SD = 3.96)
years of experience with reading musical notation. Participants had a mean of 0.3 (SD = 0.7) years of
experience with stock trading or closely following the stock market. They also reported having taken
a mean of 2.9 (SD = 2.5) college or advanced placement-level business or economics courses. The two
latter demographic questions were included as indicators of prior domain knowledge for the sonified
data, which was the price of a fictional stock.

2.1.2 Apparatus. Visual presentations (such as instructions and text presentations of questions
during trials) were made on a 17-in. (43.2-cm) LCD computer monitor. Auditory presentations were
delivered via Sennheiser HD 202 headphones, which were adjusted by the participant to a comfortable
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fit. Listening volume was approximately 65 dB SPL. All presentations of stimuli and data collection
were accomplished with the Macromedia Director MX 2004 software package.

2.1.3 Data Sets for Stimuli. Auditory graphs depicted the price of a stock in dollars as it varied
(within a range of 6 to 106 dollars) over the course of a 10-hr trading day that opened at 8 a.m. and
closed at 6 p.m. Fictional stock price data have been used in past research (e.g., Smith and Walker
[2005]; Walker and Nees [2005b]), because they represent a relatively generic domain that should be
accessible to naive subjects with no specialized expertise in the area. To further ensure that domain
knowledge did not influence performance for tasks in the current study, participants were given a brief
overview of the task with information regarding the domain (i.e., stocks have monetary values that
fluctuate during a day of market trading). No additional prior knowledge of the domain was necessary
for the graphing tasks in the current study.

Data density was manipulated at four levels that offered a psychologically and practically relevant
range of stimuli: one data point per second, two data points per second, four data points per second, and
eight data points per second. Each successive level, therefore, doubled the tempo of the previous level
(and, likewise, roughly doubled the perceived tempo of the previous level; see Walker [2002; 2007]).
With regard to the range of stimuli employed here, stimulus interonset intervals (IOIs) under 1800 ms
promote perceptual grouping; with longer intervals items may be perceived independently rather than
as members of a sequence (see Fraisse [1978; 1982]). Perception of tones as a coherent auditory graph,
therefore, may fail if data are not presented at a minimally sufficient rate and the lowest data density
employed here falls well within the limit of grouping by 10Is for tones.

Furthermore, from a practical perspective, auditory graphs will need to be designed such that a
listener can explore the data in a reasonable amount of time. For example, rhythmic sequences, char-
acterized by presentation rates around one item per second, have been characterized as perceptually
“slow,” while about five to six items per second are perceived as “fast” [Palomaki 2006] and, in stud-
ies of tempo, researchers have operationally defined stimuli with at or near four items per second as
“fast” [M. R. Jones et al. 2006] and at or near 10 items per second as “very fast” [Drake and Botte
1993]. Of further interest regarding reasonable upper limits for the temporal presentation of data in
auditory graphs, the threshold for determining the order of temporally presented stimuli (i.e., being
able to perceive which item preceded adjacent items in a series) has been shown to range from 20 to
100 ms [Fraisse 1978] and an auditory graph listener would be served poorly by a graph where this
“threshold of succession” was ambiguous. The current study’s fastest rate of presentation, while falling
within a presentation rate that is perceived as “fast,” was well below the rate whereby succession of
items was indeterminate in previous research. Another important consideration involved the duration
of discrete, individual tones, which necessarily decreased as more tones were added per unit of time.
Early research [Turnbull 1944] suggested that frequency discrimination deteriorated rapidly as the
length of a tone fell below durations of around 100 ms. The current study used tones of a duration well
above the threshold for failures of frequency discrimination because of tonal duration.

The second experimental variable involved the number of trend reversals presented in the audi-
tory graph stimuli. The four levels of the trend-reversals variable were operationally defined as zero,
one, two, and three trend reversals in the data. Auditory graphs with zero-trend reversals represented
data that either increased or decreased monotonically across the entire trading day. Graphs with one
trend reversal rose for the first half of the trading day, then fell, or vice versa. Graphs with two and
three trend reversals assumed two and three changes in the direction of the stock price data trend,
respectively.

Figure 1 offers visual depictions of each of the combinations of data density and trend reversals. Of
note, for each combination of the two independent variables, auditory graphs could be constructed such
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Fig. 1. Visual depictions of the 16 factorial combinations of stimuli with initially increasing data values. Note that these are
schematic depictions only; see Section 2.1.4 for specific details on the design of auditory graph stimuli.

that the data in the graphs initially increase (such as in Figure 1) or initially decrease. For a given
factorial combination of data density and trend reversals from the 16 different stimulus combinations,
participants experienced only graphs that initially increased or only graphs that initially decreased
within a stimulus combination cell. Across stimulus conditions, a given participant experienced 50% of
trials with initially increasing graphs and 50% of trials with initially decreasing graphs. For example,
for data density of one data point per second coupled with zero trend reversals, half of the participants
experienced linear increasing graphs; the other half experienced linear decreasing graphs.

2.1.4 Auditory Graph Stimuli Design. The price of the stock in dollars (on the y-axis) was repre-
sented by discrete tones that changed in frequency as the price changed, while each hour of the trading
day (on the visual x-axis) was mapped to 1 s in time. The duration of individual tones was held constant
at 125 ms per tone, with 10 ms onset and offset ramps. All auditory graphs were 10.125 s in duration.
Data for auditory graphs were sonified as MIDI data files using the Sonification Sandbox program
(see Walker and Cothran [2003]; Walker and Lowey [2004]), converted to .WAV files, and exported to
Audacity version 1.3.0b for track mixing. All sounds presented the same signal to both left and right
headphone channels (i.e., a center mix without stereo panning was employed). Within the Sonification
Sandbox program, stock data were represented with the MIDI instrument bank’s piano timbre. Scaling
anchors were assigned for maximum and minimum values in a data set. The minimum data value ($6)
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was assigned MIDI note G2, whose frequency was 98 Hz, and the maximum data value ($106) corre-
sponded to MIDI note B6, whose frequency was 1979.5 Hz. The full range of the chromatic scale from
note G2 to note B6 was used in each auditory graph and each graph attained maximum and minimum
data values. A positive polarity mapping was employed and data values in between the maximum and
minimum were assigned MIDI notes on an exact scale (i.e., in the event that data values fell between
notes on the chromatic scale, the tones were adjusted to represent the exact frequency of the data point
on the scale).

2.1.5 Auditory Context for X and Y Axes. Auditory context in the form of y-axis reference tones and
x-axis click tracks has been shown to generally provide cues that aid in the performance of point esti-
mation tasks with auditory graphs [Smith and Walker 2002; 2005]. Despite the potential for auditory
context to aid auditory graph comprehension, both y-axis reference tones and x-axis click tracks were
omitted in this study, as concurrent auditory context represented a potential confound when imple-
mented with the manipulations of the current studies. Regarding y-axis reference tones, the most useful
reference tones alternate (from maximum to minimum references) as the data trends change [Smith and
Walker 2002, 2005]. Given that the current study investigated the impact of trend reversals, the number
of reference tone alternations across stimuli would change as a function of trend reversals, perhaps pro-
ducing differential effects with regard to auditory stream segregation [Bregman 1990] and contextual
benefit.

Furthermore, considerable research has indicated that rhythmic perception is hierarchical, with
lowest nodes at the level of individual discrete sounds, which are grouped according to accents (i.e.,
rhythmic beats), etc., proceeding upward to higher-order, more complex temporal organizations (see,
for example, Deutsch and Feroe [1981], Fraisse [1978, 1982]; M. R. Jones [1976]; Povel and Essens
[1985]). Correspondingly, auditory graph research has suggested that x-axis rhythmic context (in the
form of clicks or beats) was more effective when the accents were placed at a density that was less than
the density of the actual discrete data points [Smith and Walker 2002, 2005]. In other words, a click
track helped little with temporal organization when the clicks coincided with each discrete data point
(and the clicks offered only redundant information), but the click track was beneficial when it played,
for example, once every two data points.

The manipulations of the current studies were such that both y-axis and x-axis auditory context could
not be held constant across the manipulations, as the contextual manipulations would potentially offer
more benefit for some conditions than others. Instead, context was provided via the instructions and
preexperimental practice. Participants were familiarized with the scaling of data (i.e., which frequencies
represented the highest and lowest prices of the day) as well as the mapping of stock price to the
increasing and decreasing frequencies of tones. For all trials, participants were told the opening price
of the stock (e.g., $50) as an additional contextual cue. In other words, although concurrent auditory
context was not used, participants were given other contextual cues (that could be held constant across
all conditions) to help them perform the graphing tasks.

2.1.6 Procedure and Task. Informed consent was obtained from participants before any procedures
were performed. Because of the novelty of the display, all participants experienced a brief (approximately
10-15 min), self-paced, conceptual background presentation (see Smith and Walker [2005]; Walker and
Nees [2005b]) that gave an overview of auditory graphs (e.g., “What is an auditory graph?”), as well
as instructions for the point-estimation task. The background presentation included information about
the different data densities employed in the study, and they were instructed that 1 s in the auditory
graph represented 1 hr of the trading day, regardless of the density. Participants were also given
part-task practice on important component steps of the point-estimation task during the introductory
presentation, followed by a full set (16 trials) of whole-task practice with feedback on the experimental
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point-estimation task. During these practice trials, participants heard auditory graph stimuli that were
equivalent to the stimuli presented during test trials (with respect to the data density and the number
of trend reversals) and the practice trials sampled the entire range of stimulus combinations that were
used in the test trials. At no time during practice, however, did a participant hear any stimulus that was
later used in a test trial. This was possible because of the counterbalancing of graphs with increasing
and decreasing initial deflections across stimulus combinations. A person who would later experience
linear increasing experimental trials (for a given combination of data density and trend reversals)
was given linear decreasing examples (of the same given combination of density and trend reversals)
during practice trials. Both part- and whole-task training have been shown to improve performance on
the point-estimation task [Smith and Walker 2005; Walker and Nees 2005b], so the combined effects
of both part- and whole-task practice before testing helped to reduce effects of unfamiliarity with the
display that might otherwise have been present in early test trials. Participants had the opportunity
to ask questions to resolve any questions about the nature of the auditory graph stimuli and the task.

The 4 (density) x 4 (trend reversals) design resulted in 16 stimulus combinations. Participants there-
fore experienced 11 sets of 16 experimental trials, with each set consisting of randomly interleaved
trials, one from each of the 16 data density and trend-reversal stimulus combinations. Over the course
of all 11 sets, participants were asked to identify the price of the stock for each hour of the trading day
(8 A.M.—6 P.M.) for each stimulus condition (16 combinations of data densities and trend reversals) in a
random order.

Individual trials began with a visual text presentation of the test question (e.g., “What is the price of
the stock at 10 A.Mm.?”) followed by the presentation of the auditory graph. To provide a baseline reference,
participants were told the opening price of the stock for each auditory graph. A task analysis (see Smith
and Walker [2005]) has shown that the point-estimation task requires the listener to: (1) listen to the
auditory graph; (2) determine which part of the auditory graph corresponds to the queried hour of the
day (i.e., a temporal interval division task); (3) perform a magnitude estimation task with respect to
the perceived pitch of the tone; and (4) compare the pitch at the queried time to the known pitch of the
opening price and assign a quantitative value. Participants were permitted to listen to the auditory
graph as many times as needed before responding; the next trial began after a response was recorded
with the computer keyboard. Participants were given mandatory 5-min breaks between sets 4 and 5
and between sets 8 and 9. In an effort to promote engagement with the task, participants were given
feedback about their performance for the set (as a whole) at the end of each of the 11 sets of experimental
trials (e.g., “You were within 5 dollars (or less) of the correct stock price on 8 out of 16 trials for this
set.”), but no specific feedback was given after individual experimental trials.

2.1.7 Dependent Variables. The primary dependent variable of Experiment 1 was operationally de-
fined as the root mean squared (RMS) error in dollars of participants’ responses to the point estimation
trials for each of the 16 stimulus combinations. For a more detailed analysis of the use of RMS er-
ror in point estimation sonification tasks, see Smith and Walker [2005]. The mean number of times
participants listened to graphs for each combination was a second dependent variable of interest.

2.2 Results

One outlier datum was removed from the analyses. One participant (presumably accidentally) re-
sponded with an estimated stock price of 878 dollars for the 10 A.M. question for the three trend reversals,
eight data points per second stimulus combination. Participants were explicitly told the data ranged
up to only 106 dollars and the participant gave no extreme responses for any other questions. This
datum was not included in analyses and the participant’s RMS error for that stimulus combination was
computed as a mean out of 10 trials instead of 11.
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Fig. 2. Overall results of the point-estimation task (Experiment 1) for the RMS error-dependent variable. Note that higher error
indicates worse performance; error bars represent standard error.
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Fig. 3. Overall results of the point-estimation task (Experiment 1) for the mean number of times listened dependent variable.
Error bars represent standard error.

To check the assumption that the initial deflection of the graphed data (either increasing or decreas-
ing) had no impact on performance, a series of one-way analyses of variance (ANOVAs) was performed
(for each combination of data densities and trend reversals) with the initial deflection of the graph as
the independent variable. The Bonferroni procedure was used to protect family-wise alpha across this
set of analyses. As was assumed, results for both dependent variables (RMS error and the mean number
of times a graph was played) showed no significant difference with regard to the initial deflection of
the graph for any stimulus combination; for further analyses the data were collapsed across the initial
direction of the graph. Overall results for the point-estimation study are depicted in Figures 2 (RMS
error) and 3 (mean number of times listened).
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Fig. 4. Results of the point-estimation task (Experiment 1) for the significant main effect of data density on both dependent
variables. Error bars represent standard error.

30 15
?
25 1 5 141
2
@ 20t »
S £ 131
o 15 5 -~
2 812 e
; ¥
< -
c -
51 s 11+ (%’
=
0 1
0 1 2 3 0 1 2 3
Trend Reversals Trend Reversals

Fig. 5. Results of the point-estimation task (Experiment 1) for the significant main effect of trend reversals on both dependent
variables. Error bars represent standard error.

Data were analyzed with 4 (data density) x 4 (trend reversals) repeated measures analyses of variance
(ANOVAs); Huynh—Feldt corrections were employed in all analyses where sphericity assumptions were
violated. The main effect of density was significant on both RMS error scores [F' (3, 93) = 3.08, p = .03,
partial n? = .09] and the mean number of times listened to each graph [F (2.0, 62.2) = 6.86, p = .002,
partial n2 = .18]. Results for the main effect of data density (collapsed across trend reversals) are
depicted in Figure 4.

Results for the main effect of trend reversals (collapsed across data density) are depicted in Figure 5.
For the trend reversals independent variable, the ANOVAs showed a significant main effect on both
RMS error scores [F (3, 93) = 41.09, p < .001, partial n2 = .57] and the mean number of times listened
to each graph [F(1.6, 49.6) = 10.27, p < .001, partial 5> = .25]. The interaction of data density and
trend reversals was not significant for either RMS error [F (9, 279) = 1.87, p = .06] or the mean number
of times listened [F'(4.9, 151.6) = 1.60, p = .17] in Experiment 1.
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Fig. 6. Results over time for the point-estimation task (Experiment 1). The first set featured practice trials with feedback, while
the rest of the sets were experimental trials with no specific feedback. Error bars represent standard error.

An exploratory analysis was conducted to determine if performance changed across presentations of
sets in time (collapsed across data density and trend reversals). As described above, each presentation
set consisted of 16 randomly interleaved trials, each with one presentation of each factorial stimulus
combination. To investigate practice effects, another repeated measures ANOVA was employed with
the RMS error for each set and the mean number of times listened to the graphs in the set as the depen-
dent variables. Results across sets (i.e., time) in Experiment 1 are depicted in Figure 6. This analysis
indicated effects of set on both RMS error [F(11, 341) = 2.65, p = .003, partial 2 = .079] and the mean
number of times listened to each graph [F'(4.3, 133.1) = 11.58, p < .001, partial 2 = .27].

Finally, demographic variables related to musical experience and experience with stock trading, math,
and business or economics courses were correlated with each other, as well as with a gross measure of
overall performance—the average RMS error across the entire study. Spearman’s rho was employed as
a result of the nonnormal distribution of the demographic variables. None of the demographic questions
were significantly associated with performance on the point-estimation task.

2.3 Discussion

Hypothesis 1a, regarding data density, predicted an increase in RMS error as the number of data points
per second increased. The data density manipulation showed a small, but significant, effect on both
RMS error scores and the mean number of times listened to graphs. As depicted in Figure 4, mean
differences in RMS error were small across manipulations of data density and this pattern of results
does not conclusively confirm or disconfirm Hypothesis 1a.

Results for the main effect of trend reversals for the point-estimation task generally confirmed Hy-
pothesis 1b that performance would decrease as the number of trend reversals increased. As depicted
in Figure 5, the best performance (i.e., lowest RMS error and lowest mean number of times listened for
the graphs) occurred when there were no trend reversals; the worst performance occurred with three
trend reversals in the data.

Together these results suggest that the number of trend reversals played a large role in participants’
ability to perform the point-estimation task, whereas the number of data points presented per second
had a less substantial influence on performance outcomes. The results regarding data density may be of
less practical than statistical significance, as the mean differences across all conditions were quite small
and account for relatively little performance variance as compared to the trend-reversals manipulation.
Further research is needed to clarify the extent to which data density can impact performance with
point-estimation tasks in auditory graphs. Performance (as measured by both RMS error and the mean

ACM Transactions on Applied Perception, Vol. 5, No. 3, Article 13, Publication date: August 2008.



Data Density and Trend Reversals in Auditory Graphs . 13:15

number of times listened to each graph) clearly decreased as the number of trend reversals increased
from 0 to 3. The data for RMS error showed a plateau for performance with 1 and 2 trend reversals
(see Figure 5). Although this plateau is not evident in the data for the mean number of times listened,
it warrants further investigation in future studies.

The exploratory analyses to look for effects of set over time on the dependent variables suggested
practice effects for both dependent variables. While the mean difference for RMS error over time are
small (see Figure 6), the plot of the number of times listened suggested that participants listened to
the auditory graph stimuli fewer times, on average, at the end of the study. Although the current data
cannot conclusively explain this effect, the combination of significantly fewer mean times listened in
set 11 without a corresponding drop in accuracy (RMS error) in later trials possibly suggests that by
the end of the study participants did not need to hear the auditory graph stimuli as many times to
maintain task performance.

3. EXPERIMENT 2: TREND IDENTIFICATION

Experiment 2 examined the effects of data density and the number of data trend reversals on perfor-
mance of a trend-identification task with auditory graphs. A new sample of participants was recruited,
but the apparatus, stimuli, and experimental manipulations were the same as those in Experiment 1.
The only substantial difference in methodology between Experiments 1 and 2 was the task; participants
in Experiment 2 were asked to identify local trends for each stimulus combination, as described below.

3.1 Method

3.1.1 Participants. Participants (N = 32;22 males and 10 females) were recruited from undergradu-
ate psychology courses at the Georgia Institute of Technology, and none had participated in Experiment
1. Participants’ mean age was 19.0 (SD = 1.4) years, and the ages sampled ranged from 18 to 24 years
old. Participants reported having played a musical instrument for an average of 4.8 (SD = 3.5) years,
with 3 participants having never played an instrument and 16 having played an instrument for 5 years
or more. Participants reported a mean of 3.9 (SD = 3.0) years of formal musical training (i.e., private
or class instruction) and a mean of 4.9 (SD = 3.8) years of experience with reading musical notation.
Participants had a mean of 0.5 (SD = 1.1) years of experience with stock trading or closely following the
stock market. They also reported having taken a mean of 2.6 (SD = 1.8) college or advanced-placement-
level math courses and an average of 1.0 (SD = 1.0) college or advanced-placement-level business or
economics courses.

3.1.2 Procedure and Task: Differences between Experiments 1 and 2. The procedure and task for
Experiment 2 were the same as Experiment 1 with a few notable exceptions. The introductory instruc-
tional materials and practice trials in Experiment 2 were like those in Experiment 1, except the session
was tailored to help participants to perform trend identification rather than point estimation. In Ex-
periment 2, participants were asked to identify the local trend of the stock between all 10 successive
hours of the trading day (e.g., “Did the price of the stock increase, decrease, or stay the same between
10 a.M. and 11 A.M.?”) for each stimulus condition in a random order. Participants were limited to three
response choices for trend: increased, decreased, or stayed the same.

3.1.3 Dependent Variables. The dependent variable of Experiment 2 was operationally defined as
the percentage of correct responses on the local trend identification task for each of the 16 stimulus
combinations. As before, the mean number of times participants listened to graphs for each set was a
second dependent variable of interest.
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Fig. 7. Overall results of the trend-identification task (Experiment 2) for the percentage correct variable. Error bars represent
standard error.
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Fig. 8. Overall results of the trend-identification task (Experiment 2) for the mean number of times listened dependent variable.
Error bars represent standard error.

3.2 Results

For Experiment 2, the first analyses again checked the assumption that the initial deflection of the
graphed data (either increasing or decreasing) had no impact on performance with a series of one-way
ANOVAs for each combination of data densities and trend reversals. As was assumed, results for both
dependent variables (percentage correct and the mean number of times a graph was played) showed no
significant differences with regard to the initial deflection of the graph for any stimulus combination; for
further analyses the data were collapsed across this variable. Overall results for the trend-identification
study are depicted in Figures 7 (for percentage correct) and 8 (for mean number of times listened).
For the primary analyses, 4 (data density) x 4 (trend reversals) repeated measures ANOVAs for each
dependent variable showed a significant main effect of data density on the mean number of times
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Fig. 9. Results of the trend-identification task (Experiment 2) for the main effect of data density. Error bars represent standard
error.
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Fig. 10. Results of the trend identification task (Experiment 2) for the significant main effect of trend reversals on both dependent
variables. Error bars represent standard error.

participants listened to each type of graph [F (2.5, 77.8) = 3.80, p = .02, partial n? = .11], but not on the
percent correct! [F (3, 93) = 2.04, p = .11]. Results for the main effect of data density (collapsed across
trend reversals) are depicted in Figure 9.

The main effect of trend reversals was significant on both percentage correct scores [F' (1.9, 58.8) =
60.78, p < .001, partial »2 = .66] and the mean number of times listened to each graph [F (2.1, 66.0) =
23.57, p < .001, partial n? = .43]. Results for the main effect of trend reversals (collapsed across data
density) on both dependent measures are depicted in Figure 10.

IProportions can be problematic in ANOVA, especially with large percentage scores such as those observed in the current study.
An alternative analysis strategy involves the use of the arcsine transformation of proportions (for a discussion, see Keppel and
Wickens [2004]). We analyzed the more interpretable percentage scores here. However, note that an ANOVA performed on arcsine
transformed percentage scores yielded a pattern of results that was identical to those reported for our analysis of untransformed
percentage scores.
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Fig. 11. Results over time for the trend-identification task (Experiment 2). The first set featured practice trials with feedback,
while the rest of the sets were experimental trials with no specific feedback. Error bars represent standard error.

The interaction of data density with trend reversals was significant for percentage correct [F' (7.1,
218.7) = 2.11, p = .04, partial n? = .06], but not for the mean number of times listened to each graph
stimulus [F (6.5, 200.2) = 1.48, p = .18]. The interactions are observed in the upper and lower left
corners of Figure 7.

Like in Experiment 1, a final, exploratory set of analyses was conducted to determine if performance
changed across presentations of sets in time (collapsed across data density and trend reversals). Results
across sets (i.e., time) in Experiment 2 are depicted in Figure 11. The ANOVAs indicated effects of set
on the mean number of times listened [F(2.7, 83.0) = 8.15, p < 0.001, partial »2 = 0.21], but not on the
percentage correct [F(10.1, 313.2) = 1.78, p = 0.06].

Demographic variables related to musical experience and experience with stock trading, math, and
business or economics courses were correlated with each other as well as with a gross measure of overall
performance—the average percentage correct across the entire study. Spearman’s rho was employed
due to the nonnormal distribution of the demographic variables and, again, none of the demographic
questions were significantly associated with performance on the trend-identification task.

3.3 Discussion

Figure 9 depicts the significant main effect of data density on the mean number of times listened to each
graph. The figure suggests that participants needed slightly fewer mean times listened for graphs that
had one data point per second as compared to other density conditions. The main effect of data density
on the number of times listened was small, however, and no main effect of data density was found for
the percentage correct measure. Again, more research is needed to conclusively determine the impact
of data density on auditory graph comprehension, but the current results suggest that density had a
small, but significant, impact such that fewer data points per second lead to slightly better performance.

A main effect of the number of trend reversals was found for both dependent measures; these are
depicted in Figure 10. Performance on the task decreased concurrently for both measures, as reflected
in simultaneous decreases in percentage correct and increases in the mean number of times listened
to the graphs as the number of trend reversals increased.

The finding of a main effect of trend reversals for the percentage correct variable, however, should be
interpreted in light of the significant interaction of data density and trend reversals for the percentage
correct. (No such interaction was present for the mean number of times listened). The interaction is
depicted in Figure 7. While performance with zero trend reversals remained near ceiling, moving from

ACM Transactions on Applied Perception, Vol. 5, No. 3, Article 13, Publication date: August 2008.



Data Density and Trend Reversals in Auditory Graphs . 13:19

one to two data points per second (and across all densities, for that matter), the interaction occurred
such that the introduction of one trend reversal showed a decline in performance at two data points
per second. Interestingly, Figure 7 suggests that, comparing two to three trend-reversal performance
from one to two points per second, performance for graphs with three trend reversals was better (than
performance with only two trend reversals) at one point per second. Performance with three trend
reversal graphs then dropped relatively sharply at two data points per second. This was contrary to
Hypothesis 2b, which predicted an interaction characterized by performance with three trend reversals
and one data point per second as the worst stimulus combination for the trend identification task.

The interaction of data density with trend reversals, coupled with the increase in the number of times
participants tended to listen to a graph as data density increased from one to two data points per sec-
ond, suggest that the change from one to two data points per second was problematic, particularly for
conditions where graphs featured one or three trend reversals. For zero trend reversals, performance
remained at ceiling across manipulations of data density, while two trend reversals in the data showed
little change as density increased from one to two data points per second. The slowest rate of presen-
tation seems to have compensated for the generally more difficult stimuli with three trend reversals,
but it is unclear why the same pattern was not observed for data with two trend reversals.

Like in Experiment 1, the exploratory analysis suggested a larger effect of set on the mean number of
times listened. These results for the trend-identification study generally parallel the findings from the
same analyses for the point-estimation study. Participants needed fewer presentations of the auditory
graph stimuli to maintain the same level of accuracy for later as compared to early trials.

4. GENERAL DISCUSSION

This study’s results regarding trend reversals suggested that, as was implied in theories by both M.R.
Jones [1976] and Deutsch and Feroe [1981], an auditory graph with linear increasing or decreasing
data is relatively easy to comprehend. When data are represented with sound, some features of data—
particularly if those features are parsimonious with regard to trend—may be easily perceived and
perhaps should be characterized as auditory versions of the emergent patterns discussed by Sanderson
et al. [1989]in their discussion of visual displays. This finding similarly parallels the predictions made in
Kosslyn’s [1989] theory of visual graph comprehension, namely, that simple patterns may be perceived
automatically and efficiently in graphical representations.

The manipulation of trend reversals in the current study did not control for changes in the frequency
intervals between queried data points as the number of trend reversals increased, as the frequency
scaling factor was instead held constant across stimuli. Although M.R. Jones’ [1976] rhythmic theory
directly predicts that complexity (i.e., perceivability) of an auditory sequence declines as larger and less
constant intervals between pitches are introduced, other work (i.e., Dowling [1978]) has suggested that
the processing of contour (i.e., trend changes) and intervals proceeds independently. A follow-up to the
current study is planned to disentangle the respective roles of trend reversals and frequency intervals
between tones by adjusting data scaling to reflect equal and constant interval changes across different
numbers of trend reversals.

Although more research is needed to isolate the exact data properties (interval changes, trend
changes, or both) whereby more trend reversals generally tended to result in worse auditory graph
comprehension in the current studies, current practices (and current software, etc.) for making graphs
from sound have never before considered that trend patterns in the data-to-be-represented may be a
critical factor influencing graph comprehension. The current findings suggest that, holding time and
frequency scaling factors constant, performance will generally be impacted negatively as the number
of trend reversals increases. Performance was at or near the ceiling for the trend-identification task
across all data densities when the data had no trend reversals and performance generally declined from
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ceiling levels as trend reversals were added. The same general pattern of findings was evident in the
point-estimation study as well. This does not mean that the introduction of trend reversals will render
auditory graphs unusable altogether, and this finding parallels theoretical predictions regarding the
comprehension of traditional visual graphs (e.g., Carswell et al. [1993]; Carswell and Ramzy [1997]).
It seems that the simplest auditory graphs are characterized by unidirectional, constant frequency
change, which elicit Gestalt perceptual good form because of temporal proximity, frequency proximity,
and expectations of good continuation of the frequency pattern. The same types of perceptual Gestalts
(e.g., spatial proximity, temporal proximity, and good continuation) likely contribute to the automatic
perception of patterns in visual graphs as described by Kosslyn [1989], which have also been char-
acterized as emergent features or patterns [Sanderson et al. 1989]. It seems plausible that, as data
relations become more complex (i.e., as they depart from simple linear increasing or decreasing rela-
tions), the comprehension of a graph, either visual or auditory, becomes more difficult. In extreme cases,
where data are random and characterized by drastic changes in y-axis values across small changes in
x-axis values, no auditory or visual pattern will emerge from graphical representations in any modality,
because no pattern is present.

Current practices in auditory graphing generally start by choosing a scaling factor (e.g., 100—2000
Hz), then sonifying the data within that scaling factor. The dilemma regarding the choice of a scal-
ing factor becomes more problematic when data are sonified in real time and a priori maximum and
minimum data points are unknown. More research is needed to determine if, as would be predicted
by rhythmic theory [M. R. Jones 1976], a proportional scaling change to reduce frequency intervals
could be used to alleviate auditory graph comprehensions problems for data with large, rapid changes
in a short period of time. Auditory y-axis context in the form of reference tones (see Smith and Walker
[2002, 2005]), which was not used in the current study, may also aid in the performance of auditory
graphing tasks for data with more frequent trend changes. Furthermore, sonification researchers have
yet to look at performance for highly trained listeners. Research has suggested that a brief training
session helps naive auditory graph listeners [e.g., Smith and Walker 2005; Walker and Nees 2005b], and
more extensive investigations of training and practice with auditory graphs may show that training
interventions also ameliorate some of the detriments in performance observed in the current study as
trend reversals in data increased. The data of the current studies, whose design and analyses were not
tailored to examine either practice or training, showed only small changes in accuracy comparing early
to later trials, but the analyses of performance over time in both studies suggested that participants
needed to hear stimuli fewer times by the end of the study to maintain the same level of performance.
Interestingly, the general patterns of the decreasing functions for mean times listened were more or less
congruent with traditional practice functions (see Newell and Rosenbloom [1981]). Research regarding
training with auditory graphs [Walker and Nees 2005b] has suggested that considerable improvements
over time might be possible if specific feedback for individual trials is introduced.

The relatively small impact of data density as compared to trend reversals in the current study does
not necessarily mean that the timing of data points will have only a small effect on auditory graph
comprehension across all reasonable choices of data density per unit of time. The patterns in the cur-
rent study were isochronous, with regular timing of data points occurring within a given graph. Clearly
not all graphical data lend themselves to regular x-axis spacing (e.g., scatterplots). The theories of
Martin [1972] and M.R. Jones [1976] both predict that nonisochronous data densities, occurring as a
result of data that are irregular on an x-axis value or missing data points, etc., will be problematic for
auditory pattern perception. Irregular timing of data, particularly data sets whose timing as auditory
graphs follow no predictable hierarchical pattern, will not allow for attention to be focused based on
expectancies. Smith and Walker [2002; Smith and Walker 2005], however, have shown that x-axis au-
ditory context—in the form of regular beats or clicks—can help auditory graph users with the temporal
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organization of data. Such contextual cues may ameliorate the potential problems that could otherwise
persist when sonifying nonisochronous data.

Auditory graphs have a great potential to improve data accessibility for blind students and scientists
as well as sighted people. This study investigated the role of two important attributes of data—the
density and the number of trend reversals. Results suggested a generally more pronounced effect at-
tributable to the role of the number of trend reversals. Furthermore, the current study has suggested
that theories of auditory pattern perception (e.g., M. R. Jones [1976]; Martin [1972]) may offer useful
insights in understanding how the data in an auditory graph can be presented such that relations are
simple and easy to perceive and understand.
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