
Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

1

DEEP REINFORCEMENT LEARNING FOR PROCEDURAL

CONTENT GENERATION OF 3D VIRTUAL ENVIRONMENTS

Christian E. Lopez1
Computer Science, Mechanical Engineering
Lafayette College,
Easton, PA 18042
lopezbec@lafayette.edu
Mem. ASME

James Cunningham
Mechanical Engineering
Carnegie Mellon University
5000 Forbes Avenue
jamescun@andrew.cmu.edu
Mem. ASME

Omar Ashour
Industrial Engineering
The Pennsylvania State University,
Erie, PA 16563
oma110@psu.edu

Conrad S. Tucker
Mechanical Engineering, Machine Learning
Carnegie Mellon University
5000 Forbes Avenue
conradt@andrew.cmu.edu
Mem. ASME

ABSTRACT

This work presents a Deep Reinforcement Learning (DRL) approach for Procedural Content Generation

(PCG) to automatically generate 3D virtual environments that users can interact with. The primary objective

of PCG methods is to algorithmically generate new content in order to improve user experience. Researchers

1 Corresponding author. 569 Rockwell Integrated Science Center, Lafayette College, Easton, PA 18042,
USA.
*The conference version of this paper received the ASME CIE Virtual Environments and Systems
committee best paper award.

mailto:lopezbec@lafayette.edu
mailto:jamescun@andrew.cmu.edu
mailto:oma110@psu.edu
mailto:conradt@andrew.cmu.edu

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

2
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

have started exploring the use of Machine Learning (ML) methods to generate content. However, these

approaches frequently implement supervised ML algorithms that require initial datasets to train their

generative models. In contrast, RL algorithms do not require training data to be collected a priori since they

take advantage of simulation to train their models. Considering the advantages of RL algorithms, this work

presents a method that generates new 3D virtual environments by training an RL agent using a 3D

simulation platform. This work extends the authors’ previous work and presents the results of a case study

that supports the capability of the proposed method to generate new 3D virtual environments. The ability

to automatically generate new content has the potential to maintain users’ engagement in a wide variety

of applications such as virtual reality applications for education and training, and engineering conceptual

design.

1. INTRODUCTION

The objective of Procedural Content Generation (PCG) methods is to automatically

generate content. Since the 1980s, the gaming industry has been using PCG methods to

generate new game levels by manipulating game design elements, such as terrains, maps,

and objects [1]. Similarly, researchers have started exploring how automatically

generating new content for e-learning applications can help advance Adaptive

Instructional Systems, such as Intelligent Tutoring Systems [2], [3]. The ability to

automatically generate new content offers several advantages for the design and

development of a wide range of applications [4]. For example, automatically generating

new content can help reduce the resources needed to develop new applications. PCG

methods can help designers explore the design space, and potentially help co-create

more creative content. More importantly, content that is automatically generated can be

personalized to an individual’s unique attributes in order to maximize the user experience

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

3
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

[5]–[7]. The use of PCG methods to generate new content has been shown to improve

user experience and engage users (e.g., replay value) [7]–[9].

In recent years, researchers have started integrating Machine Learning (ML)

algorithms to automatically generate new content [1], [10], [11]. However, PCG methods

that implement ML algorithms require datasets to train their generative models, since

these algorithms frequently use supervised learning methods. In contrast, Deep

Reinforcement Learning (DRL) based methods are capable of generating efficient

representations of complex situations and tasks by implementing sensory input

information obtained from simulation environments (e.g., pixels acquired from images of

a video game) [12]. Hence, there is no need to capture training data a priori, which can

help reduce cost [5]–[7].

Given the advantages of the PCG methods and the potential of RL algorithms, this

work presents a PCG method based on a Deep RL approach that generates new virtual

environments. Figure 1 shows an outline of this method. A Deep RL agent is presented

that generates new 3D virtual environments that are validated via a 3D simulation

platform. In this work, the term “virtual” represents a 3D computer generated (virtual)

environment that users can interact with. The RL agent generates new virtual

environments according to individuals’ preferences for the location of a subset of virtual

objects. Once a new 3D virtual environment is generated, the user can interact with it

using a variety of interfaces (e.g., immersive VR headset, smartphone, computer). This

work extends the authors’ previous work [13], and presents the results of a case study

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

4
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

that supports the ability of the proposed method to generate new 3D virtual

environments.

2. LITERATURE REVIEW

2.1 Procedural Content Generation

 Procedural Content Generation (PCG) can be defined as the field that studies the

development of algorithms and methods capable of automatically generating content.

The gaming industry has used PCG for decades [1]. Most of the early PCG methods were

composed of rules sets and heuristics that guided the content generation process or

functions to evaluate the generated content. These heuristics and functions were

developed by designers based on their understanding of the application [6], [14].

However, in recent years, researchers have started exploring the use of supervised

Machine Learning (ML) algorithms to train generative models capable of automatically

creating new content [11].

 One of the most well-known projects that integrate supervised ML to generate

new game environments is “Mario AI” (www.marioai.org) [15]–[17]. Researchers have

presented a wide range of PCG methods to automatically generate new environments for

a variety of popular games [1], [14]–[17]. For example, Summerville and Mateas [1]

introduce a Long Short-Term Memory Recurrent Neural Networks framework to generate

new Super Mario Brothers levels. Their model was trained using a corpus of 39 existing

levels of Super Mario Brothers, which they were able to augment by using several training

techniques (e.g., stacking). Moreover, Summerville et al. [17] present a Bayesian Network

to automatically generate level topologies for Zelda-like games. They annotated the

http://www.marioai.org/

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

5
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

topology characteristics of 38 levels of different Zelda games in order to train their

generative model. Justesen et al. [18] attempt to overcome the overfitting problem that

arises when training Deep Reinforcement Learning (DRL) agents on static game

environments (e.g., training a model to play an Atari game by using just one level) by

introducing a search-based PCG. Their progressive PCG method helps control for the

difficulty of levels to match the Deep RL agent being trained to play the game. They

trained their models using levels from the games of Zelda, Solarfox, Frogs, and

Boulderdash. Similarly, researchers have introduce PCG methods based on Markov Chain

[19], [20], and Matrix factorization approaches [21]. However, these methods still require

human-authored content to train their models.

 Most of the current PCG methods that implement supervised ML methods require

some initial dataset to train their generative models. In contrast, RL algorithms implement

high-dimensional sensory input to generate efficient representations of complex

situations and tasks with the use of simulation [12]. Hence, there is no need to capture

training data a priori. Based on these advantages, this work presented a PCG method to

generate new 3D virtual environments based on a Deep RL approach.

2.2 Adaptive Instructional Systems

 The field of Adaptive Instructional Systems (AISs) has greatly benefited from

integrating methods to generate new content for their adaptive applications [22]. These

types of systems require significantly more content than their non-adaptive counterparts

since for each adaptation, new content is required [23]. AISs are defined as “class of

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

6
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

intelligent, machine-based tools that guide learning experiences by tailoring instruction

and recommendations based on the goals, needs, and preferences of each learner [or

team] in the context of domain learning objectives” [23]. Intelligent tutoring systems,

intelligent method, recommender systems, personal assistants, and intelligent

instructional media fall under the umbrella of AISs.

Within this field, RL has been used to model students’ learning styles and develop

pedagogical policy strategies [3], [9], [24], [25]. However, there has been a limited

number of studies that have explored how to automatically generate new content for

learning purposes [26], [27]. For example, Hullett and Mateas [8] present an application

capable of generating new scenarios for a firefighting training application. The application

was able to generate different scenarios of buildings partly collapsed based on the desired

skills the users wanted to train on. Smith et al. [28] implement a method for creating

levels in a learning application aimed at teaching students about fractional arithmetic.

The method implements a constraint-focused generator design approach. Similarly, a

learning application that implemented PCG and gamification to engage students in solving

math problems is introduced in [29]. This method was founded on template-based and

constructive algorithms.

In the context of conflict resolution, a serious game application that combined a

Player Modeling and a metaheuristic-search PCG approach is introduced in [30]. This PCG

method was driven by a Neural Network used to predict the distribution fairness of the

players. The results of this study support the value of PCG to guide the learning of

individuals toward targeted learning objectives. Most recently, Hooshyar [7], proposed a

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

7
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

PCG framework for educational game applications based on a Genetic Algorithm (GA)

approach. The framework allows designers to control the generation process, given

various learning objectives and preferences. In a different study, Hooshyar [26] presents

a data-driven PCG approach based on a Genetic and a Support Vector Machine

algorithms. They implemented their method in a language learning application and

compared the method against a heuristic-based approach. Their results indicate that their

data-driven approach was more effective at generating content that matched the

performance target of individuals, compared to the heuristic approach. Similarly, Sottilare

[23] presents a ML method based on a GA approach to automatically generate new

scenarios from a set of parent scenarios for virtual instructional and game-based

applications.

The previous studies show how PCG methods can be implemented in learning

applications and their potential benefits. These studies also show that researchers are

starting to use ML approaches (e.g., Neural Network, Support Vector Machines, Genetic

algorithms) to train their PCG models. They train their models on datasets from existing

content or datasets containing users’ data, which has to be generated or collected a priori

[7], [26], [30]. The process of generating new content to use as training dataset can

require significant time and resources [5]–[7]. In recent years, researchers have started

exploring how realistic, synthetic data can be automatically generated [31], [32].

However, while studies have shown that these approaches can generate synthetic

datasets that cannot be accurately distinguished from human generated ones [33]–[35],

they still require some initial datasets to train their models. In contrast, RL approaches do

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

8
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

not require training data to be collected a priori since they take advantage of simulation

to train their models. Based on the limitations of supervised ML algorithms and the

advantages of RL algorithms, this work presents a PCG method based on a Deep RL

approach. The RL agent is trained using a simulation platform to automatically generate

new 3D virtual environments, which could potentially be used for learning applications.

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

9
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

2.3 Reinforcement Learning

While traditional supervised ML algorithms require the use of a training dataset,

RL methods do not require a training dataset to be collected a priori since they take

advantage of simulation environments to generate efficient representations of complex

situations and tasks [12]. The RL process can be understood as a Markov Decision

Processes, were the RL agent connects to a simulation environment via different sensory

inputs. The objective of the agent is to develop a model that selects the actions that

maximize its long-run reward. In other words, the agent creates the desired action policy

by process of trial and error via simulation [36]. Hence, a RL agent can be described as a

software agent capable of inducing an action policy in an uncertain environment with

delayed rewards [37].

RL methods are suitable for solving learning control problems, which are

challenging for traditional supervised ML algorithms and dynamic programming

optimization methods [38]. RL agents focus on generating an action policy that can adapt

to changes in the environment (e.g., state-space). Researchers have used RL methods to

train agents capable of mastering complex tasks at human-level performance [39]–[41].

In recent years, Deep RL algorithms have been implemented to master and perform a

wide range of tasks, from Atari games to the Chinese game of Go [39], [40]. Thanks to

these advancements, researchers argue that these algorithms will revolutionize the field

of Artificial Intelligence [12]. In addition, the rapid development of these RL methods has

been encouraged by the rise of easy to use, scalable simulation platforms [42]–[44].

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

10
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

In the context of Adaptive Instructional Systems (AISs), RL based methods have

shown promising results in helping personalized narrative-centered learning

environments. For example, Wang et al. [45] present a Deep RL framework to personalize

interactive-narrative for an educational game. Similarly, Rowe et al. [46] introduce a

multi-armed bandit computational formalism, consisting of several components of a Deep

RL framework, to generate new training scenario for the Army. The authors also explored

Long-Short Term Memory Networks approaches and stated that in future work, they

would be implementing RL algorithms to help generate new complex training scenarios.

Table 1 shows a summary of existing work related to methods that automatically

generate content (i.e., PCG). This table shows that while PCG methods are frequently used

in gaming applications, researchers are starting to explore the use of PCG methods for

learning purposes. However, most of the studies on learning applications implement

meta-heuristics. In light of the advantages of PCG methods and the potential of RL

algorithms, this work presents a PCG method based on an RL approach that generates

new 3D virtual environments. The RL agent validates the new 3D virtual environments via

a simulation platform; hence, it does not require any training data to be collected a priori.

The RL based PCG method is implemented in a case study to generate new layouts for a

virtual 3D manufacturing environment used for an e-learning application.

 In the authors' previous work, initial results of the performance of the RL agent’s

reward score was presented [13]. The results show that the RL agent did not reach the

maximum reward score, but that its reward score was significantly and strongly correlated

with the training iterations (ρ = 0.98, p-value < 0.001). In other words, the RL agent was

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

11
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

not able to generate a 3D virtual environment that was completely functional, and that

maximized the rewards function. However, it managed to model an action policy that

maximized the long-run rewards function. Moreover, in the previous work, the training

of the agent was not parallelized and the training time-constrained to less than 6 hours

due to computational limitations. These factors played a significant role in the

performance of the RL agent. Based on these limitations, in this work, the authors

extended their previous study by implementing parallelized training over 60 thousand

iterations. In addition, the reward function of the RL agent and simulation environment

used for training have been enhanced in order to incentivize the generation of more

realistic and functional layouts. Finally, the results of a case study that support the

capability of the proposed method to generate new 3D virtual environments are

presented in this work.

2.4 Reinforcement Learning and Operations Research

The objective of PCG methods to generate new environments given certain

criteria is analogous to the Operations Research (OR) problem of Facility Layout Planning

(FLP). The objective of FLP algorithms is to identify the optimal arrangement of equipment

or facilities in accordance with some criteria and given certain constraints [47]. FLP

problems are a NP-complete problem, which means that “the computational time

required to find an optimal solution increases exponentially with the problem size” [48, p.

25]. This is one of the reasons why researchers have proposed multiple meta-heuristics

algorithms to solve the FLP problem, such as Simulated Annealing and Genetic Algorithms

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

12
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

[47]. However, one of the limitations of optimization approaches is that a given optimal

solution might not continue to be optimal under a different problem configuration. For

example, if an additional constraint is added (e.g., now machine Z must be in the

coordinates x and y), the algorithm needs to be run again to find the optimal or near-

optimal solution [47], [49]. In contrast, since RL algorithms focus on generating an action

policy that can adapt to changes in the state space, they do not require additional training

when exposed to a new state (e.g., now machine Z must be in the coordinates x and y).

Due to the advantages of RL algorithms, researchers have explored how to

implement RL in combination with metaheuristics with the objective of identifying more

efficient methods for solving OR problems [50]–[55]. Recently, some studies have shown

promising results of using RL for solving combinatorial optimization problems [56]. For

example, RL algorithms have been implemented to tackle classical OR problems like

dynamic job shop scheduling problem [57], vehicle touting problem [58], among others

routing and scheduling problems [56]. In a recent study, Govindaiah and Petty [59], [60]

present the application of a framework that integrates RL algorithms and discrete event

simulation to improve the cost efficiency of material handling plans under varying product

demands. Their method focused on reducing the cost of material handling plans by

changing the routes, timing, and equipment used to transport material between

workstations and/or warehouses. However, their method did not consider the locations

of the workstations nor warehouses, the reason why it cannot be implemented for FLP

[49]. The case study used in this work to test the proposed Deep RL PCG method shares

some characteristics with the material handling problem tackled by Govindaiah and Petty

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

13
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

[59], [60]. However, the proposed method focuses on generating new 3D virtual

environments by allocating a set of virtual objects. In the case study presented, the RL

agent is capable of changing the location of the workstation (i.e., injection molding

machine, see section 4) and material handling equipment (e.g., conveyor belts and robot

arms). Moreover, the proposed Deep RL PCG method can adapt to changes in the problem

space (i.e., state space) without the need for additional training. That is, once the RL agent

is trained, it can generate new 3D virtual environments given different injection molding

machine locations (see section 5 for results). In contrast, using traditional OR methods

would require to run optimization or meta-heuristic algorithms every time the problem

space changes when a constraint is added or modified (e.g., now machine Z must be in

the coordinates x and y) [47], [49].

3. METHOD

In this work, a PCG method based on a Deep RL approach is introduced. The

method is capable of dynamically generating new 3D virtual environments by

implementing a RL agent that validates the content via a 3D simulation platform. Figure 2

shows the method of the Deep RL algorithm implemented. In addition, it shows 2D aerial

views of the 3D simulation platform used to validate the virtual manufacturing

environments generated for the case study (see section 4).

RL problems are framed as Markov Decision Processes, where the agents connect

to the simulation environment at a given time t via the sensory inputs of state (St) that

belongs to the set of possible states S, and action (At) that belongs to the set of possible

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

14
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

actions A (see Fig. 2). In each training epoch t, the agent observes the current state: St

and chooses an action to be executed: At. The environment reacts to the action executed

and determines the new state to transition: St+1, as well as the reward signal (i.e.,

reinforcement signal): Rt. The sensory inputs of the state and action can be in a vector

form, containing information about the state of the environment and information

regarding the action the agent is taking, respectively. The agent makes decisions based

on a policy that is defined by a mapping from the state space to a probability distribution

over the action space, formalized as π(St) ∊ P(A). In Deep RL, this policy function is realized

using a neural network which takes St as input, and generates probabilities for selecting

each possible action as output.

The goal of an RL agent is to determine a particular policy π* which maximizes the

long-run reward of the agent. The long-run reward, also known as the return, is used as

an objective function over the reward signal itself because it is more stable and less

sparse. The return is defined as 𝜌 = ∑ 𝛾𝑡𝑅𝑡
𝑇
𝑡=0 , where γ ∊ [0,1] is the discount factor that

controls the exponential devaluation of delayed rewards.

In this work, the Proximal Policy Optimization (PPO) [61] algorithm is employed to

train the RL agent. PPO is a policy gradient approach to RL based on the Trust Region

Policy Optimization (TRPO) algorithm introduced by Schulman et al.’s work [62]. Schulman

et al.’s [61] study reveals that the PPO algorithm outperformed other policy gradient

algorithms, and provided a more favorable tradeoff between sample complexity,

simplicity, and wall-time. Given that a neural network is fully differentiable, gradient

ascent can be applied to the policy function directly with respect the advantage estimate

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

15
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

of the policy, a quantity which is related to the expected value of the policy’s return

(readers are referred to [61] and [62] for additional details).

For generating new 3D virtual environment, St contains enough information to

describe the current state of the virtual environment (e.g., location, orientation, and

relevant properties of objects in the environment), while At corresponds to ways that the

agent can alter the environment. These actions could correspond to determining the

location, orientation, or parameters which govern the behavior of the virtual objects in

the 3D virtual environment (see Fig. 2). Given this framing, the proposed DRL method can

be applied to generate 3D virtual environments for problems that can be framed as

arranging multiple individual objects with inherent properties, and that can be expressed

in vector form. This enables the use of this method in a variety of application, such as

educational and training where new environments are generated for learning purposes,

or game applications where new levels are generated for entertainment purposes.

The goal of the RL agent is to develop a model that selects the actions that

maximize its long-run reward signal, which takes the form of a scalar value. The elements

of the reward function will depend on the behavior that the designers expected the RL

agent to model (i.e., learn). The RL agent needs to be rewarded for generating new

environments that are functional and not just a random placement of virtual objects. This

can be achieved by designing a reward function that incentivizes the generation of

functional environments and penalizes nonfunctional ones (e.g., makes parts as in the

manufacturing layout example of Fig. 1 & 2). However, a major difference between layout

generation problems and other RL problems is that each action (i.e., placement of an

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

16
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

object) cannot be evaluated until the full layout has been generated. This means that

every action except the final will have an immediate reward of Rt = 0. Thus, the proposed

method omits the discount factor from the return, by choosing γ = 1.

Through its interactions with the simulated environment, the RL agent is trained

(i.e., learns) to model an action policy that will maximize its return. Once the RL agent is

trained, it will be able to generate new 3D virtual environments given an initial state

provided by the user or randomly selected by the agent. In the example shown in Fig.2,

this could be the initial location of the injection molding machine. Hence, the RL agent

will place the objects in a way that will create a functional virtual 3D manufacturing

layout.

4. CASE STUDY

For this case study, the authors used a Virtual Reality (VR) learning application

designed to teach Industrial Engineering (IE) concepts (i.e., Poisson distribution, Little’s

Law, Queuing Theory) with the use of a simulated manufacturing system. Specifically, a

manufacturing system that produces power drills was simulated, as shown in Fig.1 & 2.

The objective of this VR learning application is to provide a tool with a common theme

that educators could use to teach IE concepts and integrate course knowledge into their

curriculum [63]. A power drill manufacturing line was selected since previous studies that

aim to integrate IE course knowledge have implemented similar power tools [64]. The

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

17
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

virtual environment simulates the initial steps of the process to manufacture a power

drill, where the plastic housing is manufactured.

Figure 3 shows, from a user’s point of view, a functional layout for this manufacturing

system. In this layout, first, an injection molding press produces the plastic housing

components. Then, they are cooled down with the use of a conveyor belt. Finally, the

plastic housings are placed in a tote with the use of a robotic arm in order to be

transported to the assembly line. The 3D virtual environment allows users to interact with

virtual objects. For this application, the agent is rewarded based on the efficiency and

functionality of the layout generated to produce goods (e.g., the rightmost image on Fig.

2 has a high reward score, while the two other images have a low reward score).

Specifically, the reward function used in this case study can be mathematically expressed

as follows:

𝑅 = 𝛽1(𝑇𝑜𝑡𝑒) − 𝛽2(𝐹𝑙𝑜𝑜𝑟) + 𝛽3𝜎𝜆 + 𝛽4(𝐹𝑙𝑜𝑤) (1)

For,

𝑇𝑜𝑡𝑒 = ∑ ϕ𝑝
P
𝑝=1 (2)

𝐹𝑙𝑜𝑜𝑟 = ∑ φ𝑝
P
𝑝=1 (3)

𝜎𝜆 = √∑ (λ𝑒−λ𝑈)2E
𝑒=1

E
 (4)

𝐹𝑙𝑜𝑤 = ∑ ∑ ∆𝑝,𝑒
E
𝑒=1

P
𝑝=1 (5)

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

18
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

βi > 0 ∀ 𝑖 = {1,2,34} (6)

Where,

• ϕ𝑝 is a binary variable that indicates if a given part p was correctly placed in a tote

ϕ𝑝 = 1 or not ϕ𝑝 = 0, for p ϵ{P}

• φ𝑝 is a binary variable that indicates if a given part p falls to the floor φ𝑝 = 1 or not

φ𝑝 = 0, for p ϵ{P}

• λ𝑒 is a parameter that describes the behavior distribution of equipment e, for e ϵ{E}.

(In the case study, this parameter is only applied to the conveyor and injection

machine)

• ∆𝑝,𝑒 is a binary variable that indicates if a given part p interacted with a given

equipment e, for p ϵ{P} and e ϵ{E}

The reward function shown in Eq. (1), will be maximized when all the parts p are

placed in a tote and no parts fall on the floor, following Eq. (2)-(3), when the standard

deviation of the parameters that describe the behavior distribution of the equipment set

{E} is minimized, following Eq. (4), and when all the parts interact with all the equipment

following the manufacturing process, as shown in Eq. (5). This reward function was

designed to reinforce the generation of functional manufacturing layouts that follow the

predefined manufacturing process and have a constant flow of part being placed in the

tote. This reward function will be computed for every simulation epochs t (Rt), as shown

in Fig. 2. In addition, in every simulation epoch t, the RL agent will be able to control the

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

19
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

placement (x𝑒 , y𝑒), and the parameters that describe the behavior distribution (λ𝑒) of

the equipment set {E}. The environment will provide the agent with the state information

about the placement (𝑥𝑢, 𝑦𝑢) of the equipment placed by the user {U}. The set of

equipment {U} will allow users to customize the VR environment. In the event that the

user does not need to customize the environment, the equipment set {U} can be placed

randomly, to generate a new environment.

For this application, users can select the location of the injection molding machine, U

= {Injection molding machine}. On the other hand, the RL agent will manipulate one

conveyor belt, one tote, and one robot arm. This means that the set E will contain three

different equipment (i.e., virtual objects). In order for the agent to be robust to various

placements of the injection molding machine, the position of the injection machine was

randomly changed at every epoch t, and thus to maximize the reward the agent would

need to generate a functional layout regardless of the position of the machine. The

𝜆𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟 parameter will control the speed of the conveyor, while 𝜆𝑚𝑎𝑐ℎ𝑖𝑛𝑒 parameter

will control the speed of the injection molding machine. To improve training performance,

the RL agent is trained in parallel with multiple layouts. This provides the benefit in

improved diversity of training samples by ensuring that the agent is exploring multiple

action trajectories simultaneously. In this case study, the agent is trained in parallel on 32

environments.

Finally, in this work, the game engine Unity [65] is used as the 3D simulation platform

to train the RL agent. Because of its fidelity, physics simulation capabilities, accessibility,

and community support, Unity is widely used by developers [66], [67], as well as by

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

20
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

researchers [68], [33]. Furthermore, Unity ML-Agents Toolkit [44] provides several

algorithms and functionalities for the development and design of RL based applications

[69]. In this case study, for each simulation epoch t, a total of 10 parts were simulated

(i.e., p = {1-10}). This number of parts was selected to reduce the complexity of the

simulation while allowing the simulation platform to generate the state transition in

which the environment reacts to the action executed and provides a reward signal.

However, this number can be increased, and the relative difference between the rewards

score of layouts would not change. That is, a layout that allows all the parts to fall on the

floor will always have a worse reward score than one that places all the parts on the tote,

no matter how many parts are simulated.

5. RESULTS AND DISCUSSIONS

The RL agent was trained using an Intel® Core™ i7-4770K 3.50 GHz CPU and 16 GB

RAM. A total of 10,000 training iterations (t = 10000) on 32 simulated environments were

used to train a RL agent in parallel. This means that a total of 32,000 virtual environments

were generated and evaluated to train the RL agent. The total training time was 3.25

hours. In this work, the coefficient of our rewards function (i.e., β1, β2, β3, β4) were

empirically set to one in order to give the same importance to the elements of the reward

function. Figure 4 shows the evolution of the RL agent’s average reward over the 32

environments given the training epoch t. The y-axis shows the bounds of the reward

function (i.e., [-11, 21]). Figure 4 shows that the agents’ rewards score was significantly

and strongly correlated with the simulation iterations (ρ = 0.915, p-value < 0.001). This

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

21
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

indicates that the agent managed to train a model that describes an action policy that

maximized the long-run rewards function used in this case study.

To test the performance of the trained RL agent, a total of 512 (i.e., 32*16) new

3D virtual environments were generated and evaluated. This process took 2 minutes and

20 seconds. That is, the trained RL agent takes, on average, 0.27 seconds to generate a

new 3D virtual environment. Table 2 shows the number of layouts generated given the

rewards score achieved and a description as to why the rewards score was not optimal

(i.e., 21). This table shows that, on average, these layouts had a reward score of 13.18

(SD=7.74). This is in line with the average rewards score achieved during the last iteration

of the training process (see Fig. 4). It also shows that more than 55.08% of the layouts

achieved a reward score greater than 18 and only mismatched the speed between the

conveyor and the injection molding machine (i.e., 𝜎𝜆). Figure 5 shows 2D aerial views of

several of the environments generated for testing the performance of the trained RL

agent.

The results indicate that the agent managed to train a model that describes an

action policy that maximized the long-run rewards function used in this case study.

Moreover, the results show that the trained RL agent is capable of generating new 3D

virtual environments given different injection molding machine locations without the

need for additional training and in less than a second. This is in contrast with common

methods used for the FLP, which required to re-run optimization algorithms every time

the problem space changes (e.g., the injection molding machine locations changes). This

finding shows promising results for using PCG methods based on Deep RL approaches to

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

22
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

generate new 3D virtual environments. The capability to generate new 3D virtual

environments given different initial configurations of virtual objects can help personalize

applications to an individual’s unique preferences.

6. CONCLUSION AND FUTURE WORKS

The ability to automatically generate new content with the use of Procedural

Content Generation (PCG) methods offers several advantages for the development and

design of new applications. PCG methods can help reduce the resources needed to

develop new applications. More importantly, content that is automatically generated can

be personalized and adapted to an individual. Implementing PCG methods allows

designers to generate new environments that can help improve the overall user

experience. Researchers have started developing PCG methods that integrate supervised

ML algorithms, which allow designers to generate new content more efficiently compare

to heuristics-based methods. However, these algorithms require large datasets to train

their generative models. In contrast, Reinforcement Learning (RL) methods do not require

any training data to be collected a priori since they take advantage of simulation

environments to generate efficient representations of complex situations and tasks.

In light of this, a PCG method based on a Deep RL approach that generates new

virtual environments is presented. This method trains a model by implementing a RL

agent that validates new 3D virtual environments via a 3D simulation platform; hence, it

does not require any training data to be collected a priori. In this work, a case study is

introduced where the proposed method is used to generate new 3D virtual

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

23
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

manufacturing environments, with the intention to teach Industrial Engineering (IE)

concepts. The preliminary results indicate that the RL agent was able to model (i.e., learn)

a policy that allows it to automatically generate new and functional 3D virtual

environments.

The proposed Deep RL PCG approach can help designers automatically generate

new content for a wide range of applications. For example, Figure 6 shows how the 3D

virtual environment generated for the case study can be integrated into an immersive VR

learning application. This immersive VR application can help users learn about IE

concepts. The PCG method presented can also be applied to other applications that can

benefit from automatically generating new 3D virtual environments (e.g., Adaptive

Instructional Systems, adaptive games). Designers can implement this method in their

applications by creating a rewards function based on the new environments they would

like the RL agent to generate.

While this work presents a novel PCG method based on a Deep RL approach, there

still exist a lot of areas for improvement. First, the method should be used to generate

other types of 3D virtual environments that differ from the manufacturing layouts used

in the case study. Moreover, while the RL approach does not require the collection of data

a priori since it takes advantage of simulation to train its model, the reward function,

which impacts the action policy the RL agent models, can be challenging to design under

certain conditions. Furthermore, it could be challenging under certain circumstances to

create simulation environments that allow a RL agent to identify the desired action policy.

More importantly, future work should explore how integrating the proposed PCG method

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

24
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

into learning applications can impact the motivation and learning of users. For example,

as shown in Fig.5, this method can be used to generate new 3D virtual environments for

immersive VR learning applications. However, the impact of automatically generating

new content on users learning and engagement still has to be tested. Nevertheless, this

work presents initial groundwork on integrating RL algorithms to automatically generate

new content, which has significant implications for personalized and adaptive systems.

ACKNOWLEDGMENT

This research is funded by the National Science Foundation NSF DUE #1834465. Any

opinions, findings, or conclusions found in this paper are those of the authors and do not

necessarily reflect the views of the sponsors. The authors would also like to thank the

hard work of Bradley Nulsen, Gerard Pugliese Jr., Adith Rai, and Matthew Rodgers on

developing and implementing the application used in this work.

REFERENCES

[1] A. Summerville and M. Mateas, “Super mario as a string: Platformer level
generation via lstms,” arXiv Prepr., vol. arXiv:1603, 2016.

[2] Iglesias, A., Martínez, P., Aler, R., & Fernando, F. , “Applying reinforcement
learning in intelligent tutoring systems,” in Proc of international conference on
new educational environments, 2002, pp. 11–14.

[3] G. Fenza, F. Orciuoli, and D. G. Sampson, “Building Adaptive Tutoring Model Using
Artificial Neural Networks and Reinforcement Learning,” in Proceedings - IEEE
17th International Conference on Advanced Learning Technologies , 2017.

[4] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based
procedural content generation: A taxonomy and survey,” in IEEE Transactions on
Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 172-186, 2011.

[5] R. Bidarra, K. J. de Kraker, R. M. Smelik, and T. Tutenel, “Integrating semantics
and procedural generation: key enabling factors for declarative modeling of

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

25
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

virtual worlds,” in FOCUS K3D Conference on Semantic 3D Media and Content,
2010.

[6] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive planning and
constraint solving for mixed-initiative level design,” in IEEE Transactions on
Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 201-215, 2011.

[7] D. Hooshyar, M. Yousefi, and H. Lim, “A Procedural Content Generation-Based
Framework for Educational Games: Toward a Tailored Data-Driven Game for
Developing Early English Reading Skills,” J. Educ. Comput. Res., vol. 56, no. 2, pp.
293–310, 2018.

[8] K. Hullett and M. Mateas, “Scenario generation for emergency rescue training
games,” in Proceedings of the 4th International Conference on Foundations of
Digital Games - FDG ’09, 2009.

[9] R. Sawyer, J. Rowe, and J. Lester, “Balancing learning and engagement in game-
based learning environments with multi-objective reinforcement learning.,” in
International Conference on Artificial Intelligence in Education, 2017, pp. 323–
334.

[10] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural content
generation for games: A survey,” ACM Trans. Multimed. Comput. Commun. Appl.,
vol. 9, no. 1, pp. 1–22, 2013.

[11] G. N. Yannakakis, “Game AI revisited,” in Proceedings of the 9th conference on
Computing Frontiers - CF ’12, 2012.

[12] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Process. Mag., vol. 34, no. 6,
pp. 26–38, 2017.

[13] C. E. Lopez, O. Ashour, and C. S. Tucker, “Reinforcement learning content
generation for virtual reality applications,” in Int. Design Eng. Technical Conf. &
Computers and Information in Eng. Conf., 2019.

[14] N. Shaker et al., “The 2010 mario ai championship: Level generation track,” IEEE
Trans. Comput. Intell. AI Games, vol. 3, no. 4, pp. 332-347. 2011.

[15] P. Shi and K. Chen, “Learning Constructive Primitives for Real-time Dynamic
Difficulty Adjustment in Super Mario Bros,” IEEE Trans. Comput. Intell. AI Games,
vol. 10, no. 2, pp. 155–169, 2018.

[16] M. Guzdial, N. Sturtevant, and B. Li, “Deep Static and Dynamic Level Analysis : A
Study on Infinite Mario,” in AIIDE Workshop AAAI Technical Report WS-16-22,
2016, pp. 31–38.

[17] A. Summerville, M. Behrooz, M. Mateas, and A. Jhala, “The learning of zelda:
Datadriven learning of level topology,” in Proceedings of the FDG workshop on
Procedural Content Generation in Games., 2015.

[18] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and S. Risi,
“Illuminating generalization in deep reinforcement learning through procedural
level generation,” in preprint arXiv, 2018, p. arXiv :1806.10729.

[19] S. Dahlskog, J. Togelius, and M. J. Nelson, “Linear levels through n-grams,” in
Proceedings of the 18th International Academic MindTrek Conference on Media
Business, Management, Content & Services, 2014.

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

26
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

[20] S. Snodgrass and S. Ontañón, “Generating Maps Using Markov Chains,” in
Artificial Intelligence and Game Aesthetics: Papers from the 2013 AIIDE Workshop,
2013.

[21] N. Shaker and M. Abou-Zleikha, “Alone we can do so little, together we can do so
much: A combinatorial approach for generating game content,” in AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment., 2014.

[22] K. Almohammadi, H. Hagras, D. Alghazzawi, and G. Aldabbagh, “A survey of
artificial intelligence techniques employed for adaptive educational systems
within e-learning platforms,” J. Artif. Intell. Soft Comput. Res., vol. 7, no. 1, pp. 47-
64. 2017.

[23] R. A. Sottilare, “A hybrid machine learning approach to automated scenario
generation (ASG) to support adaptive instruction in virtual simulations and
games,” in 8th International Defense and Homeland Security Simulation
Workshop , 2018.

[24] F. A. Dorça, L. V. Lima, M. A. Fernandes, and C. R. Lopes, “Comparing strategies
for modeling students learning styles through reinforcement learning in adaptive
and intelligent educational systems: An experimental analysis,” Expert Syst. Appl.,
vol. 40, pp. 2091–2101, 2013.

[25] A. Iglesias, P. Martínez, R. Aler, and F. Fernández, “Learning teaching strategies in
an Adaptive and Intelligent Educational System through Reinforcement Learning,”
Appl. Intell., vol. 31, pp. 89–106, 2009.

[26] D. Hooshyar, M. Yousefi, M. Wang, and H. Lim, “A data-driven procedural-
content-generation approach for educational games,” J. Comput. Assist. Learn.,
vol. 34, no. 6, pp. 731–739, 2018.

[27] D. Hooshyar, M. Yousefi, and H. Lim, “A systematic review of data-driven
approaches in player modeling of educational games,” Artificial Intelligence
Review, vol. 52, no. 3, pp. 1–27, 2017.

[28] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović, “A case study of
expressively constrainable level design automation tools for a puzzle game,” in
Proceedings of the International Conf. on the Foundations of Digital Games, 2012.

[29] L. Rodrigues, R. P. Bonidia, and J. D. Brancher, “A math educational computer
game using procedural content generation,” in Brazilian Symposium on
Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE),
2017, p. 756.

[30] C. Grappiolo, Y. G. Cheong, J. Togelius, R. Khaled, and G. N. Yannakakis, “Towards
player adaptivity in a serious game for conflict resolution,” in Proceedings - 2011
3rd International Conference on Games and Virtual Worlds for Serious Application
, 2011.

[31] M. L. Dering and C. S. Tucker, “Generative adversarial networks for increasing the
veracity of big data,” in Proceedings - 2017 IEEE International Conference on Big
Data, 2018, pp. 2595–2602.

[32] C. Beecks, M. S. Uysal, and T. Seidl, “Gradient-based signatures for big multimedia
data,” in IEEE International Conference on Big Data, 2015, pp. 2834–2835.

[33] C. E. Lopez, S. R. Miller, and C. S. Tucker., “Exploring Biases Between Human and

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

27
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

Machine Generated Designs,” J. Mech. Des., vol. 2, no. 141, 2019.
[34] C. Lopez, S. R. Miller, and C. S. Tucker, “Human validation of computer vs human

generated design sketches,” in ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, 2018,

[35] Y. Chen, S. Tu, Y. Yi, and L. Xu, “Sketch-pix2seq: a Model to Generate Sketches of
Multiple Categories,” arXiv Prepr. arXiv1709.04121., 2017.

[36] K. LP, L. ML, and M. AW, “Reinforcement learning : a survey,” Int J Artif Intell Res,
vol. 4, pp. 237–285, 1996.

[37] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press, 1998.

[38] X. Xu, L. Zuo, and Z. Huang, “Reinforcement learning algorithms with function
approximation: Recent advances and applications,” Inf. Sci. (Ny)., vol. 261, pp. 1–
31, 2014.

[39] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv Prepr., vol.
arXiv:1312, 2013.

[40] D. Silver et al., “Mastering the game of Go without human knowledge,” Nature,
vol. 550, no. 7676, p. 354, 2017.

[41] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[42] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The malmo platform for
artificial intelligence experimentation,” in IJCAI International Joint Conference on
Artificial Intelligence, 2016, pp. 4246–4247.

[43] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based
control,” in IEEE International Conference on Intelligent Robots and Systems,
2012, pp. 5026–5033.

[44] A. Juliani et al., “Unity: A General Platform for Intelligent Agents,” arXiv Prepr.,
vol. arXiv:1809, 2018.

[45] P. Wang, J. Rowe, W. Min, B. Mott, and J. Lester, “Interactive narrative
personalization with deep reinforcement learning,” in IJCAI International Joint
Conference on Artificial Intelligence, 2017.

[46] J. Rowe, A. Smith, R. Pokorny, B. Mott, and J. Lester, “Toward Automated
Scenario Generation with Deep Reinforcement Learning in GIFT.,” in Proceedings
of the Sixth Annual GIFT Users Symposium, 2018, p. 65.

[47] H. Hosseini-Nasab, S. Fereidouni, S. M. T. Fatemi Ghomi, and M. B. Fakhrzad,
“Classification of facility layout problems: a review study,” Int. J. Adv. Manuf.
Technol., vol. 94, pp. 957–977, 2018.

[48] P. M. Pardalos, D. Z. Du, and R. L. Graham, Handbook of Combinatorial
Optimization. 2013.

[49] A. Drira, H. Pierreval, and S. Hajri-Gabouj, “Facility layout problems: A survey,”
Annu. Rev. Control, vol. 31, no. 2, pp. 255–267, 2007.

[50] N. Lotfi and A. Acan, “Learning-based multi-agent system for solving com-
binatorial optimization problems: A new architecture.,” in Proceedings of the 10th
international conference Hybrid artificial intelligent systems, 2015.

[51] S. Martin, D. Ouelhadj, P. Beullens, E. Ozcan, A. A. Juan, and E. K. Burke, “A multi-

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

28
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

agent based cooperative approach to scheduling and routing,” Eur. J. Oper. Res.,
vol. 254, no. 1, pp. 169-178, 2016.

[52] H. Samma, C. P. Lim, and J. Mohamad Saleh, “A new Reinforcement Learning-
based Memetic Particle Swarm Optimizer,” Appl. Soft Comput. J., vol. 43, pp. 276-
297, 2016.

[53] M. A. L. Silva, S. R. De Souza, M. J. F. Souza, and S. M. De Oliveira, “A multi-agent
metaheuristic optimization framework with cooperation,” in Proceedings - 2015
Brazilian Conference on Intelligent Systems , 2015.

[54] M. E. Aydin and E. Oztemel, “Dynamic job-shop scheduling using reinforcement
learning agents,” Rob. Auton. Syst., vol. 33, pp. 169–178, 2000.

[55] Y. C. Wang and J. M. Usher, “Application of reinforcement learning for agent-
based production scheduling,” Eng. Appl. Artif. Intell., vol.18, no.1, pp. 73-82,
2005.

[56] M. A. L. Silva, S. R. de Souza, M. J. F. Souza, and A. L. C. Bazzan, “A reinforcement
learning-based multi-agent framework applied for solving routing and scheduling
problems.,” Expert Syst. Appl., no. 131, pp. 148–171, 2019.

[57] J. Shahrabi, M. A. Adibi, and M. Mahootchi, “A reinforcement learning approach
to parameter estimation in dynamic job shop scheduling,” Comput. Ind. Eng., vol.
110, pp. 75-82, 2017.

[58] M. Nazari, A. Oroojlooy, M. Takáč, and L. V. Snyder, “Reinforcement learning for
solving the vehicle routing problem,” in Advances in Neural Information
Processing Systems, pp. 9839-9849 , 2018.

[59] S. Govindaiah and M. D. Petty, “Applying reinforcement learning to plan
manufacturing material handling Part 2: Experimentation and results,” in ACMSE
2019 - Proceedings of the 2019 ACM Southeast Conference, 2019.

[60] S. Govindaiah and M. D. Pey, “Applying reinforcement learning to plan
manufacturing material handling Part 1: Background and formal problem
specification,” in ACMSE 2019 - Proceedings of the 2019 ACM Southeast
Conference, 2019.

[61] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv Prepr., vol. arXiv, p. 1707.06347, 2017.

[62] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region Policy
Optimization,” arXiv.org 1502.05477, 2017.

[63] C. Lopez, O. Ashour, and C. Tucker, “An introduction to CLICK: Leveraging Virtual
Reality to Integrate the Industrial Engineering Curriculum,” in ASEE Annual
Conference & Exposition, 2019, pp. 1–12.

[64] J. Terpenny et al., “Product-based Learning: Bundling Goods and Services for an
Integrated Context-rich Industrial Engineering Curriculum,” in Annual Conference
of the American Society for Engineering Education (ASEE), 2018.

[65] W. G. & C. Pope, “Unity_Game_Engine,” UNITY GAME ENGINE Overv., 2011.
[66] P. Petridis, I. Dunwell, S. De Freitas, and D. Panzoli, “An engine selection

methodology for high fidelity serious games,” in 2nd International Conference on
Games and Virtual Worlds for Serious Applications, 2010.

[67] A. Alsubaie, M. Alaithan, M. Boubaid, and N. Zaman, “Making learning fun:

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

29
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

Educational concepts & logics through game,” in International Conference on
Advanced Communication Technology, ICACT, 2018.

[68] J. Cunningham and C. S. Tucker, “A Validation Neural Network (VNN) metamodel
for predicting the performance of deep generative designs,” in Proc. ASME Int.
Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., 2018.

[69] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros., “Large-
scale study of curiosity-driven learning,” arXiv Prepr., arXiv: 1808.04355, 2018.

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

30
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

FIGURE CAPTIONS LIST

Fig. 1 Outline of the Reinforcement Learning PCG method

Fig. 2 Reinforcement Learning framework representation

Fig. 3 User’s point of view of a functional manufacturing layout

Fig. 4 Reinforcement Learning agent rewards score vs. training iterations

Fig. 5 Example of new manufacturing layouts generated by the trained RL

agent.

Fig. 6 Users interacting with the generated virtual environment using an

immersive VR headset

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

31
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

TABLE CAPTION LIST

Table 1 Summary of related work

Table 2 Summary of environments generated to evaluate the trained model

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

32
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

Table 1. Summary of related work

Reference
Meta-

Heuristics

Supervised

ML
RL

Environment

generation

Application

Context

[7], [8],

[28], [29]
X

Learning

[9], [26],

[30], [45]
 X

 Learning

[1], [14]–

[18]
 X

X

Games

This work X X Learning/Games

ASME Journal of Computing and Information Science in Engineering: Selected Papers from IDETC 2019

33
Christian E. Lopez, James Cunningham, Omar Ashour,Conrad S. Tucker JCISE-19-1276

Table 2. Summary of environments generated to evaluate the trained model

Reward No. Percentage Comments

21 45 8.79% Optimal Layout

19 237 46.29% Mismatched speed only

11 25 4.88%

No robot or conveyor interaction, but matched speed and

all parts in the tote

9 128 25.00%

No robot or conveyor interaction, mismatched speed, but

all parts in the tote

1 11 2.15%

Robot and conveyor interaction, matched speed, but no

parts in the tote

-1 52 10.16%

Robot and conveyor interaction but no parts in bin,

mismatched speed

-4 3 0.59%

Conveyor interaction and matched speed, but no robot

interaction, nor parts in bin,

-6 9 1.76%

Conveyor interaction but no robot interaction, no parts in

tote, and mismatched speed

-11 2 0.39%

No conveyor or robot interaction, mismatched speed,and

no parts in the tote

