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Abstract. In 1987 Bieri, Neumann and Strebel introduced a geometric
invariant for discrete groups. In this article we compute and explicitly
describe the BNS-invariant for the pure braid groups.

In 1987 Robert Bieri, Walter Neumann, and Ralph Strebel introduced a
geometric invariant of a discrete group that is now known as its BNS in-
variant [BNS87]. For finitely generated groups the invariant is a subset of
a sphere associated to the group called its character sphere. They proved
that their invariant is an open subset of the character sphere and that it de-
termines which subgroups containing the commutator subgroup are finitely
generated. In particular, the commutator subgroup is itself finitely gener-
ated if and only if the BNS invariant is the entire character sphere. For
fundamental groups of smooth compact manifolds, the BNS-invariant con-
tains information about the existence of circle fibrations of the manifold
and for fundamental groups of 3-dimensional manifolds, the BNS-invariant
can be described in terms of the Thurston norm. Given these connections,
it is perhaps not surprising that the BNS-invariant is typically somewhat
difficult to compute. It has been completely described for some infinite
families of groups, including: one-relator groups [Bro87], right-angled Artin
groups [MV95], and the pure symmetric automorphism groups of free groups
[OK00]. In this article we combine aspects of the proofs of these earlier re-
sults to compute and explicitly describe the BNS-invariant for the pure braid
groups.

Theorem A. The BNS-invariant for the pure braid group Pn is the comple-
ment of a union of the P3-circles and the P4-circles in its character sphere.
There are exactly

(
n
3

)
+
(
n
4

)
such circles.

The names “P3-circle” and “P4-circle” are introduced here in order to
make our main result easier to state. Their definitions are given in Section 4.

Our computation of Σ1(Pn) has a striking connection to the previously
computed resonance variety for the pure braid groups (see Proposition 6.9 in
[CS99]). The resonance variety of a group is computed from the structure
of its cohomology ring. (For background information and full definitions,
see [Suc11].) In fact, there are many resonance varieties just as there are
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many Σ invariants, but we are concerned here with the simplest forms of
each. In general there is only a weak connection between the resonance
variety of a group and its BNS-invariant, but when certain conditions are
met, the resonance variety is contained in the complement of the BNS-
invariant [PS10]. In some interesting cases it is known that the complement
of the first resonance variety is equal to the first BNS invariant (see [PS06]
and [Coh09]). In section 9.9 of [Suc11] it was asked if this equality holds for
fundamental groups of complements of hyperplane arrangements in Cn. The
pure braid groups are perhaps the best known example of an arrangement
group, and our result shows that this equality does hold in this case. An
example presented in [Suc12]—constructed by deleting one hyperplane from
a reflection arrangement—demonstrates that this equality does not always
hold for arrangement groups.

The article is structured as follows. The first three sections contain basic
results about BNS-invariants, pure braid groups, and graphs. The fourth
section finds several circles of characters in the complement of the invariant
for the pure braid groups. The fifth section establishes a series of reduction
lemmas which collectively show that every other character is contained in
the invariant, thereby completing the proof.

Acknowledgments. The authors thank Ralph Strebel for requesting a de-
scription of the BNS-invariant for the pure braid groups some time ago; his
continuing encouragement has helped bring this work to completion. We
also thank Alex Suciu for pointing out the relationship between our main
result and the resonance variety of the pure braid groups.

1. BNS invariants

In this section we recall the definition of the BNS-invariant and discuss
two standard techniques used to compute them.

Definition 1.1 (BNS-invariant). Let G be a finitely generated group. A
character of G is a group homomorphism from G to the additive reals and
the set of all characters of G is an n-dimensional real vector space where n
is the Z-rank of the abelianization of G. Let I ⊂ G be a generating set and
let Cay(G, I) denote the right Cayley graph of G with respect to I. For any
character χ we let Cayχ(G, I) denote the full subgraph of Cay(G, I) deter-
mined by the vertices whose χ-values are non-negative. The property that
the BNS-invariant captures is whether or not Cayχ(G, I) is connected. It is
somewhat surprising, but nonetheless true, that whether or not Cayχ(G, I)
is connected is independent of the choice of finite generating set I and thus
only depends on χ. It is much easier to see that this property is preserved
when χ is composed with a dilation of R. As a consequence, one can re-
place characters with equivalence classes of characters where equivalence is
defined by composition with dilations by positive real numbers r. The set
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of equivalence classes is identified with the unit sphere in Rn and called the
character sphere of G:

S(G) = {χ | χ ∈ Hom(G,R)− {0}}/χ ∼ r · χ
where r ∈ (0,∞) ⊂ R. The Bieri-Neumann-Strebel-invariant of G is

the set of equivalence classes of characters [χ] such that Cayχ(G, I) is con-
nected. We write Σ1(G) for this invariant and we write Σ1(G)c for the
complementary portion of the character sphere.

Remark 1.2. The superscript “1” in the notation Σ1(G) indicates that
there are generalizations of these definitions. The first of these was intro-
duced by Bieri and Renz in [BR88]. A computation of the Σm invariants
for the pure braid groups would be very interesting, but we must say that
the approach of this paper in computing Σ1(Pn) does not extend to these
higher invariants.

These invariants have also been described in terms of Novikov homology
[Bie07], and so our result relates to the work in [KP12]. Bieri and Geoghegan
have presented extensions of the original definition that are applicable to
group actions on non-positively curved spaces [BG04].

We use a common algebra metaphor to describe the images of elements
under χ. We say that g lives or survives if χ(g) is not zero, that g dies or is
killed when χ(g) is zero, and we say that a set survives if every element in
set survives. There are two main techniques that we use to compute BNS-
invariants. One is used to show that characters are in the complement and
the other is used to show that characters are in the invariant. The first is
Proposition 3.3 from [BNS87].

Lemma 1.3 (Epimorphisms). Let φ : G � H be an epimorphism between
finitely generated groups. If ψ is a character of H and χ is the character
of G defined by χ = ψ ◦ φ, then [χ] ∈ Σ1(G) implies [ψ] ∈ Σ1(H) and
[ψ] ∈ Σ1(H)c implies [χ] ∈ Σ1(G)c.

Proof. If we choose generating sets I and J for G and H respectively so that
φ(I) = J , then the epimorphism φ naturally extends to a continuous map
from the Cayley graph of G onto the Cayley graph of H which then restricts
to a continuous map from Cayχ(G, I) onto Cayψ(H,J). Since the continu-
ous image of a connected space is connected, Cayχ(G, I) connected implies
Cayψ(H,J) is connected and Cayψ(H,J) disconnected implies Cayχ(G, I)
is disconnected.

�

Lemma 1.3 is primarily used is to find characters in Σ1(G)c. For each
homomorphism φ from G onto a simpler group H whose BNS-invariant is
already known, the preimage of Σ1(H)c under φ is a subset of Σ1(G)c. A
second use of Lemma 1.3 is that it implies Σ1(G) is invariant under auto-
morphisms of G. For any finitely generated group G, precomposition defines
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a natural right action of Aut(G) on the character sphere with [χ] ·α defined
to be [χ ◦ α] for all α ∈ Aut(G) and all characters χ. For each automor-
phism α ∈ Aut(G), Lemma 1.3 can be applied twice, once with φ = α and
a second time with φ = α−1 to obtain the following immediate corollary.

Corollary 1.4 (Automorphisms). For any finitely generated group G, the
subsets Σ1(G) and Σ1(G)c are invariant under the natural right action of
Aut(G) on the character sphere of G.

There is an alternative description of Σ1(G) using G-actions on R-trees.

Definition 1.5 (Actions on R-trees). Suppose G acts by isometries on an
R-tree T and let ` : G → R+ be the corresponding length function. The
action is called non-trivial if there are no global fixed points. It is exceptional
if there are no invariant lines. It is abelian if there exists a character χ of G
such that the translation length function `(g) equals the absolute value of
χ(g) for all g ∈ G. When this occurs we say that this action is associated to
χ.

The following lemma, Theorem 5.2 in [Bro87], describes Σ1(G) in these
terms.

Lemma 1.6 (Actions and characters). Let χ be a character of a group
G. There exists an exceptional non-trivial abelian G-action on an R-tree
associated to χ if and only if [χ] ∈ Σ1(G)c.

For each g ∈ G, let Tg denote the characteristic subtree of g: when g is
elliptic, Tg is its fixed point set, and when g is hyperbolic, Tg is the axis of
g. There are two main facts about characteristic subtrees that we need: (1)
if g and h are commuting hyperbolic isometries then Tg = Th and (2) if g
commutes with a hyperbolic isometry h then Tg ⊃ Th. Both properties are
discussed in [OK00].

Definition 1.7 (Commutation). For any subset J of a group G there is
a natural graph that records which elements commute. It has a vertex set
indexed by J and two distinct vertices are connected by an edge if only if
the corresponding elements of J ⊂ G commute. We call this the commuting
graph of J in G and denote it by C(J).

Definition 1.8 (Domination). Let I and J be subsets of a group G. We say
that J dominates I if every element of I commutes with some element of J .
Since elements commute with themselves, this is equivalent to the assertion
that every element in I \ J commutes with some element of J .

Lemma 1.9 (Connected and Dominating). Let χ be a character of a group
G. If there exist subsets I and J in G such that all of J survives under χ,
C(J) is connected, J dominates I, and I generates G, then [χ] ∈ Σ1(G).

Proof. Suppose there is an abelian action of G on an R-tree T associated
to χ. Since elements of J survive under χ, each is realized as a hyperbolic
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isometry of the tree. Because C(J) is connected, all of these isometries share
a common characteristic subtree T ′ = Tj for all j ∈ J . Because J dominates
I, each element i ∈ I commutes with a hyperbolic isometry j ∈ J which
implies Ti ⊃ Tj = T ′ for all i ∈ I. Finally, I generates G, so the line T ′ is
invariant under all of G, the action is not exceptional, and [χ] ∈ Σ1(G) by
Lemma 1.6.

�

Lemma 1.9 is our primary tool for finding characters in Σ1(G). To il-
lustrate its utility we include an application: characters in the complement
of the BNS-invariant must kill the center of the group. (We note that this
application is not new; it occurs, for example, as Corollary 3.2 in the man-
uscript “Geometric invariants for discrete groups” by Bieri and Strebel.)

Corollary 1.10 (Central elements). If χ is a character of a group G and
χ is not identically zero on the center of G then [χ] is in Σ1(G).

Proof. Let I be any generating set for G and let J = {g} where g is a central
element that lives under χ. The graph C(J) is connected because it only has
one vertex and J dominates I because g is central. Lemma 1.9 completes
the proof.

�

2. Pure braid groups

Next we recall some basic properties of the pure braid groups.

Definition 2.1 (Pure braid groups). Let Cn be an n-dimensional complex
vector space with a fixed basis and let Hij be the hyperplane in Cn defined
by the equation zi = zj . The set {Hij} of all such hyperplanes is called the
braid arrangement and it is one of the standard examples in the theory of
hyperplane arrangements. The fundamental group of the complement of the
union of these hyperplanes is called the pure braid group Pn:

Pn = π1 (Cn \ {Hij}) .

Definition 2.2 (Points in the plane). There is a standard 2-dimensional
way to view points in the complement of the braid arrangement. For each
vector in Cn we have a configuration of n labeled points in the complex plane.
More concretely, the point pi in C is meant to indicate the value of the i-
th coordinate of the vector and avoiding the hyperplanes Hij corresponds
to configurations where these points are distinct. Paths in the hyperplane
complement correspond to motions of these n labeled points in the plane
which remain distinct throughout. If we trace out these motions over time
in a product of C with a time interval, then the points become strands that
braid.
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Figure 1. Nine points in convex position.

Definition 2.3 (Basepoint). Computing the fundamental group of a hy-
perplane complement requires a choice of basepoint. We select one corre-
sponding to the configuration where the n labeled points are equally spaced
around the unit circle and p1 through pn occur consecutively as one proceeds
in a clockwise direction. See Figure 1 for an illustration. Loops representing
elements of the fundamental group are motions of these points which start
and end at this particular configuration.

Definition 2.4 (Swing generators). For each set A ⊂ {1, 2, . . . , n} of size
at least 2 there is an element of Pn obtained as follows. Move the points
corresponding to the elements of A directly towards the center of their con-
vex hull. Once they are near to each other, rotate the small disk containing
them one full twist in a clockwise direction and then return these points to
their original position traveling back the way they came. When A is small
we write Sij or Sijk with the subscripts indicating the points involved. In
[MM09] these elements are called swing generators. One key property of the
swing generator SA is that it can be rewritten as a product of the swing
generators Sij with {i, j} ⊂ A. The order in which they are multiplied is
important, but it rarely arises in this context. As an illustration of this
type of factorization, the element S123 is equal to the product S12S13S23

and to S13S23S12 and to S23S12S13. (For the record we are composing these
elements left-to-right as is standard in the study of braid groups.) This
means that the

(
n
2

)
swing generators which only involve two points are suffi-

cient to generate Pn and we call this set the standard generating set for this
arrangement.
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A presentation for the pure braid group was given by Artin in [Art47] and
more recent geometric variations are given by Margalit and McCammond
in [MM09]. For our purposes the most relevant fact about these various
presentations is that all of their relations become trivial when abelianized.
This immediately implies the following:

Lemma 2.5 (Pure braid characters). The abelianization of the pure braid
group is free abelian with the images of the standard generators as a basis. As
a consequence, there are no restrictions on the tuples of values a character

may assign to the standard generators. Thus Hom(Pn,R) ' R(n2) and the
character sphere has dimension

(
n
2

)
− 1:

S(Pn) = S(n2)−1.

There are two aspects of the pure braid group that are particularly useful
in this context. The first is that many pairs of swing generators commute
and the second is that there is an automorphism of Pn whose net effect is
to permute the labeled points in the plane without changing the character
values on the corresponding standard generators.

Remark 2.6 (Commuting swings). Let SA and SB be two swing generators
in Pn. The elements SA and SB commute when A ⊂ B, B ⊂ A, or the convex
hull of the points in A does not intersect the convex hull of the points in B
[MM09]. For example S23 and S145 commute as do S14 and S145, but S68

and S79 do not. See Figure 1. One consequence of this property is that the
element ∆ = SA with A = {1, 2, . . . , n} is central in Pn. In fact ∆ generates
the center.

There is an obvious action of the symmetric group on the braid arrange-
ment which permutes coordinates. And since the union of the hyperplanes
Hij contains all the points fixed under the action of a nontrivial permuta-
tion, the action on the complement is free. If we quotient by this action, the
effect is to remove the labels from the points in the plane and the fundamen-
tal group of the quotient is the braid group. This relationship is captured
by the fact that there is a natural epimorphism from the braid group to
the symmetric group (where the image of a braid is the way it permutes its
strands) and its kernel is the pure braid group.

The symmetric group action on the braid arrangement essentially changes
the basepoint in the hyperplane complement and permutes the labels on the
points in the plane. For each such basepoint there is a set of swing generators
but recall that there is no natural isomorphism between the fundamental
group of a connected space at one basepoint and its fundamental group at
another. To create an isomorphsim one selects a path from the one to the
other and then conjugates by this path. In our case such a path projects to
a loop in the quotient by the symmetric group action and thus represents an
element of the braid group. In particular, the resulting isomorphism between
the fundamental groups is induced by an inner automorphism of the braid
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group which descends to an automorphism of its pure braid subgroup. By
Corollary 1.4 this automorphism of Pn does not alter the BNS-invariant or
its complement.

It does, however, change the standard generating set. If we keep track
of the motion of the points in the plane dictated by the path between the
basepoints, we find that the straight line segment between pi and pj used to
define Sij becomes an embedded arc between the images of these points that
is typically very convoluted. In other words, the image of the original swing
generator Sij is a nonstandard generator where the points pi and pj travel
along the twisted embedded arc from either end until they are very close,
they then rotate fully around each other clockwise and then they return the
way they came. Despite the fact that the image of a standard generator is no
longer standard, it is true that the new nonstandard generator is conjugate
in Pn to the standard generator between these two points. In particular,
for any character χ, the χ-value of a standard generator Sij is equal to the
χ-value of the standard generator between the images of pi and pj under
this automorphism of Pn.

We conclude this section with a discussion of epimorphisms between pure
braid groups.

Definition 2.7 (Natural projections). For every subset A ⊂ {1, 2, . . . , n}
of size k there is a natural projecting epimorphism φA : Pn � Pk which
can be described topologically as “forgetting” what happens to the points
not in A. Algebraically φA sends a standard generator Sij to zero unless
both endpoints belong to A. This produces

(
n
k

)
epimorphisms from Pn

onto Pk which are all distinct. The situations with k = 3 or k = 4 are
particularly important here and we denote these maps by φijk and φijkl
where the subscripts indicate the points contained in A.

The fact that the complete graph on 4 vertices is planar leads to a nice
presentation for P4 and a surprising projection from P4 onto P3.

Definition 2.8 (Planar presentation of P4). If we pick a basepoint for the
braid arrangement that corresponds to the configuration of points shown in
Figure 2, then the six straight segments connecting them pairwise produce
six swing generators that form a nonstandard generating set for P4. We
denote these a through f as indicated. The following is a presentation for
P4 in this generating set:

P4
∼=

〈
a, b, c, d, e, f

abc = bca = cab, ad = da
cde = dec = ecd, be = eb
bfd = fdb = dbf, cf = fc

〉
We call this the planar presentation of P4. This presentation appears to

be folklore: it is well-known to experts in the field but we cannot find a
reference to it in the literature. Since it is straightforward to produce this
presentation from one of the standard presentations, we omit the derivation.
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Figure 2. A labeled planar embedding of K4.

Lemma 2.9 (An unusual map). There is a morphism ρ : P4 � P3 which
sends the pairs of generators representing disjoint edges in the planar presen-
tation of P4 to the same standard generator of P3. Concretely, the function
that sends both a and d to a = S12, both b and e to b = S13 and both c and
f to c = S23 extends to such an epimorphism.

Proof. Since the image of this function is a generating set, the only thing
to check is that images of the planar generators satisfy the planar relations.
This is clear since a2 = a2, b2 = b2, c2 = c2 and abc = bca = cab in P3.

�

3. Graphs

In this section we record a few miscellaneous remarks related to graphs
that we use in the proof of the main result. The first is the definition of an
auxilary graph that organizes information about a character, the second is
an elementary result from linear algebra, and the third is a structural result
about graphs that avoid a particular condition.

Definition 3.1 (Graph of a character). For each character χ of Pn we
construct a graph Kχ that we call the graph of χ. It is a subgraph of the
complete graph Kn, it contains all vertices vi with i in {1, 2, . . . , n} and it
contains the edge eij from vi to vj if and only if the standard generator
Sij survives under χ. When working with examples, it is convenient to add
labels to the edges of Kχ which record the χ-values of the corresponding
standard generator. For example, the labeled graph shown in Figure 3 comes
from a character which sends S24 to 0 and S13 to 2. For any set A ⊂ [n],
the χ-value of SA can be recovered from Kχ by adding up the labels on the
edges with both endpoints in A. Thus the character whose graph is shown
in Figure 3 sends S124 to −1, S123 to 0 and S1234 to −3.
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Figure 3. The graph of the character.

Lemma 3.2 (Triple sums). Let χ be a character for P4. If the four values
χ(S123), χ(S124), χ(S134) and χ(S234) are all zero, then χ(S12) = χ(S34),
χ(S13) = χ(S24), χ(S14) = χ(S23), and χ(S1234) = 0.

Proof. The proof is elementary linear algebra. If we expand the four given
values as sums over the edges of Kχ and then add all four equations together,
we find that twice the sum over all six edges is zero. If we then add two
of the triangle equations and subtract the sum of six edges, we find that
difference in the values of χ on a pair of disjoint edges is zero. In other
words, their values are equal. This completes the proof.

�

And finally, we consider a condition on a graph that arises in Section 5
and which has quite strong structural implications.

Lemma 3.3 (Star or small). Let Γ be a graph with no isolated vertices. If
Γ does not contain an edge disjoint from two other edges, then all edges of Γ
have an endpoint in common, or they collectively have at most 4 endpoints.
In other words, Γ is a star or a subgraph of K4.

Proof. If Γ has a vertex v of valence more than 3, then edges ending at v
are its only edges. Otherwise, the additional edge is disjoint from at least
two of the edges with v as an endpoint, contradicting our assumption. If
Γ has a vertex of valence 3, then these four vertices are the only vertices
of Γ. Otherwise, there is an edge with only one endpoint in this set, it
must end at one of the vertices other than v (since the edges ending at v
are already accounted for) and thus it avoids two of the edges with v as an
endpoint, contradiction. Finally, if Γ only has vertices of valence 1 and 2,
it is a collection of disjoint paths and cycles. If there is a cycle, then there
can be no other components and the cycle must have length at most 4. If
there are multiple paths, there can only be two and they must both consists
of a single edge. If there is only one path, it can have at most 3 edges. This
completes the proof since a cycle of length at most 4, two paths of length 1
and a single path of length 3 are all subgraphs of K4.

�
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4. Characters in the Complement

In this section we recall the BNS-invariants for P2 and P3 and then use
the various epimorphisms between pure braid groups to produce a series of
circles in the complement of Σ1(Pn) that we call P3-circles and P4-circles.
Since P2 is abelian, its invariant is trivial to compute by Corollary 1.10.

Lemma 4.1 (2 points). The group P2 is isomorphic to Z, its character
sphere is S0, the set Σ1(P2)c is empty and Σ1(P2) includes both points.

The group P3 is only slightly more complicated.

Lemma 4.2 (3 points). The group P3 is isomorphic to F2×Z, its character
sphere is S2, the set Σ1(P3)c is the equatorial circle defined by χ(∆) = 0,
where ∆ is the generator of the center, and Σ1(P3) is the complement of this
circle.

Proof. One presentation for P3 is 〈a, b, c | abc = bca = cab〉 where a = S12,
b = S13 and c = S23. If we add d = ∆ = S123 as a generator and use
the equation abc = d to eliminate c we obtain the following alternative
presentation: P3

∼= 〈a, b, d | ad = da, bd = db〉, from which it is clear that
P3
∼= F2 × Z with the free group F2 generated by a and b and the central Z

generated by d = ∆. By Corollary 1.10 characters in Σ1(P3)c must send ∆ to
zero. On the other hand, those which do send ∆ to zero are really characters
of F2 and it is well-known that the BNS-invariant for a free group is empty.
Thus [χ] ∈ Σ1(P3)c if and only if χ(∆) = 0.

�

It is the circle of characters that forms the complement of Σ1(P3) which
produces multiple circles in the complement of Σ1(Pn) for n > 3.

Definition 4.3 (P3-circles and P4-circles). We say that χ is part of a P3-
circle if there exists a natural projection map φijk (described in Defini-
tion 2.7) and a character ψ where [ψ] ∈ Σ1(P3)c, such that χ = ψ ◦ φijk:

Pn
φijk−→ P3

ψ−→ R.
More concretely, χ is part of a P3-circle if and only if all the endpoints

of edges in Kχ belong to a three element subset {vi, vj , vk} and the value of
χ(Sijk) is zero.

In a similar fashion we say that χ is part of a P4-circle if there exists a
triple of maps:

Pn
φijkl−→ P4

ρ−→ P3
ψ−→ R

whose composition is χ where φijkl is one of the natural projection maps,
ρ is the unusual map described in Lemma 2.9 and [ψ] ∈ Σ1(P3)c. More
concretely, χ is part of a P4-circle if and only if all the endpoints of edges
in Kχ belong to a four element subset {vi, vj , vk, vl}, the equations χ(Sij) =
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χ(Skl), χ(Sik) = χ(Sjl), χ(Sil) = χ(Sjk) hold and the sum of these three
shared values is zero.

Using Lemma 1.3 we immediately conclude the following:

Theorem 4.4 (Characters in the complement). Let χ be a character of Pn.
If χ is a part of a P3-circle or a P4-circle, then [χ] ∈ Σ1(Pn)c. This produces(
n
3

)
+
(
n
4

)
circles in the complement.

Proof. The definitions of P3-circles and P4-circles ensure that Lemma 1.3
may be applied to χ to complete the proof. The second assertion comes
from the number of natural projections onto 3 points plus the number of
natural projections onto 4 points.

�

5. Characters in the invariant

In this final section we show that every character of Pn that is not part
of a P3-circle or a P4-circle is in Σ1(Pn). We begin with a series of lemmas
which follow, directly or indirectly, from Lemma 1.9. Recall that we use ∆
to denote the element SA with A = {1, 2, . . . , n} which generates the center
of Pn.

Lemma 5.1 (Zero sum). If χ is a character of Pn and χ(∆) is not zero,
then [χ] ∈ Σ1(Pn).

Proof. Since ∆ is central in Pn, this follows from Corollary 1.10.
�

Lemma 5.2 (Disjoint triple). If χ is a character of Pn and Kχ contains
three pairwise disjoint edges, then [χ] ∈ Σ1(Pn).

Proof. First permute the points so that e12, e34 and e56 are edges in Kχ.
Then let J = {S12, S34, S56} and let I be the full standard generating set
for this arrangement. The graph C(J) is a triangle and J dominates I
because every standard generator commutes with at least one element in J .
Lemma 1.9 completes the proof.

�

Lemma 5.3 (Disjoint from a pair). If χ is a character of Pn and Kχ con-
tains an edge disjoint from two other edges, then [χ] ∈ Σ1(Pn).

Proof. If all three edges are disjoint then Lemma 5.2 applies. Otherwise,
permute the points so that e12, e34 and e45 are edges in Kχ. Then let
J = {S12, S34, S45} and let I be a modification of the standard generating
set for this arrangement where S14 and S24 are removed and S145 and S245

are added in their place. This remains a generating set because S145 =
S14S15S45 so that S14 can be recovered from the other three, and likewise,
S245 = S24S25S45 so S24 can be recovered. The graph C(J) is connected
since both S34 and S45 commute with S12. Since every standard generator
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(with the exception of S14 and S24) commutes with some element in J , and
S145 and S245 commute with S45, J dominates I. Lemma 1.9 completes the
proof.

�

At this point, the Star-or-Small Lemma, Lemma 3.3, implies that our
search for characters in Σ1(Pn)c can be restricted to those whose graph is a
star or a subgraph of K4, plus possibly some isolated vertices.

Lemma 5.4 (Stars). If χ is a character of Pn and the edges of Kχ form a
star with at least 3 edges, then [χ] ∈ Σ1(Pn).

Proof. If χ(∆) is not zero, then [χ] ∈ Σ1(Pn) by Lemma 5.1. Otherwise,
permute the points so that v1, v2 and v3 are leafs of Kχ and v4 is the vertex
all edges have in common. Then let I be the standard generators for this
arrangement and let J consist of the six elements S14, S24, S34, SA1 , SA2 ,
and SA3 where Ai is the set {1, 2, . . . , n} with i removed. Because χ(∆) = 0
and v1, v2 and v3 are leaves of Kχ, we have that

χ(SAi) = χ(∆)− χ(Si4) = −χ(Si4) 6= 0

for i ∈ {1, 2, 3}. In particular, all of J survives under χ. Next since
{j, 4} ⊂ Ai so long as i and j are distinct elements in {1, 2, 3}, we have that
SAi commutes with Sj4 in these situations. As a consequence, the graph
C(J) is connected by a hexagon of edges. Finally, J dominates I since every
standard generator avoids one of the first three points and thus commutes
with one of the elements SAi . Lemma 1.9 completes the proof.

�

Lemma 5.5 (Disjoint leaves). Let χ be a character of Pn. If Kχ contains
two vertices of valence 1 and the unique edges that end at these vertices are
disjoint, then [χ] ∈ Σ1(Pn).

Proof. If χ(∆) is not zero, then [χ] ∈ Σ1(Pn) by Lemma 5.1. Otherwise,
permute the points so that v1 and v3 are leaves and e12 and e34 are in
Kχ. Then let I be the standard generators for this arrangement and let
J consist of the five elements S12, S34, S123, SA1 and SA3 where Ai is the
set {1, 2, . . . , n} with i removed. Because χ(∆) = 0 and v1 and v3 are
leaves of Kχ, we have that χ(SA1) = −χ(S12), χ(SA3) = −χ(S34), and
χ(S123) = χ(S12). In particular, all of J survives under χ. The graph C(J)
is connected since both SA3 and S123 commutes with S12 which commutes
with S34 which commutes with SA1 . Finally, the set J dominates I because
the only standard generator which does not commute with SA1 or SA3 is S13

and it commutes with S123. Lemma 1.9 completes the proof.
�

Lemma 5.6 (Disjoint edges and one triangle). Let χ be a character of Pn.
If Kχ contains a pair of disjoint edges and three of these endpoints form a
triangle whose χ-value is not zero, then [χ] ∈ Σ1(Pn).
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Figure 4. Three subgraphs of K4.

Figure 5. Four subgraphs of K4.

Proof. Permute the points so that e12 and e34 are edges in Kχ and χ(S123) is
not zero. Then let J = {S12, S123, S34} and let I be the standard generating
set for this arrangement with S14 and S24 removed and S134 and S234 added
in their place. The set I still generates Pn since S134 = S13S14S34 and S234 =
S23S24S34 so S14 and S24 can be recovered from the ones that remain. The
graph C(J) is connected since S12 commutes with both S123 and S34. Every
standard generator with an endpoint outside the set {1, 2, 3, 4} commutes
with either S12 or S34. Of the six standard generators with both endpoints
in this set, two are not in I, three commute with S123, and S34 commutes
with itself. Finally, the added elements S134 and S234 both commute with
S34 so J dominates I. Lemma 1.9 completes the proof.

�

These lemmas combine to prove the following.

Theorem 5.7 (Characters in the invariant). Let χ be a character of Pn. If
[χ] is not part of a P3-circle or a P4-circle then [χ] ∈ Σ1(Pn).

Proof. Let Γ be the graphKχ with isolated vertices removed. By Lemma 5.3,
Lemma 5.4, and Lemma 3.3, [χ] is in Σ1(Pn) unless Γ has at most 4 vertices.
By Lemma 5.1, [χ] ∈ Σ1(Pn) unless the sum of the edge weights is zero. So
assume that Γ has at most 4 vertices, none of them isolated and the sum
of the edge weights is zero. There are no 2 vertex graphs satisfying these
conditions and the only 3 vertex graphs remaining are those which represent
characters in P3-circles. Thus we may also assume that Γ has exactly 4
vertices. Up to isomorphism there are precisely seven such graphs and they
are shown in Figures 4 and 5. If Γ is isomorphic to one of three graphs in
Figure 4, then [χ] ∈ Σ1(Pn) by Lemma 5.4 or Lemma 5.5. Finally, the four
graphs in Figure 5 all have disjoint edges. If any triple of vertices have edges
whose χ-values have a non-zero sum, then [χ] ∈ Σ1(Pn) by Lemma 5.6. The
only remaining case is where all such triples sum to zero. By Lemma 3.2
this means that disjoint edges are assigned equal values. This rules out
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the two graphs on the left of Figure 5 and reduces the other two to graphs
representing characters in P4-circles. And this completes the proof.

�

Theorem 4.4 and Theorem 5.7 prove Theorem A.
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