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ABSTRACT 

The objective of this work is to study the perceived 

complexity of 3D shapes from a human and a large generative 

model (i.e., ChatGPT) point of view. This work helps to better 

understand what makes 3D shapes, which are frequently used in 

spatial visualization tasks, perceived as complex. It also explores 

how well ChatGPT can capture the consensus of humans as to 

what makes shapes perceived as complex. Spatial visualization 

skills are correlated to success in many STEM fields. To enhance 

Virtual Reality applications aimed at developing spatial 

visualization skills, models capable of automatically generating 

shapes of varying complexities could be used to tailor tasks 

according to users' skill levels. However, it is important to first 

understand how humans perceive the complexity of 3D shapes, 

and how this relates to their performance in spatial visualization 

tasks. The results of this work indicate that some visual features 

of 3D shapes, like symmetry, are correlated to their perceived 

complexity and the performance of individuals on spatial 

visualization tasks. More importantly, the results show that 

ChatGPT can generate shapes that are perceived as having 

different degrees of complexity by humans. The findings support 

the capabilities of large generative models, like ChatGPT, to 

capture aspects of human consensus, even in subjective matters 

such as the perceived complexity of 3D shapes. Hence, these 

models could potentially be used to automatically generate 

content, like for VR applications, which are tailored to an 

individual.  
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1. INTRODUCTION 

Spatial Visualization skills can be described as the ability 

to rotate, manipulate, twist, or invert 3D objects mentally [1], [2]. 

This skillset is considered one of the most important skillsets in 

STEM fields, specifically for engineers who often communicate 

via graphical means [2], [3]. While studies have indicated that 

this skillset correlates to students’ performance, motivation, 

confidence, and reasoning, many students in the STEM field do 

not have sufficient spatial visualization skills when they begin 

their studies [4]–[6]. Unfortunately, coursework and 

introductory standard instruction might not be enough to develop 

these skills [7]. 

Virtual Reality (VR) technology could help users to seek 

answers and build their knowledge, especially given its increased 

use in educational settings [8]. This technology has already 

produced positive outcomes when used to teach and developed 

spatial visualization skills [9]. However, it has been shown that 

individuals have differing levels of expertise and skills which 

can directly impact their performance in a task [10]. 

Furthermore, while it has been concluded that individuals 

perform tasks best when the difficulty matches their skill level, 

most of the educational applications designed to develop spatial 

visualization skills only allow users to interact with a restricted 

set of 3D shapes and tasks [11]–[13]. As a result, students could 

easily become demotivated after limited interaction with the 

applications [14]. 

These limitations could be addressed by automatically 

generating new content for students. In VR applications made to 

develop spatial visualization skills, automatically generating 

new 3D shapes of different levels of complexity in accordance 

with users’ skill levels has the potential to improve students’ state 

of flow and increase motivation. Machine Learning methods 

have the potential to enhance the understanding regarding the 

perceived complexity of 3D shapes and generate shapes across a 

wide range of complexities. For example, large generative 

models, like GPT-3 and Dall-E [15], [16], could be used to 

automatically generate 3D shapes. Similarly, Procedural Content 

Generation (PCG) methods based on Reinforcement Leaning 

approaches could be leveraged to create new content [16]–[18]. 

Particularly, 3D shapes of different complexities could be 

automatically generated given a function that measures shape 

complexity [13].  

However, on one hand, it is still not clear if using large 

generative models to create new 3D shapes might lend itself to 

easily tuning the complexity between shapes. Since studies have 

indicated that users have little understanding of the compatibility 

of their prompt with the generative model, they might need to try 

a variety of prompts until responses produce desired outputs 

[19]. On the other hand, PGC methods based on Reinforcement 

Leaning approaches might be better suited to fine-tuning the 
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complexity of a shape, but they require a reward function that 

accurately captures perceived complexity. 

Numerous studies have suggested using predetermined 

mathematical formulas at the pixel level to measure shape 

complexity [20]. However, these metrics focus on the 

topological definition of a shape and do not necessarily 

encompass the human-perceived complexity of 3D shapes 

necessary to develop spatial visualization skills. A system that 

summarizes the consensus of individuals regarding the perceived 

complexity of 3D shapes could provide a better understanding of 

how humans perceive shape complexity. Large generative 

models and systems, like GPT-3 and ChatGPT, could potentially 

identify a consensus of what makes some shapes perceived as 

more complex since they are trained on large representations of 

human generated data [21]. Studies suggest that generative 

models have the capacity to reflect complex patterns among 

humans in different contexts [22]. The use of systems like Chat-

GPT (https://openai.com/blog/chatgpt, based on GPT-3) could 

be used to reflect a uniform understanding of how humans 

generally perceive complex 3D shapes, in addition to generating 

computer programming code that can recreate those shapes.  

Thus, in this work, ChatGPT and a series of experiments 

involving human participants are leveraged to analyze the 

perceived complexity of 3D shapes from both a human 

perspective and that of a large generative model (i.e., ChatGPT). 

The objective is to gain a better understanding of the factors that 

contribute to the perceived complexity in 3D shapes, which are 

frequently used in spatial visualization tasks. Additionally, this 

work aims to investigate the ability of ChatGPT, as a large 

generative model, to capture the consensus among humans 

regarding the perceived complexity of shapes. Hence, the 

research questions that guided this work are as follows: 
 

(RQ1) Are there any visual features in  3D shapes used in 

spatial visualization tasks that correlate with their perceived 

complexities? 
 

(RQ2) To what extent can ChatGPT capture the elements of 

human consensus regarding the perceived complexity of 3D 

shapes? 

 

2. LITERARY REVIEW 

 

2.1 Virtual Reality and Spatial Visualization 

VR is applied in numerous disciplines in addition to gaming 

entertainment including but not limited to health, education, and 

sports [23]–[25]. Researchers have found that VR helps enhance 

feelings of presence and immersion when used in the education 

setting, leaving a long-lasting impact on students [26]. Moreover, 

VR could assist students in developing a mental model of what 

they are learning. This allows the student to cognitively interact 

with the concepts potentially kindling an increased interest in 

new material [27], [28].  

VR is specifically valuable for spatial visualization skills, 

a complex skill that requires visual abilities and the formation of 

mental images. This skillset is studied by numerous fields in 

science, education, and cognitive psychology given its 

significance across a wide range of disciplines [29]. Spatial 

intelligence is described as a skillset that helps us comprehend 

not only visual-spatial tasks and spatial relations but also gains a 

better orientation of objects in a space [30]. Often, one’s spatial 

ability has a positive correlation with academic performance, 

particularly in engineering curriculums [20], [25]. VR 

technology has been proven to aid the learning and development 

of these skills due to its ability to visualize 3D objects in a 3D 

virtual setting and facilitate a “first-person” experience [13]. 

Despite its engagement capabilities, VR could struggle to 

create meaningful experiences for students in the long run, 

particularly for applications designed to develop spatial 

visualization skills, due to potential novelty effects. In the 

context of VR applications designed to develop spatial 

visualization skills, not providing users with 3D shapes that are 

automatically aligned with their skill level, could serve as an 

obstacle to overcoming issues of long-term engagement and 

motivation. Hence, the complexity of the 3D shapes used to 

develop spatial visualization skills should be tailored to users’ 

skill levels to maximize flow and motivation. However, to 

achieve this, a better understanding of perceived complexity is 

necessary.  

Many researchers have suggested different ways to measure 

the complexity of shapes, but perceived complexity is difficult 

to measure algorithmically because it is a broad concept. This 

work takes steps to approach this problem. It investigates 

humans’ perception of the complexity of 3D shapes, and how it 

correlates to their performance in spatial visualization tasks. 

Moreover, it leverages ChatGPT, a large generative model, to 

gain a better understanding of human consensus regarding what 

makes 3D shapes be perceived as complex.  

 

2.2 Measuring Complexity 

Studies have found strong correlations between the level of 

complexity and visual characteristics of shapes, like symmetry, 

clutter, angular variation, curvature, number of elements, 

openness, and organization [12]. For instance, a study in [31] 

was conducted to look at the correlation between the number of 

elements and symmetry of shapes with their perceived 

complexities. It was found that shapes with more perceived 

recognizable elements were deemed more complex by the 

participants. Furthermore, the results indicate that the shapes 

perceived as more complex by participants were more 

asymmetrical.  

Similarly, other studies, present in [32], have shown that 

perceived complexity is correlated to variation in an object’s 

curvature in addition to symmetry and a number of distinct 

elements. Sharper and unpredicted variations indicated a higher 

complexity. Studies have also recognized that the average 

perceived complexity rating for surfaces has a direct positive 

correlation with the variation of surface curvature [32]. 

Moreover, studies with children using building blocks found that 

the number of building blocks used to create shapes had a notable 

positive correlation with the level of perceived complexity [33]. 

Recently, [34] explored how the visual features of some of 

the 3D shapes used in the Purdue Spatial Visualization test [35] 

https://openai.com/blog/chatgpt


 3 © 2023 by ASME 

correlated to their perceived complexity. Participants were asked 

to rate the perceived complexities of 3D shapes using images and 

videos of the shapes, as well as to complete the Purdue Spatial 

Visualization test. The shapes explored in that study were 

generated using a system of wedges and voxels, so only shapes 

with no curvatures from the Purdue test were explored. The 

results indicate that there was a positive correlation between the 

number of incomplete voxels and inclined planes in a 3D shape 

and its perceived complexities. Subsequently, a Machine 

Learning model indicated that the number of elements, 

symmetry, and surface variability of a shape are critical 

components that affect perceived complexity and performance in 

spatial visualization tasks. While some of the results were not 

statistically significant, the findings aligned with previous 

research and highlighted that visual features of 3D shapes might 

be correlated to their perceived complexity [34]. 

While it should be recognized that progress has been made 

in capturing the perceived complexity of 3D shapes, it remains 

imprecise how humans perceive the complexity of 3D objects in 

the context of spatial visualization tasks. Hence, this work 

introduces a series of experiments that ask participants to rate the 

perceived complexity of 3D shapes with different visual features. 

Moreover, it analyzes the performance of participants in spatial 

visualization rotation tasks that used the same set of 3D shapes. 

This is performed with the goal to leverage this data to better 

understand the consensus of what makes 3D shapes perceived as 

complex. With this same goal in mind, this work also leverages 

ChatGPT, a large generative model, to try to capture the human 

consensus present in its training data of what makes 3D shapes 

complex.  

 

2.3 Generative Models and Human Consensus  

The third-generation Generative Pre-trained Transformer 

(GPT-3) could be leveraged to better understand how humans 

holistically perceive the complexities of 3D shapes. GPT-3 is one 

of the largest language models created to date, built on 175 

billion parameters (i.e., greater than the distance between the 

Earth and the Sun in kilometers), and trained on 670 gigabytes 

of text data, with the ability to scale immense amounts of data 

and produce human-like content [36]. Based upon a prompt 

provided by the user, GPT-3 could generate collections of 

programming code, words, and/or other data directly. GPT-3, 

along with other generative models, could generate responses 

based on human texts as is trained on a large corpus of public 

internet data which allows them to synthesize and generalize 

information from its training data [21]. This can be understood 

similarly to Google’s process of reading a prompt and returning 

relevant responses [22].  

Responses from ChatGPT, a chat system based on GPT-3,  

to a user prompt represent responses like those of human beings 

present in its training data. Therefore, this could present 

limitations as responses might show cultural biases including 

gender, racial, and religious biases in certain contexts. This is 

why it is critical to frame prompts thoughtfully and contextually, 

as the response is reliant on what the user provides [21]. As 

indicated in [37], ChatGPT does not necessarily produce truthful 

responses, but, rather, it is a tool that could gather a consensus 

(i.e., pattern) from its training data set. However, it may provide 

different answers to the same question, and it cannot account for 

variations particular to an individual [37].  

Moreover, large generative models, including GPT-3, have 

the capability to provide computer programming code alongside 

textual explanations of the code. A study by [38] was conducted 

to understand what types of explanations GPT-3 can generate. In 

the study, 700 code snippets were provided. It showed that GPT-

3 could automatically form a checklist of common student 

mistakes based on the given code snippets, in addition to various 

explanation types including: (i) fixing bugs with an explanation, 

(ii) creating analogies to real-world circumstances, (iii) 

predicting the output in the console, and (iv) listing relevant 

concepts [38]. This study demonstrates the potential of GPT-3 to 

provide explanations and summarize commonalities of human 

performances, and its capability to provide access to quality 

explanations at a large scale. This is effectively achieved only 

when the user depicts exactly what they are searching for. 

Generative models will only become more sophisticated 

with their ability to identify patterns that exist among humans in 

massive amounts of data [21], [22]. Studies provide evidence 

that algorithmic fidelity, defined as the degree to which the 

complex patterns within a model accurately reflect ideas, 

attitudes, and cultures among a range of human subpopulations, 

is a critical component of generative models [22]. This 

showcases that generative models could potentially be used in 

the absence of human data because they could reflect patterns in 

society present in its training data. Therefore, models that 

comprise of satisfactory algorithmic fidelity, constitute a 

powerful tool to enhance the understanding of humans and 

societies across a wide range of disciplines [22]. Therefore, 

ChatGPT, as a generative model, could potentially capture 

consensus across a multitude of topics and disciplines with the 

capacity to reflect human understandings [21], [36].  

Additionally, generative models like GPT3 could be used in 

relation to Engineering Design. For example, as supported in 

[39], generative models have the capability to generate responses 

based on how the user defines the relationship in the hierarchical 

product structure. Furthermore, generative models can support 

the synthesis stages of design along with the analysis stages [39]. 

While some studies have shown the potential of generative 

models to aid in the Engineering Design Process, others have 

also indicated that caution needs to be taken since the models 

might introduce additional biases to the process or even impact 

high-performing teams [40]–[42]. 

As it relates to understanding human perceived complexity, 

while research thus far has explored a variety of ways to measure 

it, there still lacks a uniform understanding of what generally 

encompasses human perceived complexity. Thus, in this work, 

ChatGPT and a series of experiments involving human 

participants are leveraged to better understand how humans 

perceive 3D shapes. Moreover, these experiments will help 

better understand how well ChatGPT, a large generative model, 

is able to capture some aspects of humans' consensus as to what 

makes shapes be perceived as complex, which could be 
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understood as a very subjective topic. This has potential 

implications for many areas, such as Engineering Design and VR 

content development.  

 

3. METHODS 

To address the research questions proposed in this work: 

first, a set of experiments is conducted with the objective to 

explore the perceived complexity of 3D shapes, frequently used 

spatial visualization tasks, with the goal to gain a better 

understanding of what makes humans perceive certain shapes as 

more complex. Subsequently, a second set of experiments is 

conducted to explore ChatGPT’s capability in capturing aspects 

of what makes shapes perceived as complex. The two sets of 

experiments are introduced next:  

 

3.1. Human Perceived-Complexity Experiments 

To explore if there are any visual features in  3D shapes used 

in spatial visualization tasks that correlate with their perceived 

complexities, a series of 3D shapes, similar to those present in 

the Purdue Spatial Visualization test [35], were generated. The 

same system of voxels and wedges introduced in [34] was used 

in this study. A total of 39 different shapes were generated with 

a varying number of voxels (range from 1 to 3 voxels), number 

of complete voxels (range from 0 to 3 voxels- 0 to 100% of 

voxels), number of incomplete voxels (range from 0 to 3 voxels- 

0 to 100% of voxels), and number of inclined planes (range from 

1 to 4 planes) (i.e., independent variables). Moreover, for each of 

the shapes, an asymmetry metric was calculated based on 

previous studies (see section 2), and as introduced by [34] (i.e. 

mediating variable). This asymmetry metric captured how 

asymmetrical the shapes are in all three axes (see [34] for more 

details). Table 1 shows multiple examples of the shapes used and 

their respective visual features and asymmetry metric values. For 

example, a cube (the first shape on the table) has an asymmetry 

value of 0 since it is symmetrical in all its axes.  

Two sets of questionnaires, H1 and H2, were created to 

capture the human-perceived complexity of the 3D shapes. H1: 

In each question, participants were shown an animation of a 

shape, rotating on all its axes, and were asked to rate the 

perceived complexity of the shape using a slider bar ranging 

from 0 (less complex) to 10 (more complex). For this 

questionnaire, participants were instructed to use a “cube” with 

a complexity of 0 as a reference shape. This was done to diminish 

potential individual biases. For this questionnaire, a total of 26 

different shapes were shown, that is, 8  shapes of 1 voxel, 8  

shapes of 2 voxels, and 8  shapes of 3 voxels respectively. 

Therefore, the levels of the independent variable of “number of 

voxels” were assessed within-subject. Of these 26 shapes, two 

were for quality control (i.e., cube in which they had to select a 

complexity of 0). The order of the shapes was randomized to 

avoid any potential order effects.  

 

TABLE 1. EXAMPLE OF SHAPES AND THEIR 
FEATURES 

No. of 

Voxels 

No. of 

complete 

voxels 

No. of 

incomplete 

voxels 

No. of 

Incline 

planes. 

Asymm

etry 

metric 

3D shape 

image 

 

1 

 

1 

 

0 

 

0 

 

0 

 
 

1 

 

0 

 

1 

 

2 

 

0.19 

 
 

2 

 

1 

 

1 

 

3 

 

0.10 

 
 

2 

 

0 

 

2 

 

4 

 

0.42 

 
 

3 

 

1 

 

2 

 

2 

 

0.14 

 
 

3 

 

0 

 

3 

 

3 

 

0.47 

 
 

(h1) 

(H1) 

 
(H2) 

 

FIGURE 1. EXAMPLE QUESITONS OF H1 & H2 
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 H2: The second questionnaire was like the Purdue Spatial 

Visualization test. For this questionnaire participants had to: (i) 

study how the shape in the top line of the questions is rotated 

(i.e., reference shape), (ii) picture in their mind what the shape 

shown in the middle line of the questions (i.e., main shape) looks 

like when rotated in exactly the same manner, and (iii) select 

from among the five drawings (A, B, C, D, or E) given in the 

bottom line of the questions the drawing that looks like the shape 

rotated in the correct position, which was randomized for each 

question. Fig. 1 shows an example of the questions present in 

both the H1 & H2 questionnaires using the same shape.    

For all the questions in H2, the same reference shape (i.e., 

the one in the top line of the questions) and rotation were used to 

control for any potential effects introduced by these factors. 

Hence, the only factor that changed between the questions was 

the main shape. For this questionnaire, a total of 30 shapes were 

presented, since this was the same number of shapes as in the 

Purdue test.  Of these 30 shapes,  two were “cubes” for quality 

control. No shapes, besides the control,  were repeated among 

participants. However, the shapes were repeated between 

participants. Also, to closely resemble the Purdue test, 

participants were given 15 mins to complete it. This time was 

selected based on the results of some preliminary experiments.  

 

3.2 ChatGPT “Perceived-Complexity” Experiments 

ChatGPT was used with the intention of better 

understanding its capabilities in representing the human 

perceived complexity of 3D shapes. ChatGPT was prompted 

with a series of questions asking it to generate code for shapes of 

different or similar complexities (i.e., the first set of 

conversations), as well as to rank those shapes based on 

complexity (i.e., a second set of conversations). As indicated by 

previous literature, in generative models like ChatGPT, the 

prompt provided by the user could impact the model’s response 

according to the context provided. Therefore, to reduce the 

effects of the context and order of the prompts, for each set of 

conversations questions were asked randomly.  

For the first set of conversations, the research team had 17 

conversations with ChatGPT. Each conversation began with the 

prompt “Create a 3D shape in Python using Plotly” to ensure it 

would generate shapes and their respective code using the same 

Python library. Subsequently, each conversation consisted of 15 

questions randomly selected from the following set: 
 

• Could you create a shape a bit more complex?  

• Could you create another one of the same complexity?  

• Could you create a complex shape with Plotly? 

• Could you create a simple shape with Plotly? 
 

Hence, the order and quantity of the questions in each 

conversation were random. From this first set of conversations, 

ChatGPT identified a total of 52 different 3D shapes and 

provided code to create them using the Python Plotly library. 

Table 2 shows some examples of the shapes identified. As it can 

be shown, in some instances ChatGPT provided the names of the 

shape, while in others it provided a short description as its name. 

Examples of these shapes, and the ones used in H1 and H2, can 

be found in the GitHub repo: 

github.com/lopezbec/ShapeComplexity_ChatGPT 
 

Based on these 52 shapes identified, a second set of 

conversations was performed. For this second set of 

conversations, the research team had 10 conversations with 

ChatGPT. Each conversation consisted of 15 questions randomly 

selected from the following set.  
 

(Q1) Can you rank the following 3D shapes from least complex 

to most complex [list of 52 shapes here]?  

(Q2) Which of the following shapes are considered simple 

shapes [list of 52 shapes here]?  

(Q3) Which of the following shapes are considered complex 

shapes [list of 52 shapes here]? 

 (Q4) Which of the following shapes have similar complexities 

[list of 52 shapes here]?  

(Q5) Which of the following shapes is the most complex 3D 

shape [list of 52 shapes here]?  

(Q6) Which of the following shapes is the simplest 3D shape 

[list of 52 shapes here]?  
 

The questions and the decision of only having 17 and 10 

conversations for each set respectively, were based in initial tests 

that showed consistency in ChatGPT responses. This consistency 

could be attributed to the use of a “temperature” hyperparameter 

TABLE 2. EXAMPLE OF SHAPES FROM CHATGPT 
Shapes 

“Names” 

Output of Code 

 

Lorenz 

Attractor 

 
 

Sphere 

with 

bumpy 

surface 

 
 

Klein 

Bottle 

 
 

https://github.com/lopezbec/ShapeComplexity_ChatGPT
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of 0, which controls for the randomness of the text generated by 

ChatGPT [43].To explore how well ChatGPT could capture the 

consensus of humans as to what makes shapes be perceived as 

complex, a second set of questionnaires, G1 and G2,  were 

developed using the 52 shapes identified by ChatGPT in the first 

set of conversations.  

G1: In this questionnaire, participants were shown an 

animation of the shape generated by ChatGPT rotating in all its 

axes and asked to rate the perceived complexity using a slider 

bar ranging from 0 (less complex) to 10 (more complex). The 

research team had to modify some of the code generated by 

ChatGPT to ensure all the shapes generated had the same format 

and scale (e.g., color schema, no axis label, no legend, etc.). This 

was done to avoid introducing any potential bias or confounding 

factors arising from other visual features of the images (see Table 

2).  

G2: For this questionnaire, participants were given just the 

name of the shapes generated by ChatGPT and asked to rate the 

perceived complexity using a slider bar as well. In this 

questionnaire, participants were encouraged to search online if 

they were unfamiliar with the shape. This second questionnaire, 

which only presented participants with the names of the shapes, 

was done since it was clear that for some shapes ChatGPT did 

not generate code that aligned 100% with their names. For 

example, the Klein Bottle shape in Table 2 does not illustrate a  

Klein Bottle per se. 

For both questionnaires (G1 and G2), a total of 20 different 

shapes were shown. Two of the questions were randomly placed 

in the survey for quality control showing a cube in which the 

participant had to select a complexity of 0. This was done to 

diminish potential individual biases. Moreover, the order of the 

shapes was also randomized to avoid any potential order effects. 

Figure 2 shows an example of a question for both questionnaires 

(G1) and (G2) using the same shape. 

 

4. RESULTS AND FINDINGS 

For this work, participants were recruited via Amazon 

Mechanical Turk (AMT) [44]. AMT offers low-cost access to a 

vast and diverse pool of participants, and it has been used largely 

in behavioral research [45], [46]. A total of 200 participants 

completed each of the questionnaires (i.e., H1, H2, G1, and G2, 

see section 3). For each questionnaire, participants were 

compensated US$0.51 if they completed the questionnaires and 

correctly answered the two quality control questions. Moreover, 

for questionnaire H2, participants were compensated an 

additional US$0.1 for each correct response. This was done with 

the goal of mimicking the same circumstances of the Purdue test 

in which participants have the incentive to do well. If the 

participant did not pass the quality control, they were 

compensated just US$0.01.  

Table 3 shows the number of participants and summary 

statistics for the completion time of each questionnaire after 

removing participants that: (i) did not pass the quality control 

questions, (ii) those that took longer than the 3rd quantile, and 

(iii) those that took less than the 2nd quantile (e.g., did not read 

the instructions or just left the survey running). 

 

 4.1. Human Perceived-Complexity Experiments Results 

For each of the shapes presented in Questionnaire H1, an 

average perceived complexity value per shape was calculated 

from all the responses. The average perceived complexity of the 

39 different shapes ranged from 1.65 to 7.92 (M: 5.16, Mdn: 

5.57, Sd: 1.63), excluding the quality control questions.  

A series of correlation tests were performed between the 

average perceived complexity of the shapes and: (i) their number 

of voxels, (ii) their number of complete voxels, (iii) their number 

of incomplete voxels, (iv) their number of incline planes, and (v) 

their asymmetry metric. Table 4 shows the summary statistics of 

these tests. These results indicate that on average, the more 

voxels a shape had, the more incomplete voxels it had, and the 

more asymmetrical it was, it was perceived as more complex by 

participants.  

For questionnaire H2, each participant was assigned a 

“grade”, representing the proportion of correct responses. This 

grade ranged from 14.29% to 100% (M: 61.01%, Mdn: 64.29%, 

 

(G1) 

 
(G2) 

 

FIGURE 2. EXAMPLE QUESTIONS OF G1 & G2 

 

TABLE 3. SUMMARY OF QUESTIONNAIRES 
PARTICIPAN AND COMPLETION TIME  
 

 No. of 

participants 

Avg. 

Completion 

time [mins] 

Min. 

Completion 

time [mins] 

Max. 

Completion 

time [mins] 

H1 31 4.8 3.8 6.0 

H2 48 7.4 4.9 10.7 

G1 36 4.6 2.1 7.4 

G2 33 4.2 2.7 5.7 
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Sd: 33.56%), excluding the quality control questions. From this 

distribution of participants’ grades, it is evident that it was 

negatively skewed suggesting that some participants might have 

not been motivated by the incentives provided or might have 

lacked the necessary spatial ability to do well. In either case, the 

subsequent analyses were performed only using the responses of 

participants that performed better than average (i.e., a grade of 

61.01% or higher).  

 An average grade per shape was calculated from all the 

responses of the “above-average” participants. This average 

grade per shape was statistically significantly correlated with the 

asymmetry of the shapes (ρ:-0.456, p-value: 0.006). Similarly, 

an average completion time per shape was calculated from all the 

“above-average” participant responses. This average completion 

time per shape was also statistically significantly correlated with 

the asymmetry of the shapes (ρ:0.501, p-value: 0.001). This 

indicates that the more asymmetrical the shapes on the questions 

from H2 were, on average participants tended to perform worse. 

In other words, the more symmetrical the shape was on the 

spatial visualization tasks, the better participants performed. 

Moreover, it shows that the more asymmetrical the shapes were, 

the participants took longer to complete them. This indicates that 

the “above-average” participants took longer to select their final 

response in spatial visualization tasks that used shapes that were 

more complex.  

 

4.2. ChatGPT “Perceived-Complexity” Experiments Results 

 

For each of the shapes presented in questionnaires G1 and 

G2, an average perceived complexity value per shape was 

calculated from all the participant responses to each 

questionnaire. The average perceived complexity of the 52 

different shapes, excluding the quality control shape, ranged 

from 0 to 8.13 (M: 4.76, Mdn: 5.25, Sd: 2.18) based on G1 

responses, and ranged from 1.856 to 7.5 (M: 5.29, Mdn: 5.32, 

Sd: 1.59) based on G2 responses. The average perceived 

complexity of the shapes based on G1 and G2 were just 

moderately correlated (ρ:0.489, p-value:<0.001). This indicates 

there were some similarities in the responses when participants 

rated the perceived complexity of the shapes given just the name 

and when given the shape generated by ChatGPT. 

Table 5 shows the summary statistics for the preliminary 

analyses performed on ChatGPT responses for the second set of 

conversations (see section 3.2). The Kappa values show 

moderate interrater reliability for ChatGPT’s responses to 

questions Q2, Q3, Q5, and substantial interrater reliability for 

Q6. However, it shows poor interrater reliability for the 

responses to questions Q1 and Q4. Moreover, the results show 

that ChatGPT is more consistent (i.e., greater Kappas values) for 

questions related to “simple shapes” (i.e., Q2, and Q6) than for 

“complex shapes” (i.e., Q3, and Q5). Additionally, it shows that 

ChatGPT is less consistent for questions that require a ranking or 

a grouping of shapes, which inherently would produce responses 

of longer length.  

Moreover, Table 5, shows the summary statistics for a series 

of correlation tests performed between the average perceived 

complexity of the shapes from both G1 and G2 questionnaires, 

and the proportion of times a given shape was present in 

ChatGPT’s response). Essentially, this analysis looks at the 

correlation between ChatGPT responses and human perceived 

complexity response from G1 and G2. This table shows that 

there are statistically significant correlations between the 

responses of ChatGPT for questions Q1, Q2, Q3, and Q4, and 

participants’ responses for questionnaire G2. The lack of 

significant correlation with the responses of participants from 

questionnaire G1 suggests that there was more agreement with 

ChatGPT when participants were asked to rate the perceived 

complexity of a shape based on their name. This could be 

attributed to the fact that some of the shapes generated by 

ChatGPT (i.e., the ones used in G1) did not align with their 

names (e.g., see Table 2).  

Finally, a series of t-tests were performed to compare the 

average complexity of shapes based on responses from 

questionnaires G1 and G2. The groups compared were formed 

based on the median response of ChatGPT for questions Q2, Q3, 

Q5, and Q6 from the second set of conversations (see section 

3.2). The shapes shown in the responses for Q2, Q3, Q5, and Q6 

were transcribed as either present (1) or not present (0) for each 

response. The median of these results was calculated to create 

two groups. Subsequently, the average difference in the response 

from the human participants for G1 and G2 between these two 

groups was evaluated using a t-test. 

 

TABLE 5. SUMMARY STATISTICS ANALYSIS OF 
CHATGPT RESPONCES 
 

 Avg. 

Response 

length 

(Mdn) 

 

Kappa  

(p-value) 

G1 vs 

ChatGPT  

ρ (p-value) 

G2 vs 

ChatGPT 

ρ (p-value 

Q1 45.26 

(46) 

0.12 

(<0.0001) 

0.071  

(0.621) 

0.531 

(<0.0001) 

Q2 12.71 

(12) 

0.49 

(<0.0001) 

-0.186 

(0.256) 

-0.682 

(<0.0001) 

Q3 17.30 

(18.5) 

0.4 

(<0.0001) 

0.233 

(0.159) 

0.422 

(0.008) 

Q4  24.59 

(19) 

0.183 

(<0.0001) 

0.139 

(0.324) 

0.363 

(0.008) 

Q5 4.8 

(4) 

0.43 

(<0.0001) 

-0.185 

(0.435) 

0.316 

(0.175) 

Q6 1  

(1) 

0.77 

(<0.0001) 

-0.389 

(0.746) 

0.084 

(0.947) 
 

 

TABLE 4. SUMMARY STATISTICS AVG. PERCIVED 
COMPLEXITY VS SHAPE FEATURES 
 

 ρ p-value 

(i)  No. of Voxels 0.575 <0.001 

(ii) No. of Complete Voxels -0.088 0.5956 

(iii) No. of Incomplete Voxels 0.69 <0.0001 

(iv) No. of Incline planes  0.317 0.049 

(v) Asymmetry metric 0.444 0.006 
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Given that ChatGPT only achieved a moderate agreement 

on most of the questions responses and some shapes might have 

only been present a few times over all the responses (i.e., outlier), 

the median was used to identify the two groups for the t-tests. 

The median indicates if a given shape was present in more than 

half of ChatGPT responses, or not, and is also less affected by 

outliers than the mean. Lastly, the responses for Q1 and Q4 did 

not lend themselves to dividing the shapes into unique groups 

since these were ranking questions. 

In Table 6 the results from this t-test are shown. The results 

show that the average perceived complexity of shapes identified 

by ChatGPT as most complex (i.e., Q5) and simplest (i.e., Q6), 

were significantly different. This difference was significant even 

when using both the average perceived complexity estimated 

from participants' responses to questionnaires G1 and G2. 

However, for the group generated from ChatGPT’s responses to 

questions Q2 and Q3, only their average perceived complexity 

estimated from participants’ responses to questionnaire G2 (i.e., 

just showing the names) was statistically significant. This 

indicates that ChatGPT was in greater agreement with 

participants’ perceived complexity of shapes when presented just 

with their names. 

 

In summary, the results of this work indicate that: 

 

• The perceived complexity of shapes is positively correlated 

with (i) their asymmetry, (ii) their number of voxels (e.g., 

components), and (iii) their number of inclined planes (e.g., 

surface variability). 

• Participants tend to perform worse and take longer in 

spatial visualization tasks that used asymmetrical shapes 

(i.e., more complex shapes). 

• ChatGPT is more consistent in its response to questions 

related to less complex (i.e., simple) shapes. 

• ChatGPT is less consistent in its response to questions that 

require ranking or grouping shapes based on complexity. 

• ChatGPT is better at generating names of shapes of 

different complexities than generating code that produces 

those shapes. 

 
 

5. CONCLUSION & FUTURE WORKS 

Spatial visualization skills are important for STEM fields. 

Yet, many students do not possess a sufficient skillset in this area. 

VR technology has been used to help develop spatial 

visualization skills, but most of the applications are not tailored 

to the user’s skill level, only allowing the student to interact with 

a limited set of predetermined 3D shapes. Hence, there is 

potential to leverage Generative Machine Learning methods to 

generate 3D shapes of different complexities in correspondence 

with the user’s skill level. However, it is important to first 

understand how humans perceive the complexity of 3D shapes, 

and how this relates to their performance in spatial visualization 

tasks. 

This work furthers the understanding of what makes 3D 

shapes perceived as complex, by leveraging ChatGPT and 

human-participant experiments. The results of this work indicate 

a positive correlation between the perceived complexity of 

shapes with their asymmetry, their number of voxels, and their 

number of incline planes. Furthermore, participants tended to 

perform worse and take longer in spatial visualization tasks with 

asymmetrical shapes. Moreover, ChatGPT was proven to show 

more consistency in its response to questions related to less 

complex/simple shapes while showing less consistency in 

questions that required it to group or rank shapes based on their 

relative complexities. Lastly, ChatGPT performed better in 

generating names of 3D shapes of varying complexities than 

generating Python code to create those shapes. 

These findings demonstrate that particular features of 3D 

shapes can help determine the complexity of the shapes and an 

individual’s performance in spatial visualization tasks that use 

those 3D shapes. These results could support the development of 

Generative Machine Learning models capable of generating 3D 

shapes reflective of a desired complexity. This has the potential 

to help educational applications designed to help develop spatial 

visualization skills adapt their content and tasks to the users’ 

unique skill level. This ultimately could help further develop 

these skills that are integral in STEM fields, specifically 

engineering.  

The findings also support the capabilities of large generative 

models, like ChatGPT, to serve as a tool to reflect patterns in 

human perceived complexity, which can lead to a better 

conceptualization of how 3D shapes are perceived as complex. 

This also supports the potential of these models to identify 

patterns in their training data that resemble the consensus of 

humans, which could have implications beyond just generating 

content. These findings emphasize the potential for using Large 

Language Models to gather consensus. These models could help 

assist in identifying effective methods to teach spatial 

visualization skills contributing to the development of 

educational applications that are tailored to the needs of the 

individual.   

Nevertheless, this work has several areas for improvement 

and limitations. One limitation of this study could be attributed 

to the number of conversations the research team had with 

ChatGPT. While the decision was informed by the results of 

 

TABLE 6. SUMMARY STATISTICS ANALYSIS OF 
CHATGPT RESPONCES 
 

 G1 

μQMdn=1 /μQMdn=0 

(p-value) 

G2 

μQMdn=1 /μQMdn=0 

(p-value) 

Q2 4.222 / 4.891 

(0.292) 

3.358/ 5.688 

(<0.001) 

Q3 5.499/ 4.353 

(0.082) 

6.081 / 4.726 

(0.001) 

Q5 5.666 / 4.177 

(0.009) 

6.117/4.619 

(<0.001) 

Q6 3.889/4.766 

(0.006) 

3.313 / 5.232 

(<0.0001) 
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initial tests, this was not tested in-depth, and this number could 

potentially impact the results. Another limitation that could have 

affected the validity of the results was the distribution of the 

participants’ grades in the questionary H2, suggesting either a 

lack of motivation or a lack of spatial ability skills. The 

proportion of responses was negatively skewed, leading to a 

smaller sample that was used in the analysis (i.e., those who 

performed “above average”). Additionally, this work illustrated 

that ChatGPT was not able to consistently produce working 

Python code for the generation of 3D shapes, indicating that this 

generative model is not reliable for shape generation per se at 

this moment. Furthermore, the results show that ChatGPT is less 

consistent in ranking or grouping shapes of relative complexity. 

This could be attributed to the broadness and subjectivity of the 

question, or the size of the list of shapes (i.e., needed to rank 52 

shapes). For example, in some of its responses to question Q1, 

ChatGPT stated that: “It's difficult to give an absolute ranking of 

complexity for 3D shapes as different people may have different 

perspectives on what makes a shape more complex than another. 

However, based on the general complexity of their shapes and 

structures, here's an attempt at ranking the provided 3D shapes 

from least complex to most complex.” This statement showcases 

that ChatGPT “recognizes” that while this is a subjective 

question, there are some general aspect people will have a 

consensus on.   

Future work will look to increase the number of participants, 

the number of spatial visualization tasks, and the motivation of 

the participants to obtain a better understanding of perceived 

complexity. Additionally, future work will aim to tailor the 

prompt from ChatGPT to be more specific with the intention to 

decrease the variability in the responses from ChatGPT to gain a 

narrower and more specific understanding of patterns in human 

perceived complexities of 3D shapes. This would not only be 

critical to gain a consensus of perceived complexity to support 

the development of a VR application to develop students’ spatial 

visualization skills but also to better understand how large 

generative models could capture key elements of human 

consensus. 
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