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ABSTRACT 
The objective of this work is to explore the perceived 

complexity of 3D shapes used in spatial visualization tasks and 
leverage Machine Learning to create a model that can predict this 
perceived complexity using the visual features of the shapes. 
This could help automate the process of generating 3D shapes 
for a Virtual Reality (VR) application designed to help develop 
spatial visualization skills. Spatial visualization skills are 
important skills needed in the STEM fields. While VR has been 
used to help develop these skills, most of the existing 
applications do not necessarily tailor their content to the skills 
level of individuals. Automatically generating shapes can help 
VR applications tailor spatial visualization tasks to the skills 
level of users. However, in order to do this, it is important to first 
understand how humans perceive the complexity of 3D shapes, 
and how this relates to their performance in spatial visualization 
tasks. The results of this work indicate that while participants 
perceived complexity of 3D shapes is correlated to their 
performance in spatial visualization tasks that use the same 3D 
shapes, this perceived complexity by itself is not enough to 
predict their performance in such tasks. Moreover, the results 
indicate that certain visual features of 3D shapes can help explain 
the perceived complexity of the shape as well as the performance 
of individuals in spatial visualization tasks that implement those 
3D shapes.  
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1. INTRODUCTION 
 
Spatial Visualization skills are described as the ability to 

mentally manipulate, rotate, twist or invert 3D objects [1]. It is a 
complex process that involves both visual abilities and the 
formation of mental images [2]. They are one of the most 
important skills in STEM fields. These skills are especially 
critical for engineers of all disciplines, as engineers 
communicate largely via graphical means [3]. Furthermore, 
studies have shown that these skills are correlated to students' 
performance, confidence, motivation, and reasoning [4] [5].  

Unfortunately, many students in STEM fields significantly lack 
spatial skills when they begin their studies [6]. Moreover, 
standard instruction and class coursework at the introductory 
level might not be enough to thoroughly develop these skills [7].  

Virtual Reality (VR) technology has started to be used more 
and more in education as it enables students to find out answers, 
explore, and build their own knowledge [8]. VR has already been 
used to teach and develop spatial visualization skills with 
promising results [9]. Even though VR educational applications 
can motivate students to learn new concepts and develop new 
skills, it has been shown that students can have different levels 
of expertise which can directly impact their state of flow in a 
given application [12]. It has been found that students best 
execute the tasks whose difficulty aligns with their skills level 
[10-12]. Unfortunately, most of the existing VR applications for 
spatial visualization skills are designed following a “one-size-
fits-all” approach which only enables users to interact with a 
limited set of 3D shapes that are not necessarily tailored to their 
skill level [13]. Consequently, after a couple of trials and/or 
interaction with the VR applications, students could easily lose 
their attention and get demotivated [14]. 

A way to overcome these limitations is to automatically 
generate new content that students can interact with. Specifically, 
for VR applications designed to help develop spatial 
visualization skills, automatically generating new 3D shapes and 
tailoring the shapes based on students' skill levels could improve 
users’ state of flow and their motivation. One potential solution 
to achieve this would be to leverage Procedural Content 
Generation methods based on Reinforcement Learning 
approaches to generate new content, as presented in previous 
work [15-17]. Specifically, 3D shapes of different complexities 
can be automatically generated for students to interact with while 
developing their spatial visualization skills. However, to create a 
model based on Reinforcement Learning approach capable of 
generating 3D shapes of different complexities, a uniform 
system to algorithmically quantify the perceived complexity of 
3D shapes must be created. This is important since any 
Reinforcement Learning approach would need to have a reward 
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function to generate an action policy. Moreover, this reward 
function needs to consider the perceived complexity of a given 
shape to create an action policy that generate shapes of different 
complexities based on student skill level. 

Several studies have proposed computing complexity at the 
pixel level by predetermined mathematical formulas [18]. 
Nevertheless, these metrics might not necessarily capture the 
human-perceived complexity of 3D shapes used to develop 
spatial visualization skills, but rather focus on the topological 
definition of a shape. Hence in this work, an experiment is 
conducted to analyze the perceived complexity of 3D shapes in 
spatial visualization tasks, and Machine Learning models are 
used to correlate visual features of the 3D shapes to their 
complexity.  

 
2. LITERARY REVIEW 
 
2.1 Virtual Reality in Education 

Apart from gaming and entertainment, VR has found a 
broad variety of applications, including but not limited to health, 
education, and sports [19-21]. Specifically,  in education, 
researchers have found that VR helps develop feelings of 
presence and immersion, which in the long run, can help 
construct engaging learning situations with a long-lasting impact 
on students [22]. 

Moreover, VR can help students to connect distinct 
educational concepts to their personal experiences [23]. VR 
supports students to develop a deep-rooted, mental model of the 
knowledge acquired. Developing mental models is known to be 
the main foundation of knowledge, as the student cognitively 
engages with the learned material [24]. The most important 
feature that distinguishes VR from other education-supportive 
tools is the sense of presence it creates in an immersive 
environment [25]. VR not only helps improve students' 
engagement but could also provoke a stronger interest in a new 
subject [26]. 

As VR technology has evolved, the cost of a headset has 
steadily decreased, thus increasing the economic accessibility of 
the devices for different socio-economic groups [27]. 
Unfortunately, creating meaningful VR experiences is still a 
major barrier, which could also prevent overcoming the issues 
that arise from the “one-size-fits-all” design approach. This is 
because, even though VR has the capability to engage students, 
presenting the same type of content to students, who have 
distinct levels of experience and knowledge, won't have a 
uniform impact across students. Consequently, it is important, as 
with any pedagogical system, to tailor the content to the students' 
skill levels.  

Research has already started exploring how Procedural 
Contented Generation (PCG) methods can be leveraged to help 
automate the creation of VR content in educational applications 
[17, 28, 29]. Some of the authors' prior work has explored how 

to leverage Reinforcement Learning (RL) and PCG methods to 
help automatically create content for VR educational 
applications [15-17]. However, an important aspect of any RL 
based-method is the reward function used to help train the RL 
agent, which has to align with the action policy the researchers 
want the RL agent to generate. This work takes initials steps to 
help solve this problem, specifically for VR applications design 
to help develop spatial visualization skills, by exploring how 
humans perceive the complexity of 3D shapes, and how this 
relates to their performance in spatial visualization tasks. 
 
2.2 Virtual Reality and Spatial Visualization Skills 

Spatial visualization is a complex process that involves 
both visual abilities and the formation of mental images. Because 
of the importance of spatial visualization across many 
disciplines, it has been studied by a wide variety of fields in 
science, education, and cognitive psychology [30]. Spatial 
intelligence is defined as the set of skills that assist us to 
understand spatial relations, visual-spatial tasks, and also, 
receive a better orientation of objects in space [31]. Furthermore, 
spatial ability is often correlated to good academic performance 
in the engineering curriculums [16]. VR technology is found to 
be useful for learning and developing these skills because it can 
provide a “first-person” experience and visualize 3D objects in a 
3D virtual environment [32]. 

Several studies have shown that VR can help improve 
spatial visualization skills [33]. A study with a group of senior 
university students, presented in [34], was conducted to test the 
impact of a VR spatial visualization application had on students' 
spatial visualization skills. The results pointed out that students 
who participated in the VR environment showed higher 
improvement in spatial visualization skills compared to those 
that did not use the VR application. While VR has been shown 
to help develop students' spatial visualization skills by allowing 
students to complete and practice spatial visualization tasks in a 
3D virtual environment, it has been also shown that students can 
have different levels of expertise that can directly impact their 
state of flow in a given application. The Flow theory of 
motivation indicates that students would be more engaged to 
execute the tasks whose difficulty aligns with their skills level 
[12]. Unfortunately, most of the existing VR applications 
designed to help develop spatial visualization skills are designed 
following a “one-size-fits-all” approach which only enables 
users to interact with a limited set of 3D shapes that are not 
necessarily tailored to their skill level.  

In order to make sure that each student using a VR 
application designed to help develop spatial visualization skills 
interacts with tailored content to maximize flow, the complexity 
of the 3D shapes used in the spatial visualization tasks should be 
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aligned with the student’s skill level. While several researchers 
have proposed ways to measure shape complexity, perceived 
complexity represents a broad term that can be challenging to 
measure algorithmically. Moreover, the perceived complexity of 
shapes in spatial visualization tasks might differ from the 
perceived complexity of 3D shapes used in other contexts. 
 
2.3 Measuring Complexity 

3D representations are unique because they can characterize 
important visual properties that can guarantee the accurate 
identification of objects [36]. Previous studies have found a 
significant correlation between the value of complexity and the 
visual determinants of shapes, including but not limited to 
angular variation, symmetry, curvature, clutter, openness, 
organization, and number of elements [37].  

For example, in [38] a study was conducted to explore how 
the number of elements and symmetry of 3D shapes correlated 
to the perceived complexity of the shapes. First, 3D objects were 
segmented based on the number of distinct elements, and a 
survey was given to participants so they can decide whether a 
shape was more complex than another. It was discovered that 
participants describe objects with a greater number of parts to be 
more complex. Figure 1, from [38] figure 1d, shows the relation 
between the number of perceptive parts and the perceived 
complexity from the participants' responses. Shapes with more 
perceived distinct elements, like the “toilet” and “fan disk”, were 
perceived as more complex by participants. In addition, the 3D 
objects were segmented based on the axes of symmetry (i.e.,  in 
how many axes is the object symmetrical). The results show that 
shapes that were more symmetrical were perceived as less 
complex. As shown in Figure 2, from [38] figure 1e, objects with 
no symmetry had high complexity ratings. This indicates that 
perceived complexity is inversely proportional to the object's 
symmetry. For example, a sphere, disk brake, and cube were 
rated less complex.  

Based on their findings, the authors of [38]  presented a 
complexity metric that used algebraic expressions and surface 
kernels to measure complexity. The expressions had a goal to 
represent a shape in its implicit form. However, this way of 
mathematical representation has a major limitation in predicting 
the interaction or dependency between its components. 
Moreover, this metric might not necessarily capture the human-
perceived complexity of 3D shapes used to develop spatial 
visualization skills, but rather focus on the topological definition 
of a shape. 

Besides symmetry and the number of elements, studies have 
shown that perceived complexity is related to the variation in the 
curvature of objects; with sharper and unexpected variations 
contributing to increased complexity. Specifically, it has been 
observed that the average complexity rating for surfaces 
increases with an increase in variation of surface curvature [39].  
This increase of variation of surface curvature could be related 
to the symmetry of the object’s surface, as presented in Fig. 2. 
Research done with building blocks in children. has shown that 
the number of building blocks used to make shapes were 
significantly and positively correlated with the level of 
complexity [40]. Even though significant progress has been 
achieved to measure the perceived complexity of 3D shapes, it is 
still unclear how humans perceive the complexity of 3D objects 
in spatial visualization tasks, and how it can be measured 
algorithmically. 
 

3. METHOD 
 
The objective of this work is to explore how the complexity 

of 3D shapes in spatial visualization tasks can be measured, and 
how the complexity of these 3D shapes is related to humans' 
perceived complexity. Hence in this work, an experiment is 
conducted to analyze the perceived complexity of 3D shapes in 
spatial visualization tasks, and Machine Learning models are 
used to correlate visual features of the 3D shapes to their 

 

 

FIGURE 1. NUMBER OF PERCEPTIVE PARTS vs 
COMPLEXITY FROM [38] 

 

 

 

FIGURE 2. NUMBER OF PLANES OF SYMMETRY vs 
COMPLEXITY FROM [38] 
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complexity. Details about the 3D shapes used and experiments 
conducted are explained next.  
 
3.1 3D Shapes Generation 

To algorithmically generate 3D shapes, like those present in 
the Purdue Spatial Visualization test [41], a system of wedges 
and voxels was implemented. Figure 3 shows a representation of 
this system. There are a total of 8 voxels arranged in a cube 
configuration. This means, that the biggest 3D shape that can be 
generated would have 2 voxels of length on any axis. Moreover, 
each voxel is composed of 12 different wedges that can be 
enabled or disabled to generate different 3D shapes. These 12 
wedges come from having a wedge (i.e., cube cut in diagonal) in 
each of the three axes that can be rotated 90 degrees at least four 
times (i.e., 3*4=12). To have a complete voxel, at least two 
complementary wedges need to be enabled (as shown at the top 
of Fig. 3). A video of the 3D shape generation can be seen here 
https://youtu.be/2jBeVD8TEwE. 

A subset of 3D shapes, with no curvatures, from the Purdue 
Spatial Visualization Test [41] were recreated for this work (see 
Figure 4 for an example). Specifically, a total of 21 shapes (i.e., 
70% of the shapes) present in the Purdue test, do not contain any 
curvatures. To help participants rate the “perceived-complexity” 
of the 3D shapes, a series of videos were created in which a 
subset of the shapes are shown rotating in the different axis. To 
help convey the 3D features of the shapes via a 2D display (i.e., 

computer display), the faces of the shapes were colored, as 
shown in  Fig. 4. 
  
3.2 Measuring Perceived-Complexity 

To understand how people perceive the complexity of 
different 3D shapes, participants were recruited via Amazon 
Mechanical Turk (AMT) [42]. AMT has been used extensively 
in behavioral research since it offers low-cost access to a large 
and diverse pool of participants, and studies have found no 
significant differences in the response consistency between 
internet and laboratory participants [43] [44]. 

Participants were asked to complete 3 different surveys. (1) 
Subset of Purdue Spatial-Visualization test: in which participants 
were asked to complete the questions of the Purdue test that 
related to shapes that did not contain any curvatures. (2) Rate the 

 

FIGURE 3. WEDGES AND VOXEL SYSTEM 
REPRESENTATION 

 

 

FIGURE 4. 3D SHAPES DESIGN 

 

 

FIGURE 5. SURVEYS TO ASSES PERCIVED COMPLEXITY 

https://youtu.be/2jBeVD8TEwE
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perceived complexity of shapes via 2D images: for this survey 
participants were shown 2D images of the same shapes as in 
survey one, and asked to rate their perceived complexity using a 
slider bar ranging from 0 (less complex) to 10 (more complex). 
(3) Rate the perceived complexity of shapes via videos showing 
the 3D shapes rotating: for this survey participants were shown  
videos showing some of the 3D shapes as in surveys one and two 
rotating, and asked to rate their perceived complexity using a 
slider bar ranging from 0  to 10.  Figure 5 shows an example of 
a question of each of the surveys relating to the same 3D shape.  

To reduce potential individual biases, for both surveys 2 and 
3, participants were told to use a “cube” as a reference point and 
consider it as a 3D shape with a complexity of 0. Moreover, the 
order of the surveys and the shapes participants were exposed to, 
was randomized to reduce any potential order effects. Lastly, a 
series of quality control questions and checkpoints were used. 
For example, for survey 2, participants were also presented a 
cube, and based on the instruction, they were required to record 
this shape as having a complexity of 0. Moreover, the time spend 
on the instructions page and on each question of the surveys was 
used for quality control.  
 
3.3 Complexity Metric & Features 

Based on previous literature, a complexity metric and a 
series of complexity features were generated. This was to help 
explore the relationship between the perceived complexity of the 
3D shapes analyzed in this work and their visual features. Figure 
6, shows a visualization of the complexity metric. This metric 
aims to algorithmically measure complexity based on the 
symmetry of 3D shapes. All the 3D shapes explored in this study 
were replicated using the shape generation system introduced in 
section 3.1. For each shape, a moving cutting plane in each of 
the x, y, and z axes was used to scan the shape. This sweep allows 
to potentially capture complexity arising from internal parts of 
the 3D shape (e.g., if a shape has a whole) and to account for the 
difference in the shape along an axis (i.e., the front different than 

the back). For each of the cutting planes, the voxel area used to 
generate the 3D shape was identified. This is to help the metric 
to be size and translation invariant (i.e., a shape should have the 
same complexity no matter its size or location). Subsequently, 
the pixel level Euclidian difference between areas of the shape 
that were divided by each of the 4 potential lines of symmetry 
was calculated. The difference was then normalized to have 
values between  0-1.  

A 3D shape with a complexity of 0 would indicate a 3D 
shape than in all its axes, any cutting plane you take would have 
a total of 4 lines of symmetry (i.e., symmetrical horizontally, 
vertically, and both diagonals). A 3D shape that would have a 
complexity of 0 would be a cube. Fig.7 shows an example 
representation of the complexity metric for a cube and a wedge. 
As shown in Fig. 7, any cutting plane of the cube would have all 
4 lines of symmetry, while the wedge would only have 1 (i.e., 
gray dotted lines). This is why the complexity value of the wedge 
is greater than the cube. 

 
TABLE 1. COMPLEXITY METRIC AND FEATURES EXAMPLE 

Complexity 
metric 

Number 
of voxels 

Number 
of 
complete 
voxels 

Number of 
incomplete 
voxels 

Incline 
planes. 

3D shape 
image 

0.195 7 5 2 1 

 
0.159 5 5 0 0 

 
0.179 3 1 2 2 

 
0.221 4 3 1 1 

 
 

In addition, several visual features that related to the number 
of elements and surface variation of the 3D shape were 
calculated. Specifically, (i) the total number of voxels used (e.g, 

 

FIGURE 6. VISUALIZATION OF COMPLEXITY 
CALCULATION  

 

 
FIGURE 7. COMPLEXITY CALCULATION EXAMPLES 
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number of building blocks), (ii) the total number of complete 
voxels used (e.g., number of cubes), (iii) the total number of 
incomplete voxels (e.g., number of non-cubes), and (iv) number 
of different incline planes. Feature (ii) and (iii) would add up to 
the feature (i). Table 1 shows a series of figures with their 
respective complexity metric and complexity features. 
 

4. RESULTS 
 

With the objective to better understand how the visual 
features of 3D shapes relate to their perceived complexity, an 
experiment was conducted via AMT. Participants were 
compensated US$0.5 for their participation, with an additional 
US$1 bonus, if they passes all the quality control questions and 
checkpoints. A total of 200 participants were recruited. However, 
only the data of 53 participants that passed the quality control 
questions and checkpoints were analyzed in this work. On 
average, participants took 27.16 minutes to complete all the 
surveys.  

A total of   21 different 3D shapes from the Purdue Test were 
used for surveys  (1) Subset of Purdue Spatial-Visualization test 
and  (2) Rate the perceived complexity of shapes via 2D images 
(see section 3.2, and Fig. 5). However, for the survey (3) Rate 
the perceived complexity of shapes via videos showing the 3D 
shapes rotating, only 5 shapes were used.  

The results indicate that there was a strong and significant 
positive correlation between the perceived complexity reported 
via the 2D images and the videos of the 3D shapes (ρ=0.988, p-
value<0.01). This shows that when asked to rate the perceived 
complexity of 3D shapes, participants provided similar 
responses no matter if they were exposed to a 2D image or video 
of the 3D shape. This indicates that when it comes to the 
perceived complexity of the shapes used in this study, 2D images 

and videos might have conveyed the same amount of 
information. However, this might not hold when comparing 
shapes shown in Virtual Reality since previous studies indicate 
that different communication channels can transfer different 
level of information [45]. Nevertheless, it is hypothesis that the 
relative difference in complexity of 3D shapes should not vary 
significantly between the different communication channels 
used (e.g., a cube would be perceived as less complex than any 
other shape no matter is presented via a 2D image, video or in 
VR). 

In addition, the results from survey (1) Subset of Purdue 
Spatial-Visualization test, indicates that, on average, the number 
of correct responses of a 3D shape was only negatively correlated 
to its perceived complexity reported when using a 2D image of 
the shape (i.e., survey 2 responses) (ρ=-0.439, p-value<0.05). 
This indicates, that participants, on average, performed worse in 
the Purdue Spatial visualization test questions that involved 3D 
shapes that were reported as more complex. Nonetheless, this 
correlation could be considered weak, which indicates that 
asking participants to report their perceived complexity of a 3D 
shape might not capture enough information to explain their 
performance on a spatial-visualization task that involves the 
same 3D shape.  

Figure 8 shows a correlation matrix between participants' 
responses on the surveys, and the complexity metric and features 
introduced in this work. The number of incomplete voxels and 
incline planes of a 3D shape was positively correlated with the 
perceived complexity of the shapes reported when using 2D 
images and videos. This indicates that 3D shapes with more 
incline planes are perceived as more complex. This could be 
explained by the variability that incline planes introduce to the 

 

 

 FIGURE 8. CORRELATION MATRIX 
p-values:   <0.05, * <0.01, **<0.001, ***<0.001 
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surface of 3D shapes, as shown in previous studies (see section 
2). 

To better understand how the complexity metric and features 
introduced in this work might correlate to the perceived 
complexity of a shape, a set of Machine Learning models were 
trained. The independent variables of the models were the (i) 
complexity metric introduced in section 3.3, (ii) the number of 
voxels used to create the 3D shape, (iii) number of complete 
voxels, (iv) number of incomplete voxels, and (v) number of 
incline planes of the 3D shape. The dependent variables tested 
were the (i) average perceived complexity reported by 
participants when exposed to a 2D image of the shape (i.e., 
survey 2 responses) and (ii) the average correct response of 
participants on the Purdue Spatial Visualization Test (i.e., survey 
1 responses).  The responses of survey 3 were not explored given 
the low number of shapes analyzed (i.e., only 5 shapes).  

A Support Vector Machine algorithm using a polynomial 
kernel was used to train the models. Moreover, a 10-fold cross-
validation approach was used to assess the performance of the 
models. To help compare the model, both dependent variables 
were normalized in a range between 0-1. The results indicate that 
the model that had the average correct response of the Purdue 
test (i.e., spatial-visualization tasks) as a dependent variable had 
an average Mean Absolute Error (MAE) of  0.997 (SD= 0.005). 
Moreover, the model that had the perceived complexity as a 
dependent variable had had an average MAE of 0.9769  (SD= 
0.073). While the model that has the average perceived 
complexity as a dependent variable had less error, the difference 
between both models' MAE was not statistically significant. 
When looking at the most important features, the number of 
incomplete voxels, the complexity metric used in this work, and 
the number of voxels used, raised to the top 3 for both models. 
This is supported by the correlation results shown in Fig. 8, 
suggesting that symmetry, number of elements, and surface 
variability are important factors that impact perceived 
complexity, as in previous studies (see sections 2), but also the 
performance of individuals in spatial visualization tasks.  

 
5. CONCLUSION & FUTURE WORKS 
 
Spatial visualization is an important skill needed in STEM 

fields. While VR has been used to help develop these skills, most 
of the existing applications do not necessarily tailor their content 
to the skills level of individuals. Automatically generating 3D 
shapes using Procedural Contented Generation method based on 
Reinforcement Learning approached [15-17] could help VR 
applications tailor spatial visualization tasks to the skills level of 
users. However, to do this, it is important to first understand how 
humans perceive the complexity of 3D shapes, and how this 
relates to their performance in spatial visualization tasks. 

The results of this work indicate that while participants 
perceived complexity of 3D shape is correlated to their 
performance in spatial visualization tasks that use the same 3D 
shape, this perceived complexity by itself is not enough to 
predict their performance in such tasks. Moreover, the results 
indicate that certain visual features of 3D shapes might help 

explain the perceived complexity of the shape as well as the 
performance of individuals in spatial visualization tasks that 
implement those 3D shapes. These are promising results that 
suggest that computational models might be able to measure the 
perceived complexity of 3D shapes, particularly as it relates to 
spatial visualization tasks, by analyzing the visual features of the 
shapes. 

This work lays the foundation that could help develop 
Reinforcement Learning-based methods to automatically 
generate 3D shapes of a given desired complexity. This by 
leveraging the Procedural Content Generation methods shown in 
in [15-17] and utilizing the 3D shape generation method and 
complexity metrics introduce in this work as part of the training 
environment and reward function of a Reinforcement Learning 
agent respectively. This could help VR application tailor their 
spatial visualization tasks to a user's unique skill level. This 
would ultimately help develop students' spatial visualization 
skills by increasing their motivation and state of flow while 
interacting with such applications.  

However, this work has several areas of improvement. One 
of the biggest limitations of this work is that it did not explore 
3D shapes with curvatures. As a result of this, a limited set of 3D 
shapes was explored, since only 21 shapes did not contain any 
curvatures from the Purdue Spatial Visualization test. While only 
30% of the shapes presented in the Purdue test, contain shapes 
with curvatures, future work will explore the complexity of 3D 
shapes with curvatures, and test a wider range of 3D shapes that 
are not necessarily on the Purdue Spatial Visualization test. 
Moreover, the performance of individuals in the Purdue Spatial 
Visualization test, which is explored in this work, is not only 
dependent on the complexity of the shape used, but also on the 
skill level of the user and the rotations exemplified on the spatial-
visualization task (e.g., see the top of Fig. 5). Hence, future 
studies will aim to control for these factors by increasing the 
number of participants, presenting a wider range of spatial 
visualization tasks with 3D shapes with multiple rotations, and 
assessing participants' skill levels. Similarly, another factor that 
could impact the perceived complexity of 3D shapes and the 
performance in spatial visualization task, is the communication 
channel used. For example, showing a 3D shape via a 2D display 
is not the same as showing the same 3D shape via a Virtual 
Reality headset. Hence, if the goal is to help design a VR 
application to develop spatial visualization skills, the impact of 
visualizing 3D shapes in 3D virtual environments need to be 
consider.  
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