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ABSTRACT 

This work presents a Deep Reinforcement Learning (DRL) approach for Procedural Content Generation 

(PCG) to automatically generate 3D virtual environments that users can interact with. The primary objective 

of PCG methods is to algorithmically generate new content in order to improve user experience. Researchers 

 
1 Corresponding author. 569 Rockwell Integrated Science Center, Lafayette College, Easton, PA 18042, 
USA. 
*The conference version of this paper received the ASME CIE Virtual Environments and Systems 
committee best paper award. 

mailto:lopezbec@lafayette.edu
mailto:jamescun@andrew.cmu.edu
mailto:oma110@psu.edu
mailto:conradt@andrew.cmu.edu


ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019 

2 
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker                                       JCISE-19-1276 

have started exploring the use of Machine Learning (ML) methods to generate content. However, these 

approaches frequently implement supervised ML algorithms that require initial datasets to train their 

generative models. In contrast, RL algorithms do not require training data to be collected a priori since they 

take advantage of simulation to train their models. Considering the advantages of RL algorithms, this work 

presents a method that generates new 3D virtual environments by training an RL agent using a 3D 

simulation platform. This work extends the authors’ previous work and presents the results of a case study 

that supports the capability of the proposed method to generate new 3D virtual environments. The ability 

to automatically generate new content has the potential to maintain users’ engagement in a wide variety 

of applications such as virtual reality applications for education and training, and engineering conceptual 

design.  

 

 

 

1. INTRODUCTION 

The objective of Procedural Content Generation (PCG) methods is to automatically 

generate content. Since the 1980s, the gaming industry has been using PCG methods to 

generate new game levels by manipulating game design elements, such as terrains, maps, 

and objects [1]. Similarly, researchers have started exploring how automatically 

generating new content for e-learning applications can help advance Adaptive 

Instructional Systems, such as Intelligent Tutoring Systems [2], [3]. The ability to 

automatically generate new content offers several advantages for the design and 

development of a wide range of applications [4]. For example, automatically generating 

new content can help reduce the resources needed to develop new applications. PCG 

methods can help designers explore the design space, and potentially help co-create 

more creative content. More importantly, content that is automatically generated can be 

personalized to an individual’s unique attributes in order to maximize the user experience 
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[5]–[7]. The use of PCG methods to generate new content has been shown to improve 

user experience and engage users (e.g., replay value) [7]–[9]. 

In recent years, researchers have started integrating Machine Learning (ML) 

algorithms to automatically generate new content [1], [10], [11]. However, PCG methods 

that implement ML algorithms require datasets to train their generative models, since 

these algorithms frequently use supervised learning methods. In contrast, Deep 

Reinforcement Learning (DRL) based methods are capable of generating efficient 

representations of complex situations and tasks by implementing sensory input 

information obtained from simulation environments (e.g., pixels acquired from images of 

a video game) [12]. Hence, there is no need to capture training data a priori, which can 

help reduce cost [5]–[7].  

Given the advantages of the PCG methods and the potential of RL algorithms, this 

work presents a PCG method based on a Deep RL approach that generates new virtual 

environments. Figure 1 shows an outline of this method. A Deep RL agent is presented 

that generates new 3D virtual environments that are validated via a 3D simulation 

platform. In this work, the term “virtual” represents a 3D computer generated (virtual) 

environment that users can interact with. The RL agent generates new virtual 

environments according to individuals’ preferences for the location of a subset of virtual 

objects. Once a new 3D virtual environment is generated, the user can interact with it 

using a variety of interfaces (e.g., immersive VR headset, smartphone, computer). This 

work extends the authors’ previous work [13], and presents the results of a case study 
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that supports the ability of the proposed method to generate new 3D virtual 

environments. 

2. LITERATURE REVIEW 

2.1 Procedural Content Generation 

  Procedural Content Generation (PCG) can be defined as the field that studies the 

development of algorithms and methods capable of automatically generating content. 

The gaming industry has used PCG for decades [1]. Most of the early PCG methods were 

composed of rules sets and heuristics that guided the content generation process or 

functions to evaluate the generated content. These heuristics and functions were 

developed by designers based on their understanding of the application [6], [14]. 

However, in recent years, researchers have started exploring the use of supervised 

Machine Learning (ML) algorithms to train generative models capable of automatically 

creating new content [11].  

  One of the most well-known projects that integrate supervised ML to generate 

new game environments is “Mario AI” (www.marioai.org) [15]–[17]. Researchers have 

presented a wide range of PCG methods to automatically generate new environments for 

a variety of popular games [1], [14]–[17]. For example, Summerville and Mateas [1] 

introduce a Long Short-Term Memory Recurrent Neural Networks framework to generate 

new Super Mario Brothers levels. Their model was trained using a corpus of 39 existing 

levels of Super Mario Brothers, which they were able to augment by using several training 

techniques (e.g., stacking). Moreover, Summerville et al. [17] present a Bayesian Network 

to automatically generate level topologies for Zelda-like games. They annotated the 

http://www.marioai.org/
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topology characteristics of 38 levels of different Zelda games in order to train their 

generative model. Justesen et al. [18] attempt to overcome the overfitting problem that 

arises when training Deep Reinforcement Learning (DRL) agents on static game 

environments (e.g., training a model to play an Atari game by using just one level) by 

introducing a search-based PCG. Their progressive PCG method helps control for the 

difficulty of levels to match the Deep RL agent being trained to play the game. They 

trained their models using levels from the games of Zelda, Solarfox, Frogs, and 

Boulderdash. Similarly, researchers have introduce PCG methods based on Markov Chain 

[19], [20], and Matrix factorization approaches [21]. However, these methods still require 

human-authored content to train their models. 

  Most of the current PCG methods that implement supervised ML methods require 

some initial dataset to train their generative models. In contrast, RL algorithms implement 

high-dimensional sensory input to generate efficient representations of complex 

situations and tasks with the use of simulation [12]. Hence, there is no need to capture 

training data a priori. Based on these advantages, this work presented a PCG method to 

generate new 3D virtual environments based on a Deep RL approach.  

 

2.2 Adaptive Instructional Systems 

  The field of Adaptive Instructional Systems (AISs) has greatly benefited from 

integrating methods to generate new content for their adaptive applications [22]. These 

types of systems require significantly more content than their non-adaptive counterparts 

since for each adaptation, new content is required [23]. AISs are defined as “class of 
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intelligent, machine-based tools that guide learning experiences by tailoring instruction 

and recommendations based on the goals, needs, and preferences of each learner [or 

team] in the context of domain learning objectives” [23]. Intelligent tutoring systems, 

intelligent method, recommender systems, personal assistants, and intelligent 

instructional media fall under the umbrella of AISs. 

Within this field, RL has been used to model students’ learning styles and develop 

pedagogical policy strategies [3], [9], [24], [25]. However, there has been a limited 

number of studies that have explored how to automatically generate new content for 

learning purposes [26], [27]. For example, Hullett and Mateas [8] present an application 

capable of generating new scenarios for a firefighting training application. The application 

was able to generate different scenarios of buildings partly collapsed based on the desired 

skills the users wanted to train on. Smith et al. [28] implement a method for creating 

levels in a learning application aimed at teaching students about fractional arithmetic. 

The method implements a constraint-focused generator design approach. Similarly, a 

learning application that implemented PCG and gamification to engage students in solving 

math problems is introduced in [29]. This method was founded on template-based and 

constructive algorithms.  

In the context of conflict resolution, a serious game application that combined a 

Player Modeling and a metaheuristic-search PCG approach is introduced in [30]. This PCG 

method was driven by a Neural Network used to predict the distribution fairness of the 

players. The results of this study support the value of PCG to guide the learning of 

individuals toward targeted learning objectives. Most recently, Hooshyar [7], proposed a 
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PCG framework for educational game applications based on a Genetic Algorithm (GA) 

approach. The framework allows designers to control the generation process, given 

various learning objectives and preferences. In a different study, Hooshyar [26] presents 

a data-driven PCG approach based on a Genetic and a Support Vector Machine 

algorithms. They implemented their method in a language learning application and 

compared the method against a heuristic-based approach. Their results indicate that their 

data-driven approach was more effective at generating content that matched the 

performance target of individuals, compared to the heuristic approach. Similarly, Sottilare 

[23] presents a ML method based on a GA approach to automatically generate new 

scenarios from a set of parent scenarios for virtual instructional and game-based 

applications.  

The previous studies show how PCG methods can be implemented in learning 

applications and their potential benefits. These studies also show that researchers are 

starting to use ML approaches (e.g., Neural Network, Support Vector Machines, Genetic 

algorithms) to train their PCG models. They train their models on datasets from existing 

content or datasets containing users’ data, which has to be generated or collected a priori 

[7], [26], [30]. The process of generating new content to use as training dataset can 

require significant time and resources [5]–[7]. In recent years, researchers have started 

exploring how realistic, synthetic data can be automatically generated [31], [32]. 

However, while studies have shown that these approaches can generate synthetic 

datasets that cannot be accurately distinguished from human generated ones [33]–[35], 

they still require some initial datasets to train their models. In contrast, RL approaches do 
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not require training data to be collected a priori since they take advantage of simulation 

to train their models. Based on the limitations of supervised ML algorithms and the 

advantages of RL algorithms, this work presents a PCG method based on a Deep RL 

approach. The RL agent is trained using a simulation platform to automatically generate 

new 3D virtual environments, which could potentially be used for learning applications. 
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2.3 Reinforcement Learning 

While traditional supervised ML algorithms require the use of a training dataset, 

RL methods do not require a training dataset to be collected a priori since they take 

advantage of simulation environments to generate efficient representations of complex 

situations and tasks [12]. The RL process can be understood as a Markov Decision 

Processes, were the RL agent connects to a simulation environment via different sensory 

inputs. The objective of the agent is to develop a model that selects the actions that 

maximize its long-run reward. In other words, the agent creates the desired action policy 

by process of trial and error via simulation [36]. Hence, a RL agent can be described as a 

software agent capable of inducing an action policy in an uncertain environment with 

delayed rewards [37]. 

RL methods are suitable for solving learning control problems, which are 

challenging for traditional supervised ML algorithms and dynamic programming 

optimization methods [38]. RL agents focus on generating an action policy  that can adapt 

to changes in the environment (e.g., state-space). Researchers have used RL methods to 

train agents capable of mastering complex tasks at human-level performance [39]–[41]. 

In recent years, Deep RL algorithms have been implemented to master and perform a 

wide range of tasks, from Atari games to the Chinese game of Go [39], [40]. Thanks to 

these advancements, researchers argue that these algorithms will revolutionize the field 

of Artificial Intelligence [12]. In addition, the rapid development of these RL methods has 

been encouraged by the rise of easy to use, scalable simulation platforms [42]–[44].  
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In the context of Adaptive Instructional Systems (AISs ), RL based methods have 

shown promising results in helping personalized narrative-centered learning 

environments. For example, Wang et al. [45] present a Deep RL framework to personalize 

interactive-narrative for an educational game. Similarly, Rowe et al. [46] introduce a 

multi-armed bandit computational formalism, consisting of several components of a Deep 

RL framework, to generate new training scenario for the Army. The authors also explored 

Long-Short Term Memory Networks approaches and stated that in future work, they 

would be implementing RL algorithms to help generate new complex training scenarios.  

Table 1 shows a summary of existing work related to methods that automatically 

generate content (i.e., PCG). This table shows that while PCG methods are frequently used 

in gaming applications, researchers are starting to explore the use of PCG methods for 

learning purposes. However, most of the studies on learning applications implement 

meta-heuristics. In light of the advantages of PCG methods and the potential of RL 

algorithms, this work presents a PCG method based on an RL approach that generates 

new 3D virtual environments. The RL agent validates the new 3D virtual environments via 

a simulation platform; hence, it does not require any training data to be collected a priori. 

The RL based PCG method is implemented in a case study to generate new layouts for a 

virtual 3D manufacturing environment used for an e-learning application. 

 In the authors' previous work, initial results of the performance of the RL agent’s 

reward score was presented [13]. The results show that the RL agent did not reach the 

maximum reward score, but that its reward score was significantly and strongly correlated 

with the training iterations (ρ = 0.98, p-value < 0.001). In other words, the RL agent was 
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not able to generate a 3D virtual environment that was completely functional, and that 

maximized the rewards function. However, it managed to model an action policy that 

maximized the long-run rewards function. Moreover, in the previous work, the training 

of the agent was not parallelized and the training time-constrained to less than 6 hours 

due to computational limitations. These factors played a significant role in the 

performance of the RL agent. Based on these limitations, in this work, the authors 

extended their previous study by implementing parallelized training over 60 thousand 

iterations. In addition, the reward function of the RL agent and simulation environment 

used for training have been enhanced in order to incentivize the generation of more 

realistic and functional layouts. Finally, the results of a case study that support the 

capability of the proposed method to generate new 3D virtual environments are 

presented in this work.  

 

2.4 Reinforcement Learning and Operations Research 

The objective of PCG methods to generate new environments given certain 

criteria is analogous to the Operations Research (OR) problem of Facility Layout Planning 

(FLP). The objective of FLP algorithms is to identify the optimal arrangement of equipment 

or facilities in accordance with some criteria and given certain constraints [47]. FLP 

problems are a NP-complete problem, which means that “the computational time 

required to find an optimal solution increases exponentially with the problem size” [48, p. 

25]. This is one of the reasons why researchers have proposed multiple meta-heuristics 

algorithms to solve the FLP problem, such as Simulated Annealing and Genetic Algorithms 
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[47]. However, one of the limitations of optimization approaches is that a given optimal 

solution might not continue to be optimal under a different problem configuration. For 

example, if an additional constraint is added (e.g., now machine Z must be in the 

coordinates x and y), the algorithm needs to be run again to find the optimal or near-

optimal solution [47], [49]. In contrast, since RL algorithms focus on generating an action 

policy that can adapt to changes in the state space, they do not require  additional training 

when exposed to a new state (e.g., now machine Z must be in the coordinates x and y).  

Due to the advantages of RL algorithms, researchers have explored how to 

implement RL in combination with metaheuristics with the objective of identifying more 

efficient methods for solving OR problems [50]–[55]. Recently, some studies have shown 

promising results of using RL for solving combinatorial optimization problems [56]. For 

example, RL algorithms have been implemented to tackle classical OR problems like 

dynamic job shop scheduling problem [57], vehicle touting problem [58], among others 

routing and scheduling problems [56]. In a recent study, Govindaiah and Petty [59], [60] 

present the application of a framework that integrates RL algorithms and discrete event 

simulation to improve the cost efficiency of material handling plans under varying product 

demands. Their method focused on reducing the cost of material handling plans by 

changing the routes, timing, and equipment used to transport material between 

workstations and/or warehouses. However, their method did not consider the locations 

of the workstations nor warehouses, the reason why it cannot be implemented for FLP 

[49]. The case study used in this work to test the proposed Deep RL PCG method shares 

some characteristics with the material handling problem tackled by Govindaiah and Petty 
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[59], [60]. However, the proposed method focuses on generating new 3D virtual 

environments by allocating a set of virtual objects. In the case study presented, the RL 

agent is capable of changing the location of the workstation (i.e., injection molding 

machine, see section 4) and material handling equipment (e.g., conveyor belts and robot 

arms). Moreover, the proposed Deep RL PCG method can adapt to changes in the problem 

space (i.e., state space) without the need for additional training. That is, once the RL agent 

is trained, it can generate new 3D virtual environments given different injection molding 

machine locations (see section 5 for results). In contrast, using traditional OR methods 

would require to run optimization or meta-heuristic algorithms every time the problem 

space changes when a constraint is added or modified (e.g., now machine Z must be in 

the coordinates x and y) [47], [49].  

 

3.  METHOD  

In this work, a PCG method based on a Deep RL approach is introduced. The 

method is capable of dynamically generating new 3D virtual environments by 

implementing a RL agent that validates the content via a 3D simulation platform. Figure 2 

shows the method of the Deep RL algorithm implemented. In addition, it shows 2D aerial 

views of the 3D simulation platform used to validate the virtual manufacturing 

environments generated for the case study (see section 4).  

RL problems are framed as Markov Decision Processes, where the agents connect 

to the simulation environment at a given time t via the sensory inputs of state (St) that 

belongs to the set of possible states S, and action (At) that belongs to the set of possible 
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actions A (see Fig. 2). In each training epoch t, the agent observes the current state: St 

and chooses an action to be executed: At. The environment reacts to the action executed 

and determines the new state to transition: St+1, as well as the reward signal (i.e., 

reinforcement signal): Rt. The sensory inputs of the state and action can be in a vector 

form, containing information about the state of the environment and information 

regarding the action the agent is taking, respectively. The agent makes decisions based 

on a policy that is defined by a mapping from the state space to a probability distribution 

over the action space, formalized as π(St) ∊ P(A). In Deep RL, this policy function is realized 

using a neural network which takes St as input, and generates probabilities for selecting 

each possible action as output.  

The goal of an RL agent is to determine a particular policy π* which maximizes the 

long-run reward of the agent. The long-run reward, also known as the return, is used as 

an objective function over the reward signal itself because it is more stable and less 

sparse. The return is defined as 𝜌 =  ∑ 𝛾𝑡𝑅𝑡
𝑇
𝑡=0 , where γ ∊ [0,1] is the discount factor that 

controls the exponential devaluation of delayed rewards.  

In this work, the Proximal Policy Optimization (PPO) [61] algorithm is employed to 

train the RL agent. PPO is a policy gradient approach to RL based on the Trust Region 

Policy Optimization (TRPO) algorithm introduced by Schulman et al.’s work [62]. Schulman 

et al.’s [61] study reveals that the PPO algorithm outperformed other policy gradient 

algorithms, and provided a more favorable tradeoff between sample complexity, 

simplicity, and wall-time. Given that a neural network is fully differentiable, gradient 

ascent can be applied to the policy function directly with respect the advantage estimate 
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of the policy, a quantity which is related to the expected value of the policy’s return 

(readers are referred to [61] and [62] for additional details).  

For generating new 3D virtual environment, St contains enough information to 

describe the current state of the virtual environment (e.g., location, orientation, and 

relevant properties of objects in the environment), while At corresponds to ways that the 

agent can alter the environment. These actions could correspond to determining the 

location, orientation, or parameters which govern the behavior of the virtual objects in 

the 3D virtual environment (see Fig. 2). Given this framing, the proposed DRL method can 

be applied to generate 3D virtual environments for problems that can be framed as 

arranging multiple individual objects with inherent properties, and that can be expressed 

in vector form. This enables the use of this method in a variety of application, such as 

educational and training where new environments are generated for learning purposes, 

or game applications where new levels are generated for entertainment purposes.  

The goal of the RL agent is to develop a model that selects the actions that 

maximize its long-run reward signal, which takes the form of a scalar value. The elements 

of the reward function will depend on the behavior that the designers expected the RL 

agent to model (i.e., learn). The RL agent needs to be rewarded for generating new 

environments that are functional and not just a random placement of virtual objects. This 

can be achieved by designing a reward function that incentivizes the generation of 

functional environments and penalizes nonfunctional ones (e.g., makes parts as in the 

manufacturing layout example of Fig. 1 & 2). However, a major difference between layout 

generation problems and other RL problems is that each action ( i.e., placement of an 
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object) cannot be evaluated until the full layout has been generated. This means that 

every action except the final will have an immediate reward of Rt = 0. Thus, the proposed 

method omits the discount factor from the return, by choosing γ = 1.  

Through its interactions with the simulated environment, the RL agent is trained 

(i.e., learns) to model an action policy that will maximize its return. Once the RL agent is 

trained, it will be able to generate new 3D virtual environments given an initial state 

provided by the user or randomly selected by the agent. In the example shown in Fig.2, 

this could be the initial location of the injection molding machine. Hence, the RL agent 

will place the objects in a way that will create a functional virtual 3D manufacturing 

layout. 

 

4.  CASE STUDY 

 

For this case study, the authors used a Virtual Reality (VR) learning application 

designed to teach Industrial Engineering (IE) concepts (i.e., Poisson distribution, Little’s 

Law, Queuing Theory) with the use of a simulated manufacturing system. Specifically, a 

manufacturing system that produces power drills was simulated, as shown in Fig.1 & 2. 

The objective of this VR learning application is to provide a tool with a common theme 

that educators could use to teach IE concepts and integrate course knowledge into their 

curriculum [63]. A power drill manufacturing line was selected since previous studies that 

aim to integrate IE course knowledge have implemented similar power tools [64]. The 
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virtual environment simulates the initial steps of the process to manufacture a power 

drill, where the plastic housing is manufactured.  

Figure 3 shows, from a user’s point of view, a functional layout for this manufacturing 

system. In this layout, first, an injection molding press produces the plastic housing 

components. Then, they are cooled down with the use of a conveyor belt. Finally, the 

plastic housings are placed in a tote with the use of a robotic arm in order to be 

transported to the assembly line. The 3D virtual environment allows users to interact with 

virtual objects. For this application, the agent is rewarded based on the efficiency and 

functionality of the layout generated to produce goods (e.g., the rightmost image on Fig. 

2 has a high reward score, while the two other images have a low reward score). 

Specifically, the reward function used in this case study can be mathematically expressed 

as follows: 

 

𝑅 = 𝛽1(𝑇𝑜𝑡𝑒) − 𝛽2(𝐹𝑙𝑜𝑜𝑟) + 𝛽3𝜎𝜆 +  𝛽4(𝐹𝑙𝑜𝑤)                                      (1) 

 

 

For, 

𝑇𝑜𝑡𝑒 = ∑ ϕ𝑝
P
𝑝=1                                                                                                                      (2) 

𝐹𝑙𝑜𝑜𝑟 = ∑ φ𝑝
P
𝑝=1                                                                                                                    (3) 

𝜎𝜆 =  √∑ (λ𝑒−λ𝑈)2E
𝑒=1

E
                                                                                                                (4) 

𝐹𝑙𝑜𝑤 =  ∑ ∑ ∆𝑝,𝑒
E
𝑒=1

P
𝑝=1                                                                                                         (5) 
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βi > 0  ∀ 𝑖 = {1,2,34}                                                                                                           (6) 

 

Where,  

• ϕ𝑝 is a binary variable that indicates if a given part p was correctly placed in a tote 

ϕ𝑝 = 1 or not ϕ𝑝 = 0, for p ϵ{P} 

• φ𝑝 is a binary variable that indicates if a given part p falls to the floor φ𝑝 = 1 or not 

φ𝑝 = 0, for p ϵ{P} 

• λ𝑒 is a parameter that describes the behavior distribution of equipment e, for e ϵ{E}. 

(In the case study, this parameter is only applied to the conveyor and injection 

machine) 

• ∆𝑝,𝑒  is a binary variable that indicates if a given part p interacted with a given 

equipment e, for p ϵ{P} and e ϵ{E} 

 

The reward function shown in Eq. (1), will be maximized when all the parts p are 

placed in a tote and no parts fall on the floor, following Eq. (2)-(3), when the standard 

deviation of the parameters that describe the behavior distribution of the equipment set 

{E} is minimized, following Eq. (4), and when all the parts interact with all the equipment 

following the manufacturing process, as shown in Eq. (5). This reward function was 

designed to reinforce the generation of functional manufacturing layouts that follow the 

predefined manufacturing process and have a constant flow of part being placed in the 

tote. This reward function will be computed for every simulation epochs t (Rt), as shown 

in Fig. 2. In addition, in every simulation epoch t, the RL agent will be able to control the 
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placement ( x𝑒 , y𝑒), and the parameters that describe the behavior distribution (λ𝑒) of 

the equipment set {E}. The environment will provide the agent with the state information 

about the placement (  𝑥𝑢, 𝑦𝑢)  of the equipment placed by the user {U}. The set of 

equipment {U} will allow users to customize the VR environment. In the event that the 

user does not need to customize the environment, the equipment set {U} can be placed 

randomly, to generate a new environment.  

For this application, users can select the location of the injection molding machine, U 

= {Injection molding machine}. On the other hand, the RL agent will manipulate one 

conveyor belt, one tote, and one robot arm. This means that the set E will contain three 

different equipment (i.e., virtual objects). In order for the agent to be robust to various 

placements of the injection molding machine, the position of the injection machine was 

randomly changed at every epoch t, and thus to maximize the reward the agent would 

need to generate a functional layout regardless of the position of the machine. The 

𝜆𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟  parameter will control the speed of the conveyor, while 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒  parameter 

will control the speed of the injection molding machine. To improve training performance, 

the RL agent is trained in parallel with multiple layouts. This provides the benefit in 

improved diversity of training samples by ensuring that the agent is exploring multiple 

action trajectories simultaneously. In this case study, the agent is trained in parallel on 32 

environments.  

Finally, in this work, the game engine Unity [65] is used as the 3D simulation platform 

to train the RL agent. Because of its fidelity, physics simulation capabilities, accessibility, 

and community support, Unity is widely used by developers [66], [67], as well as by 
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researchers [68], [33]. Furthermore, Unity ML-Agents Toolkit [44] provides several 

algorithms and functionalities for the development and design of RL based applications 

[69]. In this case study, for each simulation epoch t, a total of 10 parts were simulated 

(i.e., p = {1-10}). This number of parts was selected to reduce the complexity of the 

simulation while allowing the simulation platform to generate the state transition in 

which the environment reacts to the action executed and provides a reward signal. 

However, this number can be increased, and the relative difference between the rewards 

score of layouts would not change. That is, a layout that allows all the parts to fall on the 

floor will always have a worse reward score than one that places all the parts on the tote, 

no matter how many parts are simulated. 

 

5.  RESULTS AND DISCUSSIONS 

The RL agent was trained using an Intel® Core™ i7-4770K 3.50 GHz CPU and 16 GB 

RAM. A total of 10,000 training iterations (t = 10000) on 32 simulated environments were 

used to train a RL agent in parallel. This means that a total of 32,000 virtual environments 

were generated and evaluated to train the RL agent. The total training time was 3.25 

hours. In this work, the coefficient of our rewards function (i.e., β1, β2, β3, β4)  were 

empirically set to one in order to give the same importance to the elements of the reward 

function. Figure 4 shows the evolution of the RL agent’s average reward over the 32 

environments given the training epoch t. The y-axis shows the bounds of the reward 

function (i.e., [-11, 21]). Figure 4 shows that the agents’ rewards score was significantly 

and strongly correlated with the simulation iterations (ρ = 0.915, p-value < 0.001). This 
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indicates that the agent managed to train a model that describes an action policy that 

maximized the long-run rewards function used in this case study.  

To test the performance of the trained RL agent, a total of 512 (i.e., 32*16) new 

3D virtual environments were generated and evaluated. This process took 2 minutes and 

20 seconds. That is, the trained RL agent takes, on average, 0.27 seconds to generate a 

new 3D virtual environment. Table 2 shows the number of layouts generated given the 

rewards score achieved and a description as to why the rewards score was not optimal 

(i.e., 21). This table shows that, on average, these layouts had a reward score of 13.18 

(SD=7.74). This is in line with the average rewards score achieved during the last iteration 

of the training process (see Fig. 4). It also shows that more than 55.08% of the layouts 

achieved a reward score greater than 18 and only mismatched the speed between the 

conveyor and the injection molding machine (i.e., 𝜎𝜆). Figure 5 shows 2D aerial views of 

several of the environments generated for testing the performance of the trained RL 

agent.  

The results indicate that the agent managed to train a model that describes an 

action policy that maximized the long-run rewards function used in this case study. 

Moreover, the results show that the trained RL agent is capable of generating new 3D 

virtual environments given different injection molding machine locations without the 

need for additional training and in less than a second. This is in contrast with common 

methods used for the FLP, which required to re-run optimization algorithms every time 

the problem space changes (e.g., the injection molding machine locations changes). This 

finding shows promising results for using PCG methods based on Deep RL approaches to 
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generate new 3D virtual environments. The capability to generate new 3D virtual 

environments given different initial configurations of virtual objects can help personalize 

applications to an individual’s unique preferences.  

 

6.  CONCLUSION AND FUTURE WORKS  

The ability to automatically generate new content with the use of Procedural 

Content Generation (PCG) methods offers several advantages for the development and 

design of new applications. PCG methods can help reduce the resources needed to 

develop new applications. More importantly, content that is automatically generated can 

be personalized and adapted to an individual. Implementing PCG methods allows 

designers to generate new environments that can help improve the overall user 

experience. Researchers have started developing PCG methods that integrate supervised 

ML algorithms, which allow designers to generate new content more efficiently compare 

to heuristics-based methods. However, these algorithms require large datasets to train 

their generative models. In contrast, Reinforcement Learning (RL) methods do not require 

any training data to be collected a priori since they take advantage of simulation 

environments to generate efficient representations of complex situations and tasks.  

In light of this, a PCG method based on a Deep RL approach that generates new 

virtual environments is presented. This method trains a model by implementing a RL 

agent that validates new 3D virtual environments via a 3D simulation platform; hence, it 

does not require any training data to be collected a priori. In this work, a case study is 

introduced where the proposed method is used to generate new 3D virtual 



ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019 

23 
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker                                       JCISE-19-1276 

manufacturing environments, with the intention to teach Industrial Engineering (IE) 

concepts. The preliminary results indicate that the RL agent was able to model (i.e., learn) 

a policy that allows it to automatically generate new and functional 3D virtual 

environments.  

The proposed Deep RL PCG approach can help designers automatically generate 

new content for a wide range of applications. For example, Figure 6 shows how the 3D 

virtual environment generated for the case study can be integrated into an immersive VR 

learning application. This immersive VR application can help users learn about IE 

concepts. The PCG method presented can also be applied to other applications that can 

benefit from automatically generating new 3D virtual environments (e.g., Adaptive 

Instructional Systems, adaptive games). Designers can implement this method in their 

applications by creating a rewards function based on the new environments they would 

like the RL agent to generate. 

While this work presents a novel PCG method based on a Deep RL approach, there 

still exist a lot of areas for improvement. First, the method should be used to generate 

other types of 3D virtual environments that differ from the manufacturing layouts used 

in the case study. Moreover, while the RL approach does not require the collection of data 

a priori since it takes advantage of simulation to train its model, the reward function, 

which impacts the action policy the RL agent models, can be challenging to design under 

certain conditions. Furthermore, it could be challenging under certain circumstances to 

create simulation environments that allow a RL agent to identify the desired action policy. 

More importantly, future work should explore how integrating the proposed PCG method 
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into learning applications can impact the motivation and learning of users. For example, 

as shown in Fig.5, this method can be used to generate new 3D virtual environments for 

immersive VR learning applications. However, the impact of automatically generating 

new content on users learning and engagement still has to be tested. Nevertheless, this 

work presents initial groundwork on integrating RL algorithms to automatically generate 

new content, which has significant implications for personalized and adaptive systems.  
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FIGURE CAPTIONS LIST 

 

Fig. 1 Outline of the Reinforcement Learning PCG method  

Fig. 2 Reinforcement Learning framework representation 

Fig. 3 User’s point of view of a functional manufacturing layout 

Fig. 4 Reinforcement Learning agent rewards score vs. training iterations 

Fig. 5 Example of new manufacturing layouts generated by the trained RL 

agent. 

Fig. 6 Users interacting with the generated virtual environment using an 

immersive VR headset 
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Table 1. Summary of related work 

 

Reference 
Meta-

Heuristics 

Supervised 

ML 
RL 

Environment 

generation 

Application 

Context 

[7], [8], 

[28], [29] 
X   

  

Learning 

[9], [26], 

[30], [45] 
 X  

 Learning 

[1], [14]–

[18] 
 X  
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Games 

This work   X X Learning/Games 
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Table 2. Summary of environments generated to evaluate the trained model 

Reward No. Percentage Comments 

21 45 8.79% Optimal Layout 

19 237 46.29% Mismatched speed only 

11 25 4.88% 

No robot or conveyor interaction, but matched speed and 

all parts in the tote 

9 128 25.00% 

No robot or conveyor interaction, mismatched speed, but 

all parts in the tote 

1 11 2.15% 

Robot and conveyor interaction, matched speed, but no 

parts in the tote 

-1 52 10.16% 

Robot and conveyor interaction but no parts in bin, 

mismatched speed 

-4 3 0.59% 

Conveyor interaction and matched speed, but no robot 

interaction, nor parts in bin,  

-6 9 1.76% 

Conveyor interaction but no robot interaction, no parts in 

tote, and mismatched speed 

-11 2 0.39% 

No conveyor or robot interaction, mismatched speed,and 

no parts in the tote  

 


