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Abstract

The objective of this work is to introduce a Reinforcement Learning
(RL) approach to automatically generate 3D shapes of different complex-
ities. This is with the goal to help tailor the spatial visualization task
of a Virtual Reality (VR) application designed to help develop students’
spatial skills. Spatial visualization skills are important skills needed and
frequently used in the STEM fields. While VR has been used to help
develop these skills, most of the existing applications do not necessarily
tailor their content to students’ skills level. Automatically generating
3D shapes can help VR applications tailor spatial visualization tasks to
the skills level of students. The results of this work indicate that an
RL agent is capable of creating an action policy that can generate 3D
shapes with complexities similar to a given desired complexity provided.
However, the results also show that the task of automatically generating
3D shapes that meet a given complexity is not trivial given the issues of
sparsity in the reward space. Nevertheless, this work lays the foundation
to leverage RL to automatically generate 3D shapes for VR applications
designed to help develop students’ spatial visualization skills.
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Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

An individual’s capacity to mentally manipulate and understand 3D shapes is
known as their spatial or visuo-spatial ability [26]. Rotating and generating
cross-sections of a shape are usual metrics for evaluating one’s spatial ability
or skill [18]. In STEM programs, both GPA and capacity to conduct self-
monitored learning have been shown to relate to a student’s spatial skills [33,
28]. Further reinforcing the importance of spatial skills, several fields, including
Chemical Engineering, Civil Engineering, and Computer Science, have found
a correlation between students’ spatial skills and academic success [34, 18, 33].
Unfortunately, many STEM students lack these critical skills at the beginning
of their studies. Moreover, standard instruction and class coursework at the
introductory level might not be enough to thoroughly develop these skills [32].

Spatial skills could be learned through the manipulation of 3D objects [28].
For some, this is as simple as playing with building blocks as a child, whereas
for others, it may need to be learned in an academic setting with repetitive ex-
ercises. Thanks to recent advancements and the penetration of Virtual Reality
(VR) technology, educators are leveraging VR as a pedagogical tool [24, 16].
Moreover, it has been found that students could perform better within VR
settings when compared to other traditional settings [20, 19]. The greater the
immersion of the VR application, the greater the performance increase of the
students [19]. Thanks to its unique characteristics that facilitate “first-person”
experiences and allow users to interact with 3D virtual objects, VR is suited
to teach and help develop spatial visualization skills. For example, some re-
searchers have already started exploring this and have shown promising results
[8]. However, researchers have also shown that students can have different
levels of expertise which can directly impact their state of flow in a given ap-
plication [25]. The Flow theory of motivation indicates that students would
best execute the tasks whose difficulty aligns with their skills level. Conse-
quently, any educational VR applications (e.g., ones designed to help develop
spatial visualizations skills) that do not provide any tailored content or only
enable users to interact with a limited set of content, might motivate users just
for a short period of time (e.g., “novelty-effects”).

Furthermore, the cost of VR technology has steadily decreased, thus in-
creasing the economic accessibility of the devices for different socio-economic
groups[21]. However, the resources needed to generate new VR content are
still high. The existing challenges for generating new VR content might pre-
vent educators to tailor their VR content to their students. Moreover, novelty
effects could set in and lower students’ motivation as they grow accustomed to
the VR environments they are learning from [14]. Thus, new content might be
required to counteract potential novelty effects.

The gaming industry has already leveraged methods to generate new con-
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tent automatically. These Procedural Content Generation (PCG) methods
have been used since the ’80s, and are able to not only help reduce the resources
needed to create content but also help with users’ long-term engagement and
motivation [9]. VR applications could greatly benefit from methods that can
help generate content automatically. Specifically, VR applications designed to
help develop spatial visualization skills could benefit from methods to auto-
matically generate new 3D shapes. These 3D shapes could also be tailored
based on students’ skill levels, which could help improve their state of flow.
One potential solution to achieve this would be to leverage PCG methods to
generate new content [6, 17, 15], like 3D shapes of different complexities that
students can interact with while developing their spatial visualization skills.

Based on the importance of spatial visualization skills and the advantages
of VR to help develop these skills, the authors of this work have introduced
a VR application designed to help develop spatial visualization skills in which
students can use their hands to interact with 3D shapes and perform spatial
visualization tasks [35]. This work extends previous efforts by introducing a
PCG method based on a Reinforcement Learning approach to automatically
generate 3D shapes of different complexities that students can interact with
while developing their spatial visualization skills.

2 Literature Review

2.1 Virtual Reality for Education

As VR technology has grown more available, they have been introduced to edu-
cational mediums[27]. During the first uses of VR in education in the previous
decade, close to half of them pertained to engineering[22]. Although the term
immersive and not been formalized in this context at the time, most of those
pioneering studies compared immersive vs non-immersive platforms [27]. The
standardized definition of immersive VR has two components: the capacity for
the user to interact with the virtual environment, and the incorporation of a
head-mounted display [19, 38]. Striving for immersion is important because
it is directly correlated to the benefits of using VR; specifically, a user’s mo-
tivation, long-term retention, and enjoyment of the material [19]. Regardless
of these benefits, there are still limitations to the currently available VR ed-
ucational applications. For example, the novelty effect causes the benefits of
VR to decrease in magnitude as users adjust to the new learning environment.
Moreover, the cost of generating new VR content has not decreased along with
the cost of headsets, which limits the development of VR educational applica-
tions [30]. Both limitations might be surpassed with help of Machine Learning
methods capable of automatically generating new content for VR applications.
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2.2 Development of Spatial Skills

In most cases, spatial skills are learned via the interactions an individual has
with objects during their youth [37, 7]. Nonetheless, previous studies have
proven that an individual can improve their spatial skill beyond what they
developed as a child [8]. The main way that one improves their spatial skill
is through the completion of spatial tasks, like the ones present in the Mental
Rotation Test or the Purdue Spatial Visualization test [4]. STEM professionals
are more likely to have more developed spatial skills than the population in
general, mainly because they develop spatial skills when working with spatial
tasks like those in STEM fields [2]. Moreover, in STEM programs, both GPA
and capacity to conduct self-monitored learning have been shown to relate to
a student’s spatial skills [33, 28]. This is one of the reasons why it is important
to ensure and help students entering STEM programs develop their spatial
visualization skills. Knowing that spatial skills can be taught to students via
the repetition of spatial tasks, researchers have leveraged VR to help develop
students’ spatial visualization skills

2.3 VR for Spatial Skills

Using VR as a platform to teach spatial skills is not a novel idea, in fact,
several studies have already detailed its effect [38]. The result of these studies
indicates that VR is an efficient platform for teaching spatial skills [8]. In a
study that compared the improvement of students that used immersive VR and
those that used traditional mediums, the students that used VR had greater
improvement in their spatial skills [23]. The findings of this work indicate that
learning in VR gives the students greater spatial perception than learning on
a 2D platform (e.g., a desktop computer) [23].

One of the metrics frequently used to assess and develop spatial visualiza-
tion skills are the Mental Rotation Test and the Purdue Spatial Visualization
test. The application introduced in a previous work by the authors [35], also
leverages these tests to help develop students’ spatial skills by practicing spatial
tasks. For example, Fig.1, from [35] figure 3, shows an example of the mental
rotation tasks users are able to perform while using the desktop version of the
application. The application introduced in [35], also leveraged hand tracking
as a more natural user interface that should increase the user’s immersion when
compared to using controllers.

While VR has already been shown to help develop spatial skills by allowing
students to practice spatial tasks in a 3D virtual environment, it has been also
shown that students can have different skill levels that can directly impact their
state of flow. The Flow theory of motivation suggests that individuals would be
more engaged to execute tasks whose difficulty aligns with their skills level [25].
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Figure 1: Spatial Visualization Tasks Examples from [17]

Unfortunately, most of the existing VR applications designed to help develop
spatial visualization skills only enable users to interact with a limited set of
3D shapes that are not necessarily tailored to their skill level. Nevertheless,
previous studies have shown promising results of using Procedural Content
Generation and Reinforcement Learning methods to generate new content for
VR applications [6, 17, 15].

2.4 Reinforcement Learning

Methods to automatically generate new content, known as Procedural Con-
tent Generation (PCG), have been used extensively by the gaming industry
[29, 10], and most recently in educational applications as well [11]. In addi-
tion, researchers have started leveraging Machine Learning to automatically
generate new content. However, methods based on Supervised Machine Learn-
ing approaches, require collecting or generating data a priori to train their
models[11, 10].

Unlike other forms of Machine Learning, Reinforcement Learning (RL) does
not need an established training dataset per se [15]. It instead leverages a sim-
ulation environment to generate an action policy to effectively address complex
situations [15]. An RL agent uses the current state of a simulation environ-
ment and a reward function it tries to maximize. The agent implements a series
of “trial-and-error” runs of the simulation environment to generate an action
policy that would maximize its long-term reward [1]. Reinforcement Learning
agents also have the benefit of generating an action policy that enables them
to act in simulated environments with different states without the need for
additional training. Studies have shown that Reinforcement Learning agents
can effectively generate action policies to perform a task in complicated tasks,
such as puzzles, retro video games, and board games like Go [22, 13, 31].

Table 1. shows some of the existing work done to help develop students’
spatial visualization skills, as well as the use of PCG and RL in educational

5



applications. While several works have explored the use of VR to help de-
velop spatial visualization skills, most of the proposed solutions have several
limitations that arise from the challenges of using a finite and limited set of
3D shapes users can interact with. Hence, in this work, the authors introduce
a PCG method based on a Reinforcement Learning approach, that would be
capable of automatically generating new 3D shapes of a given complexity. This
would also enable to tailor of 3D shapes based on students’ skill levels in or-
der to improve their state of flow and motivation while interacting with a VR
application designed to develop their spatial visualization skills.

Table 1: Summary of existing works
Reference Solution for SVS VR for SVS PCG PCG with RL
[33, 28, 7] X
[8, 5, 3] X X

[10, 11, 12, 37] X
[6, 17, 15]* X X
This work X X X X

∗

Author’s previous work, Spatial Visualization Skills=SVS

3 Method

This work introduces a Procedural Content Generation (PCG) method based
on a Reinforcement Learning (RL) approach that automatically generates 3D
shapes of a given desired complexity. The RL agent uses a 3D shape generator
environment to create and test different 3D shapes. A metric that measures
the symmetry of the shape is used as a complexity metric since previous studies
have shown that 3D shapes that are symmetrical are perceived as less complex
than shapes that are not symmetrical [36]. The reward function used to train
the RL agent considers the difference between the desired complexity and the
complexity of the shape generated, as well as other factors to help mitigate the
sparsity problems. The RL agent and training process are explained in more
detail next.

3.1 3D Shapes Generation

To algorithmically generate 3D shapes, like those present in the Purdue Spatial
Visualization test [4], a system of wedges and voxels was implemented. Figure
3 shows a representation of this system. There are a total of 8 voxels arranged
in a cube configuration. This means, that the biggest 3D shape that can be
generated would have 2 voxels of length on any axis. Moreover, each voxel is
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composed of 12 different wedges that can be enabled or disabled to generate
different 3D shapes. These 12 wedges come from having a wedge (i.e., cube cut
in diagonal) in each of the three axes that can be rotated 90 degrees at least four
times (i.e., 3*4=12). To have a complete voxel, at least two complementary
wedges need to be enabled. A video of the 3D shape generation can be seen here
https://youtu.be/Z9n2zUuqk-E. This process can generate shapes without
curvatures, which are the most predominant shapes in the Purdue Spatial
Visualization Test (i.e., 70% of the shapes do not have any curvature).

Based on previous literature, a complexity metric was developed to measure
the symmetric shapes generated [38]. Figure 2, shows a visualization of the
complexity metric. This metric aims to measure complexity based on the
symmetry of 3D shapes. For each shape, a moving cutting plane in each of the
x, y, and z axes was used to scan the shape. This sweep allows to potentially
capture complexity arising from internal parts of the 3D shape (e.g., if a shape
has a whole) and to account for the difference in the shape along an axis
(i.e., the front is different than the back). For each of the cutting planes,
the voxel area used to generate the 3D shape was identified. This is to help
the metric to be size and translation invariant (i.e., a shape should have the
same complexity no matter its size or location). Subsequently, the pixel level
Euclidean difference between areas of the shape that were divided by each of
the 4 potential lines of symmetry was calculated. The difference was then
normalized to have values between 0-1.

Figure 2: Visualization of Complexity Calculation

A 3D shape with a complexity of 0 would indicate a shape than in all its
axes, any cutting plane taken, would have a total of 4 lines of symmetry (i.e.,
symmetrical horizontally, vertically, and both diagonals). A 3D shape that
would have a complexity of 0 would be a cube. Figure 3 shows an example
representation of the complexity metric for a cube and a wedge. As shown
in Fig. 5, any cutting plane of the cube would have all 4 lines of symmetry,
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while the wedge would only have 1 (i.e., gray dotted lines). Therefore, the
complexity value of the wedge is greater than the cube.

Figure 3: Complexity Calculation Examples

3.2 RL Agent Reward Function

Since there are a total of 8 voxels each with12 wedges that can be enabled or
disabled to create a 3D shape, the size of the possible combinations is equal to
2 to the power of 12 by 8, or 7.9*1028 (296) . The possible wedges combinations
grow rapidly as more voxels are added. This presents a valuable opportunity
to use RL to generate shapes since the number of potential combinations to
generate different shapes grows rapidly with the number of voxels used, which
makes it intractable to test all possible combinations.

The method introduced in this work uses an RL agent that implements a
Neural Network that takes as input a vector [S,C], where S is an 8 by 12 matrix
containing binary variables S(i,j), i ∈ {1..8} and j ∈ {1..12} that indicates if
a given wedge j of voxel i is enabled or disabled. C is the desired complexity
of the 3D shape the agent needs to generate and can range between values of
0 and 1. The network outputs an 8 by 12 matrix of probabilities X, where
X(i,j) , i ∈ {1..8} and j ∈ {1..12} represent the probability if a given wedge
j of a voxel i should be enabled or disabled. This probability vector is then
used to update the vector S using a threshold of 0.5. This configuration creates
an environment with a multi-discrete action space, which allows the agent to
make a shape at each step and make changes to the network weights after each
step, based on the reward function.

Equation (1) show the reward function that takes as input the current shape
and the desired complexity [S,C], and returns a reward based on how close the
complexity of the shape generated is to the desired complexity. Small penalties
are detracted from the overall reward for each wedge used, and any additional
wedges of a voxel used beyond the complementary wedges. This is to help
mitigate the sparsity problem since having any additional wedges enabled in
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a voxel after two complementary wedges are enabled would not generate a
different shape. This is because once two complementary wedges on a voxel
are enabled a cube is the only shape that can be generated using that voxel.
Moreover, if an empty shape is returned (i.e., no wedges enable), it receives a
penalty to deter it from returning no wedges enabled (i.e., no shapes).

R(S,C) =

{
0 if

∑8
i=1

∑12
j=1 Si,j =M

1− |C − c(S)| − β(
∑12

j=1 Si,j

100 )− θ(γi) otherwise
(1)

Where:

• S is the matrix containing the shape being passed in.
• Si,j is a binary variable that equals 1 if the wedge j of voxel i is enabled,
i ∈ {1..8} and j ∈ {1..12} . passed in.

• C is the desired complexity.
• c(S)is the complexity of the given shape S
• γi counts the number of wedges enable in voxel i beyond any pair of

complementary wedges.
• M is a negative number that serves as a penalty.
• β and θ are positive values that serves as weights

During each training epoch, the agent starts by randomly generating a
desired complexity C between 0 and 1 from a discrete uniform distribution,
and feeds that into the Neural Network with a S matrix that has no wedges
enabled (i.e., no shape). The matrix S is “flattened” to a vector of length 96
before passing as input to the network. The agent creates a probability vector
for the wedges and generates a new shape as a result, then feeds it back into
the Neural Network with C.

4 Results and Discussion

The RL agent was trained on a Windows computer with an Intel© Core™ i7-
9750H 2.6 GHz CPU and 32 GB of RAM. The RL agent and Neural Network
were implemented in Python using the Keras library.

Some initial hyperparameter tunning was performed in which the number
of layers and number of neurons per layer of the RL agent neural network,
the β and θ weights of the reward functions, and the optimization algorithms
learning rate were explored. From these initial results, an RL agent with a
fully dense Neural Network with 10 hidden layers, each having 30 neurons was
implemented. The hidden layers used a rectified linear unit activation function
while the output layer used a SoftMax activation function. After each training
epoch, the loss function for the neural network is calculated from the weights
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of the network, and gradients are collected until the network is updated. The
β and θ weights of the reward functions are set to 0.6. Each epoch the agent
will try to find a shape that maximizes the reward (i.e., max value of 1) up to
10 times before the desired complexity changes. The weights of the network
are updated after every 10 training episodes, using an Adam optimization
algorithm with a learning rate of 0.001.

Figure 4, shows the reward of the RL agent over a range of 3,000 train-
ing episodes. On the first 200th training iterations, the RL agent achieved
an average reward of -2.56 (Min=-3.650, Max= -1.04, SD=0.54). However,
in the last 200th iterations, the RL agent achieved an average reward of 0.67
(Min=0.37, Max= 0.93, SD=0.15). This indicates that the RL agent gener-
ated an action policy that significantly improves the reward functions since, on
average, the differences in the rewards in the first and last 200th iterations are
statistically different (p− value<0.001). Similarly, the variance is statistically
different (p−value<0.001) indicating that the training process allowed the RL
agent to generate an action policy that is more consistent at generating 3D
shapes that maximize the reward (e.g., with complexity similar to the desired
complexity).

Figure 4: Reward vs Training Episodes

Nevertheless, it is important to highlight that even at the end of the train-
ing process the action policy is not able to generate a 3D shape with the same
complexity as the desired complexity in 100% of the cases. This could be at-
tributed to the RL agent still not finding the optimal policy and requiring more
training or hyperparametric tuning, and because the training environment is
randomly picking the desired complexity between 0 and 1 from a discrete uni-
form distribution with two decimal points of precision. Hence, the training
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environment might ask the RL agent to generate a shape with a complexity
of 0.89 and the latter one with a complexity of 0.9. However, it might not be
feasible with the current 3D shape generator systems to create two 3D shapes
one with a complexity of 0.89 and another with a complexity of 0.9.

While these results showcase the challenges that raise from the sparse re-
ward space and the current training environment, they also indicate that the
RL agent managed to create an action policy that is capable of generating
different shapes that have a complexity similar to the given desired complex-
ity. Hence, this work lays the foundation for using RL agents to automatically
generate new 3D shapes of the desired complexity. This could potentially be
used in VR applications designed to help develop spatial visualization skills.

5 Conclusion and Future Work

Spatial visualization skills are of great importance in STEM fields. While VR
has been shown to help develop these skills, most of the existing applications
do not necessarily tailor their content to students’ skills level. Automatically
generating 3D shapes with Procedural Content Generation (PCG) methods,
could help VR applications tailor spatial visualization tasks to the skills level
of students, as well as generate a wider range of tasks.

This work introduces a PCG method based on a Reinforcement Learning
(RL) approach to automatically generate 3D shapes of different complexities.
The results indicate that an RL-agent is capable of creating an action policy
that can generate 3D shapes with complexities similar to a given desired com-
plexity provided. This could potentially help a VR application design to help
develop students’ spatial visualization and automatically generated different
3D shapes for the spatial visualization tasks that are in line with students’
skill levels. However, the results also show that the task of automatically gen-
erating 3D shapes that meet a given complexity is not trivial. Moreover, they
show that there are a lot of areas for improvement.

One area that could help improve generalizability and the training of the
RL agent, would be the 3D shape generation system. It can be improved by
increasing the number of voxels it uses to generate shapes, which will allow
a wider range of shapes to be created. In addition, it should be updated so
that 3D shapes with curvature are feasible to generate. Lastly, the generation
system should be improved to reduce the sparsity of the solution space. With
regards to the complexity metric, the authors are already exploring how the
complexity metric can be updated to not only help with the sparsity issues
but also to better capture individuals’ perceived complexity of shapes used in
spatial visualization tasks.
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