
DRIVER DISPLAY USER MANUAL 1

Lafayette College | Electrical and Computer Engineering

Driver Display User Manual
ECE/ME 492 | Spring 2020

Last Revision: 4/3/2020
Prepared by: Leah Diamantides

DRIVER DISPLAY USER MANUAL 2

Abstract
This document details the technical information for the Driver Display (aka Dashboard Display)
subsystem within the FSAE Electric Car project. The physical system, user interface, beginning
steps, maintenance, and FAQs are described in the respective sections below.

DRIVER DISPLAY USER MANUAL 3

Table of Contents
Abstract 1

Introduction 4

Physical System 4

User Interface 6

Getting Started 7
Software Setup 7
Hardware Setup 8

Maintenance 11
Software 12

Displaying an image 12
Making a new font for the display 13
Editing the Object Dictionary 13

Hardware 14

FAQs 15

Appendix 16

DRIVER DISPLAY USER MANUAL 4

Introduction
This is a user manual for the driver/dashboard display system developed for the

2019-2020 LFEV team. All software was developed on the Arduino IDE using the ESP32 devkit
vl board. A 2.9in epaper display was used and is the same one used by the TSV battery packs.
(See the Appendix for information and datasheets for the ESP and display) This system was
never integrated with other systems such as the SCADA system, it was only tested with a
Raspberry Pi running CAN with a PiCAN2 hat. There is full functionality for receiving CAN
data (including the speed, state of charge, motor temperature, motor current, and warnings).
Speed, state of charge, and warnings are shown on the display (as described in the USER
INTERFACE section). Motor temperature and motor current are represented with RG LEDs (as
shown in the GETTING STARTED → HARDWARE SETUP section). There are two buttons
included in this design (also described in the GETTING STARTED → HARDWARE SETUP
section). However, we did not have the chance to add the functionality to transmit CAN data
using CANopen. This should not be too hard to configure as the buttons are already functional in
the code.

Physical System

Figure 1: The annotated mechanical model of the physical system
This manual focuses on the left panel. The right panel is described in further detail in the

Carman User Manual in the Cockpit section. Looking at the left panel, there are several labels:
M - these are four screw holes that should be used to mount the driver display PCB to the panel

DRIVER DISPLAY USER MANUAL 5

L1 - this is the motor temperature RG LED, with green indicating good, yellow indicating that
the driver should slow down to reduce the temperature of the motor, and red indicating that the
motor temperature is getting so high that the car might shut down (these thresholds are
configurable as variables in the code)
L2 - this is the motor current RG LED, with green indicating good, yellow indicating that the
driver should slow down to reduce the strain on the motor, and red indicating that the motor is
overcurrenting and the car might shut down (these thresholds are configurable as variables in the
code)
B1 & B2 - these buttons’ meanings are configurable in the SCADA config.xml file, again this
system was never tested with SCADA so the functionality does not exist yet. Some uses for these
buttons included certain motor resets that had to be done by the driver or a way of logging a new
driver
D1 - this is the epaper driver display which is mounted onto the PCB behind the panel with
screws (as described in the GETTING STARTED → HARDWARE SETUP section)

An important thing to note is that the right-side panel contains an LED labeled AMS LED .
This light is the only one on the right side that is powered by the ESP. This is discussed further in
the GETTING STARTED → HARDWARE SETUP section.

Below is a simplified block diagram of the system showing the inputs and outputs of the
microcontroller. The GLV power and CAN connections are further described in the GETTING
STARTED → HARDWARE SETUP section.

Figure 2: Simplified block diagram showing inputs and outputs

DRIVER DISPLAY USER MANUAL 6

User Interface
The speed and state of charge shown on the display, as well as the motor temperature and

current represented as RG LEDs, are all variables defined in the Object Dictionary (for more
information on the Object Dictionary, see the Appendix or the MAINTENANCE →
SOFTWARE section). When the code is running normally on the board, this is what the display
should look like (zeros will appear until CAN data is received):

Figure 3: The annotated normal state of the dashboard display
Depending on what kind of error occurs, a proper warning will be displayed. “Warning”

is one of the variables in the Object Dictionary. These warnings occur when the “warning”
variable is changed via CAN from 0 (no warning) to a number ranging 1-3.

Figure 4: This is the motor overheating warning which is defined as warning number 1

Figure 5: This is the overcurrent warning which is defined as warning number 2

DRIVER DISPLAY USER MANUAL 7

Figure 6: This warning means there’s been a break in the safety loo[which is defined as warning
number 3

***Any of these images, including both the normal state and the warnings, can be changed by
following the Img2Lcd instructions documented in the MAINTENANCE → SOFTWARE
section***

The display will go back to the normal state when the “warning” variable is reset to 0.

Getting Started
The following subsections contain a detailed guide on how to get started with this system

both on a software level and on a hardware level.

Software Setup
1. Go to the Lafayette-FSAE Github and find the DriverDisplayCode repository or use this

link . Download or clone this repository.
2. Download the Arduino IDE from the Arduino website, linked here .
3. Open the ESP32_Epaper.ino file from the DriverDisplayCode repository in Arduino.

This file can be found in the repository in the folder ESP32_Epaper .
4. To upload this code to the board, you must set up the board you are programming. The

driver display uses an ESP32 devkit v1. To start, follow these instructions:
a. In the Arduino IDE, select File → Preferences
b. Where it says “Additional Boards Manager URLs” put the following link:

https://dl.espressif.com/dl/package_esp32_index.json
c. Click “OK” in the Preferences window
d. To link your board select Tools → Board: → Boards Manager…
e. When the Boards Manager window pops up it might download automatically or

ask you if you want to download new boards, click “OK”.

https://github.com/Lafayette-FSAE/DriverDisplayCode
https://www.arduino.cc/en/main/software
https://dl.espressif.com/dl/package_esp32_index.json

DRIVER DISPLAY USER MANUAL 8

f. Once it finishes the download (this may take a minute), type “esp” in the search
bar.

g. The “esp32” board library should show up, select a version (I have used the most
recent 1.0.4) and click “Install”.

h. Once the library has been installed (this may take a minute), close the window
and navigate back to Tools → Board:

i. This time, in the drop-down menu, select ESP32 Dev Module
j. Once this board is linked and you select the right COM port, you should be able

to upload the code to the board with the following instructions
5. In the Arduino IDE, you can use the checkmark in the upper left hand corner to “verify”

the code, or comile it without uploading the program to the board.
6. Next to the checkmark there is an arrow pointing right, this will compile and then upload

the code to the board. Press this button and follow these steps:
a. If the code compiles without any error, you should see something like this:

b. While the “Connecting…..____…..___” is running, hold the Boot button, on the
board. Not doing so will result in an error (see FAQs section). We realize that this
is inconvenient, and we’ve tried to fix it with no luck. However, it only needs to
be done when uploading to the board, so it will not be a concern once the board
has its final code uploaded and the display is installed on the car.

7. Once, the code is uploaded to the board, you should see the normal state shown in the
USER INTERFACE section.

Hardware Setup
The driver display PCB was ordered but not populated before the end of the semester, so

there may need to be some debugging and fixing before this board is ready for the car. The
following describes how the board should work and how the pieces should fit on the board. For
more information on this PCB, go to the Lafayette-FSAE Github and find the DriverDisplay
repository or use this link .

The following shows the front of the PCB, the side that is facing the driver. As mentioned
in the PHYSICAL SYSTEM section, this board will go behind the dashboard left-side panel,
with only the LEDs, buttons, and display showing through.

https://github.com/Lafayette-FSAE/DriverDisplay

DRIVER DISPLAY USER MANUAL 9

Figure 7.a: Front view of dashboard PCB

Figure 7.b: Zoom of blue rectangle in Figure 7.a
In Figure 7.a, the holes labeled M represent the mounting holes used to mount the PCB to

the dashboard panel (as shown in Figure 1). The purple diagonal line in the upper left corner
shows where the PCB might need to be cut, in order to better fit behind the panel. The rectangle
D1 corresponds to the D1 in Figure 1 and is the part of the screen that should be visible through
an opening in the panel. The rectangle D2 represents the actual size and location of the epaper
display, including the four mounting holes needed to mount the display to the PCB.

The buttons and LEDs are more clearly seen in Figure 7.b . The buttons are labeled BTN1
and BTN2. The motor temperature LED is labeled D3 and the motor current LED is labeled D4 .

If the display, buttons, and LEDs are mounted properly, the four mounting holes should
line up with the mounting holes on the dashboard panel. Then the display, buttons, and LEDs
should fit smoothly into the spaces shown in Figure 1 .

DRIVER DISPLAY USER MANUAL 10

The following shows the back of the same PCB, the side that is facing away from the

driver.

Figure 8.a: Back view of dashboard PCB

Figure 8.b: Zoom of blue rectangle in Figure 8.a
The important thing to note on the back of this PCB, as shown in Figure 8.a , is the

location and orientation of the ESP32 devkit. Make sure that the ESP gets mounted on the back
(away from the driver) and not the front, otherwise, the I/O pins will not be wired properly.

DRIVER DISPLAY USER MANUAL 11

The connectors can be more easily seen in Figure 8.b . There are three important
connectors for this board, labeled as J1, J2, and J3. Connector J1 gives the board power from
GLV as well as access to the CANbus in the car. Connector J2 is all the connections that are
needed to interface with the epaper display (further described in FAQs section with breadboard
diagram). Lastly, J3 connects to the AMS LED shown in Figure 1 . The trigger for the AMS LED
will come from SCADA via the CANbus, but this functionality was never tested.

Another important note is that these connections will likely need to be attached before the
display is mounted to the front of the board. There is very little space between the mounting
holes and the connectors, so I expect this to be a solution.

Maintenance
The following explains how to maintain this system. The software can be fairly easily

maintained by editing the existing code. As mentioned, there are a few things that did not get
finished on the software side that will need to be added. Additionally, the PCB has never been
tested so instructions on how to set up the system on a breadboard are included.

Software
To update the software, follow the instructions under the GETTING STARTED →

SOFTWARE SETUP section.
All code for editing the user interface is in the Dashboard.cpp file in the existing

repository. The code is well commented, so it should be simple to make adjustments on your
own. There are a few aesthetic things that are not as simple to figure out and those are:
displaying an image, making a new font for the display, and editing the Object Dictionary.

Displaying an image
The main screen for the display uses a background image that may be found here . This

image was created using Microsoft Paint and then saved as a .jpg file. In order to configure an
image to be used on the display:

1. Download Img2Lcd. Which can be found in the DriverDisplayCode repository in the
Image2Lcd folder

2. Open your .jpg image
3. Set the following parameters:

https://github.com/Lafayette-FSAE/DriverDisplayCode/blob/master/ESP32_Epaper/imglib/dash.jpg

DRIVER DISPLAY USER MANUAL 12

Figure 9: Parameters for Img2Lcd program
*** You can also check the Reverse Color option, but I wanted mine to invert***

4. Once this is done, click Save
5. Open your new .c file, copy all of the contents, and paste them into the BitmapGraphics.h

file, which can be found in the repository under the ESP32_Epaper folder
6. You can now use the drawEampleBitmap function to display your image. You can see

many examples of this function being used in the Dashboard.cpp file

Making a new font for the display
If you would like a font that does not currently exist in the DriverDisplayCode repository under
ESP32_Epaper → Fonts , then you can add it using the following steps:

1. Go to http://oleddisplay.squix.ch/#/home
2. Use the following settings (but change Font Family, Style, and Size to your preference):

http://oleddisplay.squix.ch/#/home

DRIVER DISPLAY USER MANUAL 13

Figure 10: Font Converter Settings
3. Click Create
4. Copy and paste the text created, and make it into a .h file
5. Put this file in the ESP32_Epaper → Fonts folder and check the Dashboard.cpp file for

examples on how to use a different font.

Editing the Object Dictionary
The Object Dictionary has been adopted from a GitHub Repository by robincornelius. If

looking to add a variable to the Object Dictionary:
1. Download the EDS Editor linked above
2. Open the .XDD file found in the DriverDisplayCode repository or linked here
3. In the EDS editor to the Object Dictionary tab.
4. Right click anywhere in the box called Manufacturer Specific Objects . Click Add New

Object . Add your new variable. If looking to edit a variable that already exists, follow
these same steps but rather than right clicking, choose the variable you are editing and
make changes accordingly.

5. Be sure to save this .XDD file.

To then add this functionality of the Object Dictionary to your code, use the following

steps:
1. In the EDS Editor go to File → Export CanOpenNode c/h
2. This will create a CO_OD.h and CO_OD.c file. These already exist in the current

repository, so you can replace them or edit them. I strongly recommend editing them.
There were a lot of variables we had to add to get it to work, so try editing the current file
instead.

https://github.com/robincornelius/libedssharp/releases/tag/v0.8
https://github.com/Lafayette-FSAE/DriverDisplayCode/blob/master/ESP32_OD.xdd

DRIVER DISPLAY USER MANUAL 14

Hardware
As mentioned before, because the dashboard PCB was never populated or tested, there

may be issues that need to be debugged. All of my development was done on a breadboard, so
here is a detailed diagram of the I/O connections. The MCP2551 is the CAN transceiver (see
Appendix), PacMan uses this chip as well. Hopefully, this should help when testing and
debugging the system.

Figure 11: Wiring diagram for debugging purposes

DRIVER DISPLAY USER MANUAL 15

FAQs

Why are we using an epaper display?
Epaper displays are very low power, as is the ESP that powers it. This is a great solution for the
car because we needed something low-power and sunlight readable. There’s no glare on an
epaper display, so the driver will always be able to see it.

Why can’t I upload to the ESP32?
Check to make sure you installed the board correctly using the steps outlined in GETTING
STARTED → SOFTWARE SETUP. If that’s done correctly, you may be getting an error that
looks like:

Make sure you hold the Boot button on the devkit while the “Connecting…..____…..___”
process is running, this should fix your problem.

Why isn’t the partial update working on the display?
Early on, we bought 2.9in epaper displays that displayed in black, white, and red. We later found
out that these displays do not support partial update . They look very similar to the one that is
supposed to be used, so make sure you are using a display that only supports black and white
images.

Are there any other resources for using CAN?
All CAN code for this system was borrowed and adapted from PacMan firmware. The Github for
PacMan firmware is a good place to look.

Appendix

ESP32 devkit v1
This is the microcontroller used as the brains behind this system. All information about it can be
found at this link .

https://github.com/Lafayette-FSAE/PacManFirmware
https://docs.zerynth.com/latest/official/board.zerynth.doit_esp32/docs/index.html

DRIVER DISPLAY USER MANUAL 16

Waveshare 2.9in epaper display
This is the display we are using which supports partial update. This is the black and white
version not the black, white, and red version. All information about it can be found at this link .

MCP2551
This is the CAN transceiver we are using. The ESP32 does not have CAN capabilities without it,
and this is the same one that PacMan uses. In general, if there are problems with CAN you
should look at the PacMan documentation; all CAN functions for this system were borrowed
from that.

Object Dictionary
The system currently keeps track of only 5 variables, the Object Dictionary looks like this:

2000 speed

2001 temperature

2002 current

2003 warningNum

2004 SOC (state of charge)

2005 AMS

These variables are all set up as uint16 and initialized as 0. The speed , temperature , and current
can really be any uint16 number, whereas the warningNum should only be between 0 and 3 (as
mentioned in the USER INTERFACE section), the SOC should be between 0 and 100, and AMS
should only be 0 or 1 (no fault or fault).

https://www.waveshare.com/wiki/2.9inch_e-Paper_Module

