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Abstract—Personalized adaptive gamification has the potential to 
improve individuals’ motivation and performance. Current 
methods aim to predict the perceived affective state (i.e., emotion) 
of an individual in order to improve their motivation and 
performance by tailoring an application. However, existing 
methods may struggle to predict the state of an individual that it 
has not been trained for. Moreover, the affective state that 
correlates to good performance may vary based on individuals and 
task characteristics. Given these limitations, this work presents a 
machine learning method that uses task information and an 
individual’s facial expression data to predict his/her performance 
on a gamified task. The training data used to generate the adaptive-
individual-task model is updated every time new data from an 
individual is acquired. This approach helps to improve the model’s 
prediction accuracy and account for variations in facial 
expressions across individuals. A case study is presented that 
demonstrates the feasibility and performance of the model. The 
results indicate that the model is able to predict the performance 
of individuals, before completing a task, with an accuracy of 0.768. 
The findings support the use of adaptive models that dynamically 
update their training dataset and consider task information and 
individuals’ facial expression data.  
 

Index Terms—Performance; Facial expression; Gamification; 
Machine learning. 

I. INTRODUCTION 

amification has emerged as a growing area of interest 
across a wide range of sectors. In the past seven years, the 

research community has seen a significant growth of 
publications related to gamification [1], [2]. Deterding et al. 
define gamification as “the use (rather than the extension) of 
design (rather than game-based technology or other game 
related practices) elements (rather than full-fledged games) 
characteristic for games (rather than play or playfulness) in 
non-game contexts (regardless of specific usage intentions, 
context, or media of implementation)” [3, p. 14]. In other 
words, gamification aims to implement game features (e.g., 
Points, Leaderboards) in non-game contexts to encourage 
individuals to perform a task or set of tasks (i.e., promote action 
or behavior) [4]. The tasks and objectives of a gamified 
application can vary based on the context of an application, and 
the designers’ intentions. For example, in the health and 
wellness context, physically-interactive gamified applications 
such as Active Games, require individuals to use full-body 
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motion to perform a physical task with the objective of 
increasing their physical fitness or improving their health 
awareness [5].  

 Due to the heterogeneity of individuals, researchers have 
started exploring methods to design personalized and adaptive 
gamified applications [6]. Current methods are often developed 
around studies that have explored the relationship between 
individuals’ attributes and their game feature preferences. 
However, these studies provide guidelines suited for a general 
demographic of end users and not for unique individuals. 
Additionally, most of the existing gamification methods are not 
capable of dynamically capturing data of an individual’s 
interaction with an application (i.e., real-time data capture). 
Instead, these methods focus on gathering data in discrete time 
intervals through the use of self-reported questionnaires [7]. 
This approach ignores the possibility that individuals’ attributes 
and preferences are dynamic in nature and could change over 
time [8], which could potentially impact the long-term 
effectiveness of an application [9].  

The Affective Computing (AC) community has shown how 
individuals’ facial expressions can be systematically captured 
and used to improve their interaction with an application. 
Systems capable of capturing individuals’ facial expressions 
have also shown to be suitable for personalization and 
adaptation [10]–[12]. In light of this, researchers have started 
to increasingly implement AC methods to improve the user 
experience in gaming applications [13]. These applications are 
known as Affective Games, and are defined as games in which 
the “emotional state and actions of a player can be recognized 
and used in order to alter the gameplot and offer an increased 
user experience” [14, p. 1]. Affective Games relate individuals’ 
facial keypoint data to their perceived affective states. This 
affective state information is used to alter the gameplot or 
difficulty of the application in order to improve the user 
experience. However, individual differences in facial 
expressions can deteriorate the accuracy of existing methods 
since they employ general models trained with datasets from a 
limited set of individuals. For these general models, it is 
challenging to accurately predict the affective state of an 
individual that it has not been trained for [15].  

Moreover, current Affective Games aim to recognize 
individuals’ affective states with the goal of improving their 
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experience and not necessarily their task performance, which is 
a key aspect of gamified applications [16]. Studies have shown 
that the relationship between performance and affective states 
is mediated by the task and individuals’ characteristics [17]. 
This relationship can limit the effectiveness of current methods 
in predicting an individual’s affective state and adapting an 
application to improve his/her performance. Therefore, 
designers should focus on developing models capable of 
predicting individuals’ performance, instead of their affective 
state. Furthermore, efforts should be taken to develop models 
capable of systematically updating their training dataset as new 
data of an individual is acquired and  hence, adapting (i.e., 
learning) to an individual’s unique facial expression 
characteristics.  

Given the current limitations, this work presents a method to 
predict an individual’s performance on a gamified task (i.e., 
tasks of a gamified application). The method enables capturing 
individuals’ facial keypoint data in real-time without affecting 
their immersion in an application. Furthermore, the training 
data used to generate the machine learning model is 
continuously updated each time new data of an individual is 
acquired. This continuous updating helps improve the model’s 
accuracy and account for variations in facial expressions across 
individuals. The method has the potential to enable designers to 
systematically quantify the correlation between an individual’s 
facial keypoint data and his/her performance on a gamified task. 
This information could potentially be used to adapt the game 
features and task difficulty of gamified applications [18].  

II. RELATED WORK 

A. Personalized Adaptive Gamification 

Researchers agree that gamified applications should be 
designed from a highly personalized and adaptive point of view 
since studies have shown that individuals interact with gamified 
applications in different ways [19]. As stated by Buckley and 
Doyle  “individuals do respond differently to gamification, 
based upon individual attributes” [20, p. 44]. Even though 
researchers have begun to explore how different groups with 
common attributes (e.g., personalities, learning styles) perceive 
and interact with gamified applications [20]–[23], several 
limitations still exist. First, these studies have focused on 
gathering individuals’ data through the use of self-reported 
questionnaires, which can impact the validity of the responses 
due to individuals’ biases [24]. Furthermore, these studies 
ignore the possibility that individuals’ attributes and 
preferences are dynamic in nature and could change over time 
[8]. Not considering the dynamic nature of human behavior and 
preferences can have a negative impact on the effectiveness of 
gamified applications [9]. 

Besides individual differences, the characteristics of a task 
and the effort required to complete it can impact the effects that 
gamification has on motivating individuals to perform the task 
successfully. The Fogg’s Behavior Model (FBM) [25] suggests 
that there are some fundamental tasks and individual 
characteristics that can impact the effectiveness of 
gamification. For example, in the gamified application 

presented by Denny [26], in which students generated and 
answered multiple choice questions, their performance on the 
number of answers submitted and the number of active days 
was improved with the gamified application, compared to the 
control group (i.e., non-gamified). However, there was no 
significant improvement in the number of questions generated. 
These results are in line with FBM since the greater effort and 
time required to generate questions (i.e., greater task 
complexity) impacted their motivation and performance on that 
task. Furthermore, Lopez and Tucker’s [27] study supports the 
need to consider task characteristics while designing gamified 
applications. Their results reveal that there was a negative 
correlation between the complexity of a task and individuals’ 
performance.  

Similarly, the human-computer interaction community has 
recognized the connection between task properties and 
individuals’ performance, and developed several predictive 
models of human performance [28], [29]. These models allow 
designers to evaluate the expected performance of individuals 
while interacting with an interface, without having to test it. 
This is done by evaluating task information using models 
founded on experimental psychology and information theory 
research [29], [30], or in some cases, even machine learning 
models [31]. For example, Li et al. [31] used a deep learning 
algorithm to predict the time individuals spend in a vertical 
menu selection task. Their model achieved an R2 ranging from 
0.75 to 0.95 when tested with multiple datasets. However, while 
some of these predictive models do take into consideration 
individual characteristics (e.g., expert vs. novice) [30], [32], it 
is still challenging for them to customize their prediction on an 
individual level. 

Recently, a systematic literature review in the field of 
adaptive gamification was presented [6]. The challenges 
highlighted in this review illustrate the need for more empirical 
studies and methods to advance gamified applications. 
Moreover, the authors stated that machine learning would play 
a significant role in advancing the field of gamification. For 
example, Barata et al. [33] presented evidence that suggests that 
machine learning algorithms can be used to predict student 
types. In a previous study, the authors identified four distinctive 
student types according to their performance, engagement, and 
behavior on the application [34]. Their results revealed that 
after nine weeks of interacting with the applications, a 
participant’s performance data could be used to predict his/her 
student type with an accuracy of 0.79. A participant’s player 
type, along with his/her performance data from a five-week 
period, was only able to predict his/her student type with an 
accuracy of 0.47. 

In recent years, researchers have started working on 
developing methods for personalized adaptive gamified 
applications with the goal of maintaining individuals’ 
motivation for long periods of time [6]. These methods tend to 
implement guidelines developed based on a general 
demographic of end users [35]. Hence, the degree of 
personalization that they can provide to a unique individual is 
limited. Furthermore, some of this work only provides 
conceptual frameworks and little empirical evidence of their 
implementation or feasibility [9], [36]. Finally, these methods 
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are not capable of systematically capturing data of individuals’ 
interaction with a gamified application and predicting their task 
performance. Therefore, due to the limitations of current 
methods, this work presents a machine learning method to 
predict an individual’s performance on a gamified task. The 
method captures individuals’ facial keypoint data in real-time 
as they interact with a gamified application without affecting 
their immersion. Moreover, a benchmark analysis on the 
performance of the model, generated with multiple machine 
learning algorithms, is presented. This model has the potential 
to advance gamified applications by enabling designers to 
consider task characteristics and individuals’ facial expressions. 

B. Affective Computing, Affective Games, and Gamification 

In recent years, researchers have started implementing 
Affective Computing (AC) methods with the objective of 
improving user experience in gaming applications [13], [14], 
[37]. AC researchers have been able to infer individuals’ 
affective states by using a wide range of modalities, such as 
body movements, speech, and facial expressions [38]. 
Nonetheless, AC applications frequently use facial expressions 
to infer an individual’s affective state [39]. This is because 
individuals reveal a significant amount of affective state 
information through their facial expressions [40]. Additionally, 
facial expressions can be captured with sensors that do not 
affect an individual’s immersion or ability to interact with an 
application [41]. For example, the Affective Game developed by 
Grappiolo et al. [42], captured individuals’ affective state 
information via facial expressions and the use of self-reported 
questionnaires. The application used this information to adapt 
and change its content to improve user experience. Similarly, 
Shaker et al. [43] presented an Affective Game that was capable 
of adapting its game features and task complexity (i.e., level 
difficulty) based on individuals’ predicted affective states [44], 
[45]. In a different approach, Athanasiadis et al. [46] 
incorporated students’ scores to predict their “energy function” 
value (i.e., a function of self-reported engagement, boredom, 
and frustration levels) in an educational application, indicating 
that students’ performance was associated with their affective 
state. Similarly, others studies have shown a link between 
individuals’ affective state and their task performance, 
especially in cognitive tasks [47]–[49]. However, research 
indicates that the affective state that correlates to good 
performance may vary based on the characteristics  of the task 
and individual [17]. Hence, current applications might adapt 
based on an individual’s affective state, and not observe 
improvement in his/her performance.  

Table I shows a summary of existing methods that 
researchers have developed to personalize their gamified and 
non-gamified applications. Most of the methods developed for 
gamified applications tend to capture individuals’ data at 
discrete times via self-reported surveys. In contrast, Affective 
Games have shown how designers can dynamically capture 
individuals’ data (e.g., facial keypoint data) to predict their 
affective states. However, most of the current affect-sensitive 
systems employ general models [14]. The accuracy of these 
systems might be impacted by the heterogeneity of individuals’ 
facial expressions [50]. As shown by Asteriadis et al. [44], their 
“player dependent” model (i.e., individual model) 

outperformed their general model in terms of accurately 
predicting individuals’ engagement (i.e., accuracy: 0.71 vs. 
0.82). Moreover, existing methods do not update their model’s 
training set dynamically as new data of an individual of interest 
is acquired. The capability of models to dynamically adapt to 
individuals has great potential to advance personalized systems 
[15].  

 
TABLE I 

LITERATURE REVIEW SUMMARY 
 

Study 
Dynamic 
Data 

Capture a 

Gamified 
Application b 

Adaptive 
Individual  
Model c 

No Yes No Yes No Yes 
[43], [46] X  X  X  

[7], [12], [39], [42], 
[44], [45], [51]  

  
X 

 
X 

  
X 

 

[9], [21], [22], [24], 
[33], [35], [36], 

[52] 

 
X 

   
X 

 
X 

 
 

This work  X  X  X 
a Data captured dynamically as individuals interact with an application (i.e., 
facial expression, gestures, voice), not at discrete points in time (i.e., self-
reported questionnaires after or before interacting with the application). 
b Not a full-fledged game intended just for entertainment purposes, but a 
gamified application intended to promote action or behavior.   
c Implements a model that systematically updates its training set as new data of 
an individual of interest is acquired; hence, adapting to a unique individual’s 
characteristics (unlike general models).  

 
Furthermore, current affect-sensitive systems tend to group 

individuals’ affective states into discrete categories or a single 
function value of their affective states (e.g., engagement, fun, 
frustration, “energy function”) [24], [43], [46]. However, 
individuals’ affective state is far more complex and 
heterogeneous. The assumption of a “one-to-one 
correspondence” between the expression and the experienced 
affective state of an individual may limit the effectiveness of 
existing systems [40]. Thus, potentially affecting their 
adaptability to improve and maintain individuals’ motivation 
and performance over time. Recent studies reveal that 
individuals’ facial keypoint data and machine learning models 
can be used to bypass the need to group individuals’ affective 
states into discrete categories and predict their performance on 
a task [12]. For example, a machine learning model that uses 
students’ facial keypoint data captured while reading the 
instructions of an engineering task, was shown to accurately 
predict their task completion time [51]. Therefore, in this work, 
a machine learning method to predict individuals’ performance, 
instead of their affective state, is presented. Specifically, an 
adaptive-individual-task model to predict an individual’s 
performance on a gamified task by using his/her facial keypoint 
data and task information is presented. The method captures 
facial keypoint data in real-time as an individual interacts with 
an application. Furthermore, the method updates the model’s 
training set every time new data of an individual is acquired. 
The results of this work support the implementation of facial 
keypoint data and adaptive-individual-task models as a 
potential method to advance gamification.  
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III. RESEARCH QUESTIONS  

As highlighted in [6] there are many open research questions 
and challenges in the field of personalized adaptive 
gamification. Previous studies have shown that machine 
learning models that implement individuals’ facial keypoint 
data, captured while reading the instructions of a task, can 
accurately predict individuals’ task completion time [51]. 
However, there is a need for more empirical evidence to support 
the benefits of implementing machine learning methods to 
advance the field of gamification. The objective of this work is 
to bridge the current knowledge gap by exploring fundamental 
research questions that will provide quantitative evidence in 
support of implementing facial keypoint data acquisition and 
machine learning models to predict an individual’s 
performance. In this work the following research questions are 
addressed:  

RQ1. Can a machine learning model predict the 
performance of an individual on a gamified task with accuracy 
greater than random chance by using his/her facial keypoint 
data and task information?  

Addressing this question will reveal that a machine learning 
model can predict an individual’s performance on a gamified 
task, with accuracy greater than random chance. Nonetheless, a 
machine learning model that is trained with data from a limited 
set of individuals (i.e., general model) will not be able to 
consider the unique characteristics of a new individual’s facial 
keypoint data. Therefore, the authors propose an adaptive-
individual-task model capable of updating its training set as 
new data of an individual is acquired.  Consequently, this 
motivates the following question: 

RQ2. How does an adaptive-individual-task model’s 
performance change as new data of an individual is acquired 
and the model is re-trained?    

To address RQ2, the adaptive-individual-task machine 
learning model is validated with an iterative cross-validation 
approach that simulates scenarios in which new data of an 
individual is acquired. This adaptive process helps account for 
variation in facial expressions of individuals; hence, enabling 
the model to adapt (i.e., learn) to an individual’s unique facial 
expression characteristics. 

 

IV. METHOD 

This section introduces a machine learning method to predict 
an individual’s performance on a gamified task (i.e., tasks of a 
gamified application). Figure 1 presents the outline of the 
method that includes the Data Acquisition (IV.A) of Task data 
(IV.A.1), individuals’ Facial Keypoint data (IV.A.2), as well as 
Performance data (IV.A.3). Moreover, the method has Model 
Generation (IV.B) and Model Validation (IV.C) steps. 
 

A. Data Acquisition 

The purpose of this step is to systematically capture an 
individual’s facial keypoint data before performing a gamified 
task, as well as task and performance data. The data is used to 
generate the adaptive-individual-task model and predict the 
performance of individuals in a gamified task.  

  

1) Task data: The efforts required to complete a task can 
impact the effectiveness of gamification in motivating 
individuals to perform the task successfully. Hence, the 
adaptive-individual-task model uses as input, data pertaining to 
the task, as well as data pertaining to individuals. Specifically, 
the model uses task complexity data as input. Task complexity 
is frequently modeled with three different approaches (i) 
subjective, which considers an individual’s psychological state, 
(ii) objective, which considers task characteristics and 
properties, and (iii) an integration of the two approaches [53]. 
However, subjective approaches are challenging to implement 
since their reliability is impacted by individual differences [54]. 
For example, a math student may perceive complex 
mathematics problems easy to solve but on the other hand, may 
perceive aerial work hard. However, individuals with different 
backgrounds (e.g., construction workers) may perceive the 
complexity of these tasks differently. Therefore, in this method, 
a task complexity metric that considers task characteristics and 
properties is implemented. 

 Depending on the gamified task (e.g., cognitive task, 
physical task), different methods that consider task 
characteristics and properties can be used to measure task 
complexity (see [27], [54], [55]). For example, Wood [55] 
proposed a complexity model that described tasks according to 
three elements: (i) information cues,  (ii) products, and (iii) acts. 
Information cues are stimuli that are used to make conscious 
discriminations. While, products are quantifiable outcomes of 
acts, and acts are the required steps for creating the product. 
Based on these elements, the model defines task complexity as 
a function of (i) dynamic complexity, (ii) component 
complexity, and (ii) coordinative complexity. Dynamic 
complexity relates to the variability between task inputs and 
products over time (e.g., game rules changing over time). 
Component complexity relates to the number of acts needed to 
complete a task (e.g., steps required to complete a task). 
Coordinate complexity relates to the strength between acts, 
products, information cues, and task inputs (e.g., tasks requiring 
greater dexterity to perform) [17]. Similarly,  in the context of 
gamification, Lopez and Tucker [27] proposed a task 
complexity metric to evaluate the physical effort required to 
perform a task in physically-interactive gamified applications 
based on the body movements required to perform it (see 
section V.A.1) .  
 

2)  Facial Keypoint data: Facial keypoint data is utilized since 
it can be captured without affecting an individual’s immersion 
or ability to interact with an application. In this work, a non-

IV.A.2. Facial 
Keypoint Data 

IV.A.3.  Performance  
Data

IV.B. Model 
Generation

IV.C. Model 
Validation

IV.A.1.  Task Data 

Performance Prediction

IV.A. Data Acquisition

  
Fig. 1. Method Outline 
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wearable sensor is used to collect the facial keypoint data of an 
individual i before performing a task t (Fit). In this work, the 
facial keypoint data is measured as a relative weight from an 
Action Unit (AU), ranging from 0-1. This facial keypoint data 
resembles the Facial Action Coding System [56], in which 
expert raters code the facial displays of an individual, as 
illustrated in Fig. 2. The method presented can also be 
implemented with facial keypoint data measured as two-
dimensional coordinates from an image. Nonetheless, in such a 
case, the facial keypoints need to be regularized and 
normalized. This normalization can be done via a regularized 
mean shift algorithm and an ordinary Procrustes analysis, as in 
[51], [57].   

In this work, the facial keypoint data of an individual i 
consists of j independent facial keypoint time series (for j ϵ set 
of facial keypoints). These are collected while individual i 
interacts with a gamified application App, after being 
introduced to the task t and before completing the task (for t ϵ 
set of gamified tasks {T}, and App ϵ set of gamified 
applications). Therefore, the facial keypoint data of an 
individual i on a task t (Fit) is a matrix with n rows and j 
columns, where n denotes the length of the time series. The 
length of the time series depends on the duration of the 
individual’s interaction with the gamified application before 
performing the task and the frequency in which the data is 
collected. For example, Fig. 3 shows a representation of an 
individual’s facial keypoints q and k (i.e., AU q and k) captured 
before performing the tasks of an application (i.e., 
t={1,2,…T}). Assuming that the frequency of data captured 
was 10 frames/sec (i.e., 10Hz) and the tasks were performed 
every 6 sec, the data captured will generate T matrices (i.e., {Fi1, 
Fi2,… FiT}) with 2 columns (i.e., q and k) and 60 rows (i.e., 
n=10 frames/sec x 6sec). 
 

3) Performance data: In gamified applications, the tasks are 
designed such that by successfully performing them, 
individuals will meet the objective of the application. Due to 
this relationship, researchers have used individuals’ 
performance on the gamified task as a proxy for measuring their 
performance in meeting the objective of an application. 
Therefore, in this work, the same approach is used. For the 

purpose of this work, the performance of an individual i on a 
task t is assumed to be a binary variable, where:  
 

          Yit= 1, if individual i successfully performed a task t 

    Yit=0, otherwise.  

For,  
 i ϵ set of individuals {I} 
 t ϵ set of tasks {T} 

 

B. Model Generation 

The objective of this step is to build an adaptive-individual-
task machine learning model to accurately predict the 
performance of an individual i on a task t (i.e., Yit ). The model 
uses as predictor variables, the mean and standard deviation 
value of an individual’s facial keypoint data captured before 
performing a gamified task (i.e., Fμit ,Fσit ), the complexity of 
the task (i.e., PCt), as well as individual and application 
identifier data (i.e., ID, App). In order to account for the 
dynamic nature of facial expressions, and based on previous 
studies which suggest that reactions are evident in individuals’ 
facial expressions just after one second of stimulus onset [58], 
the mean and standard deviation of individuals’ facial keypoint 
data is calculated every second (i.e., a 1 second time window). 
Moreover, the model is first trained with a dataset of a general 
population of individuals. Then, as new data of an individual of 
interest is acquired, the training set is updated, and the model is 
re-trained. This approach allows mitigation of the “cold start” 
problem [59] since before an individual interacts with an 
application, no prior information of that individual’s interaction 
with the application exists. 

In this work, multiple machine learning algorithms are 
implemented to test their capability to generate a model that can 
accurately predict an individual’s performance on a gamified 
task. Specifically, in this work, a Logistic Regression, Naïve 
Bayesian, Support Vector Machines, Random Forest, and a 
Neural Network classification algorithm are implemented. The 
performance and computational resources required to train the 
model using these machine learning algorithms are evaluated. 
These algorithms were selected since they are frequently used 
in the Affective Computing community, and have different 
underlying processes for generating classification models (e.g., 
model-based, decision tree)  [40], [60]. 

C. Model Validation 

For the machine learning model to be viable, its accuracy and 
robustness need to be evaluated. In this work, a cross-validation 
(CV) approach is implemented. A CV approach requires the 
partitioning of the dataset into two sets: (i) a training set, and 
(ii) a testing set. A model is trained using the training set, while 
the testing set is used to validate the model’s accuracy. First, to 
benchmark the different machine learning algorithms and to 
address RQ1, a 10-fold CV approach is implemented. In this 
approach, the dataset is randomly partitioned into 10-folds. In 
each of the 10 iterations of this CV approach, one fold is used 
as a testing set while the remaining are used as a training set. 
To address RQ2, the adaptive-individual-task model is 
evaluated using an iterative leave-one-out CV approach. This 

Fig. 2. Actors illustrating a set of Actions Units, from Ref. [56] 

 
Fig.3. Illustration of facial keypoints data acquisition 
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approach is implemented to simulate the scenario in which new 
data of an individual of interest is acquired, and the model is re-
trained. Although the 10-fold CV approach will not evaluate the 
changes in the model’s accuracy as more data of an individual 
is acquired and the model is retrained, it will help benchmark 
the performance of the different machine learning algorithms 
while requiring less computational resources than the iterative 
leave-one-out CV approach [61]. Moreover, the 10-fold CV 
approach will produce an accuracy estimator with less variance 
[61]. 

For the iterative leave-one-out CV approach, the same testing 
sets are used in each of the instances to maintain consistency 
between the iterations of the procedure. Therefore, in each of 
the leave-one-out instances, the data pertaining to an individual 
i performing the tasks of an application is randomly partitioned 
into two-thirds for training and one-third for testing. In the first 
iteration, the training set of the model is composed of a set that 
does not contain data of the individual of interest (i.e., 
individual i). Hence, in this first iteration, the training and 
testing sets are person independent, which produces a general 
model. In the subsequent iterations, an extra tuple containing 
information about individual i performing a given task t is 
randomly added to the training set. An extra tuple is added, and 
the adaptive-individual-task model is re-trained. This process is 
followed until all the tuples from the two-thirds training 
partition are used. This procedure is performed for all the 
individuals in the dataset. 

Figure 4 illustrates an example of this iterative leave-one-out 
CV approach. In this example, a dataset of 68 individuals (i.e., 
ID), performing 12 different tasks of different complexity (i.e., 
PC), in two gamified applications (i.e., App) is used. Therefore, 
the dataset is composed of a total of 816 tuples (i.e., 68*12). In 
the first leave-one-out instance, the 12 tuples of individual 
ID=1 are randomly partitioned, 8 are used for training while the 
remaining 4 are used for testing. In the first iteration, the model 

is trained with a dataset that does not contain any tuple of the 
individual ID=1 (i.e., tuples 13-816). In the remaining 
iterations, an additional tuple is randomly added to the training 
set of the previous iteration, one at a time. That is, for iteration 
2, the training set consists of the same set as in iteration one, 
plus the addition of one extra tuple (i.e., 12-816). Therefore, for 
iteration 9, the training set consists of tuples 5 to 816. This 
process is carried out for the remaining individuals. This 
approach helps simulate the scenarios where new data of an 

individual of interest is acquired, and the model’s training set 
updated. 

V. CASE STUDY 

 The method is implemented in two physically-interactive 
applications. The goal of the gamified applications is to 
motivate participants to use full body motions (e.g., bend, 
extend arm, jump) in order to complete a series of tasks. The 
objective of each application is to improve individuals’ physical 
performance. Thus, these applications could fall within the 
umbrella of Active Games. In this work, the gamified tasks 
consisted of a series of obstacle avoidance tasks. In other words, 
participants were required to perform certain full body motions 
to pass through a series of obstacles without touching them, 
similar to the game show “Hole in the WallTM” [62]. In these 
gamified applications, the authors were able to control for the 
start and completion time of the tasks. This allowed them to 
systematically capture the facial keypoint data of participants at 
equal time points. The applications consisted of 12 different 
sections, each one with its unique gamified task (i.e., obstacle 
avoidance). Hence, for this case study, a total of t=12 tasks were 
analyzed.  

TABLE II 
DESCRIPTION OF GAME FEATURES IMPLEMENTED IN THE APPLICATIONS  

Application A  

Points‐ The score measurement of an individual was 
shown in the top left corner of his/her visual field.   
Avatar‐  The  individuals  were  given  the  option  to 
change  the  color  of  the  avatar  that will  represent 
them in the virtual environment. 
Content  Unlocking‐ Coins  were  placed  throughout 
the  games  in  different  locations.  If  more  than  21 
were collected the individual was allowed to change 
the gaming environment background. 

Application B 

Win  States‐  At  the  end  of  the  application,  the 
individuals were told if they had won or lost based 
on a threshold score level. 
Chance‐ The individuals were given the opportunity 
to  assign  a  virtual  environment  background  at 
random. 
Achievements‐  There  were  three  possible 
achievements  individuals  could  accomplish  shown 
at the beginning of the application. They were:    (i) 
Lucky  Strike:  Get  through  3  obstacles  in  a  row 
without  touching,  (ii)  Hops:  Jump  while  going 
through  an  obstacle,  (iii)  Contortionist: Pass  every 
obstacle flawlessly. 

 

The two physically-interactive applications used in this case 
study only differed in the set of game features implemented. 
The set of game features implemented in each application (i.e., 
Application A and Application B) were selected based on their 
presence in successful and unsuccessful applications, 
respectively (see [63]). The applications consisted of A) 3 

 
Fig. 4. Example of the iterative leave-one-out cross-validation 
approach 
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features common in “successful” applications, and B) 3 features 
common in “unsuccessful” applications. Table II shows a brief 
description of the game features implemented. The applications 
of this work resemble the ones used in [27]. 

 In this case study, a total of 71 students from the 
Pennsylvania State University, with ages ranging from 18 to 23 
years old (M= 20, and SD= 1.2) participated in the experiment. 
All of the participants were given an introduction to the 
applications and experimental setup. After the completion of 
the informed consent documents, the participants completed a 
pre-experiment questionnaire, and were then randomly 
assigned to one of the two applications. Due to technical 
difficulties in the data acquisition process, only data from 68 
participants was analyzed in this work. 

A. Data Acquisition 

In this case study, the multimodal infrared Kinect sensor was 
used to capture individuals’ facial keypoint data. Moreover, this 
sensor allowed participants to interact with the physically-
interactive applications. The Kinect sensor is used in this work 
because of its low cost and capability to capture data in real-
time without affecting participants’ immersion and ability to 
interact with the applications, as in previous studies [39], [64]. 
Figure 5 shows the experimental setup used in this case study. 
Figure 5 shows a Kinect sensor setup in front of a participant 
and a projected display that allows participants to visualize the 
applications’ virtual environment. As the participant interacted 
with the application, the Kinect sensor was able to capture a 
participant’s joints location (i.e., yellow dots in Fig. 5) as well 
as his/her facial keypoint data. Moreover, on the right side of 
Fig. 5, an illustration of the virtual environment of Application 
A displayed to the participants is shown. 

 

1) Task data: Due to the physical task of the gamified 
applications used in this case study, the method for assessing 
task complexity presented in [27] is implemented. Nonetheless, 
the adaptive-individuals-task model is not constrained to any 
particular method that measures the complexity of a task based 
on its characteristics and properties (i.e., “objective” approach) 
(see section IV.A.1). This approach is capable of assessing the 
physical effort required to perform a task. The approach 
implements a task complexity metric (PC) that is a function of 
the sum of the Euclidean distances from an individual’s joint 
positions at rest (i.e., 𝑋 , 𝑌 , 𝑍 ) to the joint positions 
needed to successfully perform a task t ( i.e., 𝑋 , 𝑌 , 𝑍 ), for l ϵ 
the set of joints {L} and t ϵ set of tasks {T}, as shown in Eq. 
(1).  
 

𝑃𝐶 ∑ 𝑋 𝑋 𝑌 𝑌 𝑍 𝑍   (1)  

 
In this work, an individual standing up with his/her arms 

close to the body (e.g., Fig. 6, part A), is considered to be in 
resting position. Figure 6 part A, shows an illustration of an 
individual skeletal system with the position coordinates of the 
right-hand joint. The values of these coordinates are measured 
as a relative distance from a reference point (e.g., dotted circle 
in Fig. 6). This joint position data is employed to evaluate the 
complexity of the task. For example, Fig. 6 part B and C 
illustrate an individual performing a task (i.e., collecting 
“lives”). It can be seen that the task in part B requires more 
physical effort to perform than the task in part C. In this 
example, the coordinates of the right hand joint (i.e., l=RH) 
while at rest, as shown in part A, are 𝑋 = Y = Z  =1m 
(for this example, the joint coordinates are given as the distance 
from the reference point: [0,0,0] in meters [m]). Moreover, the 
coordinates of the right hand joint while performing the task in 
part B (i.e., t=B), are 𝑋𝑅𝐻

𝐵 =2m,  𝑌 =1m, 𝑍 =2m, while for part 
C are 𝑋 =4m,  𝑌 =3m, 𝑍 =3m. Using Eq. (1) it can be shown 
that PCC=4.1m is greater than PCB=1.4m. This suggests that 
less physical effort is needed to perform the task in part B, 
compared to the task in part C. This is because the location of 
the item in part B requires individuals to move a shorter 
distance.  

The results presented in [27] suggests that with a limited set 
of joint position data (i.e., L≥13), the physical effort of tasks 
that require full body motion (e.g., jump, walk) can be 
accurately capture. However, this metric makes the assumption 
that the relative difference between the complexities of 
performing different physical tasks will not change 
significantly based on an individual’s anthropometry. That is, it 

 
 Fig. 6. Example of task complexity assessment 
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is assumed that a physical task that entails more movement of 
limbs (e.g., bend) will require more effort to perform (i.e., more 
complex) than a task that entails less movement of limbs (e.g., 
extend arm), and that this will be independent of the 
anthropometry of the individual performing the tasks. Hence, 
the PC values of a task can be acquired from a pilot test of the 
application, as suggested by [27]. In this pilot test, the joints’ 
position at rest and the position needed to successfully perform 
a gamified task t can be acquired. 

 

TABLE III 
PARTICIPANTS’ JOINTS TRACKED BY THE MICROSOFT KINECT 

1 Right shoulder 7 Right hip 13 Head 

2 Right elbow 8 Right knee 14 Neck 

3 Right wrist 9 Right ankle 15 Pelvis 

4 Left wrist 10 Right toe 16 Left hip 

5 Left elbow 11 Left knee 17 Left toe 

6 Left shoulder 12 Left ankle   
 

In this work, the 17 joints tracked by the Kinect sensor (see 
Table III) were used to calculate the task complexity values of 
the gamified tasks. The joint locations consisted of X, Y, and Z 
position data relative to the location of the sensor. Even though 
both applications implemented the same gamified tasks (i.e., 
obstacles), the game feature of Content Unlocking impacted the 
task complexity of Application A. This was due to the locations 
of the coins used to implement the Content Unlocking feature 
(see Table II). The coins were positioned before each obstacle 
of Application A and their position varied by obstacles. To 
collect the coins individuals had to incur in greater physical 
effort compared to individuals of Application B, which had no 
coins. This was due to the location of the coins not being 
aligned with the obstacles. This additional task of collecting the 
coins to unlock the new content had a direct impact on the 
complexity of the tasks of Application A (see Table 6 Ref. 
[27]). Therefore, a total of 24 measurements of task complexity 
were calculated (i.e., 12 for Application A, 12 for Application 
B). 
 

2) Facial Keypoint data: The Kinect sensor captured 
participants’ facial keypoint data as they interacted with the 
applications. The Kinect SDK is capable of automatically 
capturing the facial keypoints shown in Table IV by 
implementing the CANDIDE-3 model [65]. These facial 
keypoints are able to be captured if a participant had his/her 
eyebrows or jaw lowered, eyelids closed, and/or lips raised or 
stretched before completing a gamified task. The AUs 
presented in Fig. 2 relate to some of the facial keypoints that the 
Kinect sensor is capable of capturing. For example, if a 
participant has his/her eyes closed (e.g., similar to the actor 
shown on the right of Fig. 2), the Right Eyelid Closed and Left 
Eyelid Closed facial keypoint values will show as 1; while 0 if 
the eyes are completely open. 
 
 
 

TABLE IV 
FACIAL KEYPOINT DATA COLLECTED. 

1 Upper Lip Raised 6 Right Eyelid Closed 

2 Left Lip Stretched 7 Left Eyelid Closed 

3 Right Lip Stretched 8 Jaw Lowered 

4 Left Brow Lowered 9 Right Brow Lowered 

5 
Left Lip Corner 
Depressor 10 Right Lip Corner Depressor 

  
The equal time intervals of the gamified tasks allows for the 

systematic capture of facial keypoint data of participants at 
equal time points; thus, generating equal length time series.

 The facial keypoint data of each participant i on a given task t 
was captured continuously for 6 seconds at a rate of 10 
frames/second (i.e., 10Hz). This resulted in a facial keypoint 
data matrix for each participant i on a given task t (Fit) with 10 
columns (j=10) and 60 rows (n=60). The matrices of facial 
keypoint data values (Fit) were collected for each of the 68 
participants (i=68) on each of the 12 tasks (t=12). The adaptive-
individuals-task model uses the average, and standard deviation 
values of participants’ facial keypoint data captured every 
second while interacting with a gamified application App, after 
been introduced to the task t and before completing the task t. 
That is, for each individual i on a task t, their respective n j 
(i.e., 60x10) facial keypoint data matrix (Fit) is transformed to 
a 6x10 matrix of average  values (Fμit ) (i.e., average over 10 
data points) and a 6x10 matrix of standard deviation values 
(Fσit) which are used as input for the proposed model. 

 

3)   Performance data: In addition to capturing facial keypoint 
data, the Kinect sensor is capable of capturing individuals’ joint 
location data (see Table III), which enables participants to 
interact with the applications in the virtual environment. This 
data also enables the applications to assess in real-time, whether 
a participant i successfully performed a task t (Yit= 1) or not 
(Yit= 0).  For example, Fig.7 shows a representation of a 
participant performing a task in Application B, with the 17 
joints tracked by the sensor highlighted. In this figure, the joints 
highlighted in green indicate the ones within the predefined 
obstacle avoidance area for that specific task, while the red ones 
indicate the joints outside this area. Hence, for a participant i to 
successfully perform a task t, all of his/her 17 joints have to be 
within the obstacle avoidance area of that task. Hence, in this 
example, the participant did not successfully perform the task 

since not all of his/her joints were within the obstacle avoidance 
area.  
 

 
Fig. 7. Illustration of a gamified task with joints highlighted for 
visualization. 
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B. Model Generation 

The different machine learning algorithms used to generate 
the model were implemented in R (v.3.5.1) [66]. The Support 
Vector Machines and Random Forest algorithms were 
implemented with the R package e1071 (v. 1.6-7) [67] while the 
Logistic Regression was implemented with the package 
caTools (v.1.17.1) [68]. The Naïve Bayesian was implemented 
with klaR (v.0.3.3) [69], and the Neural Network algorithm with 
nnet (v.7.3-12) [70]. The hyper-parameters of the algorithms 
were tuned using a random search approach.  

C. Model Validation 

 To benchmark the performance of the machine learning 
algorithms, first a 10-fold cross-validation approach is 
implemented. Subsequently, to address RQ2, an iterative leave-
one-out cross-validation procedure, as proposed in section IV.C 
is used. In this case study, 816 instances are analyzed, one for 
each participant i on a gamified task t (e.g., 68*12=816). 
Therefore, the leave-one-out cross-validation procedure might 
be understood as training and testing 68 models. Moreover, 
since data of 12 different tasks was acquired, there are nine 
validation iterations. In each iteration, the testing set for the 
models consisted of 4 tuples pertaining to a participant i 
performing four randomly selected tasks. For the first iteration, 
the training set consisted of a dataset that did not contain data 
of the individual of interest (i.e., training and testing sets were 
person independent). Subsequently, the remaining eight tuples 
were randomly added, one at a time, to the training set during 
iterations 2 through 9. This approach was implemented to 
simulate the scenarios where new data of an individual of 
interest is acquired, and the model is re-trained, similar to the 
example shown in Fig.4. 

 From the 816 tuples of the dataset, 341 corresponded to 
participants who successfully performed the gamified tasks, 
while 475 corresponded to participants who did not. Similarly, 
444 of these instances corresponded to participants who 
interacted with Application A (e.g., 37 participants on 12 tasks), 
while 372 corresponded to participants who interacted with 
Application B (e.g., 31 participants on 12 tasks). Each tuple of 
the dataset was composed of:  (i) the performance data of a 
participant i on a task t (Yit), (ii) the complexity of the gamified 
task t (PCt), (iii) participant’s average and standard deviation of 
facial keypoint data (Fμit, Fσit), and identification variable for 
the (iv) participant id and the (v) application he/she interacted 
with (Appi).  

VI. RESULTS AND DISCUSSIONS   

The benchmark results of the 10-fold cross-validation 
revealed that the Support Vector Machine (SVM) algorithm had 
the greatest average accuracy out of the methods tested 
(M=0.658, SD=0.018). Figure 8 shows a summary of these 
accuracy results. The independent t-tests indicate that the 
average accuracy of the SVM was statistically significantly 
greater than the average accuracy of the Logistic Regression 
(LR) (M=0.427, SD=0.060, t18=11.66, p-value<0.001) and 
Random Forrest (RF) (M=0.497, SD=0.044, t18=10.71, p-
value<0.001) algorithms. However, the average accuracy of the 
SVM was not significantly different than the average accuracy 
of the Neural Network (NN) (M=0.657, SD=0.031, t18=0.09, p-

value=0.465), and Naïve Bayesian (NB) algorithms (M=0.656, 
SD=0.028, t18=0.19, p-value=0.426). Nonetheless, it is 
important to highlight that with the 10-fold cross-validation 
approach, the SVM algorithm took 107 seconds to train and 
test, while the NN and NB algorithms took 261 seconds and 145 
seconds, respectively. Hence, out of the top performing 
algorithms, the SVM reached the greatest accuracy and required 
the least computational resources.   

Moreover, the t-test results indicate that the accuracy of the 
models generated with the SVM (t19=27.76, p-value<0.0.01), 
NN (t19=16.02, p-value<0.0.01), and NB (t19=17.62, p-
value<0.0.01) machine learning algorithms were statistically 
significantly greater than random chance. These findings help 
address the RQ1, indicating that a machine learning model that 
uses individuals’ facial keypoint data and task information can 
accurately predict the performance of individuals prior to 
completing a gamified task.  

For completeness and to assess the value of considering task 
information and individuals’ facial keypoint data, the adaptive-
individual-task model was benchmarked against a model that 
only considered task information (i.e., task model) and a model 
that only considered individuals’ facial keypoint data (i.e., 
individual model). This benchmark analysis was performed 
using a 10-fold cross-validation approach. The models were 
generated using an SVM algorithm. The independent t-tests 
results indicate that the average accuracy of the proposed model 
(M=0.658, SD=0.018) was statistically significantly greater 
than the average accuracy of the individual model (M=0.578, 
SD=0.025, t18=8.21, p-value<0.001) and task model (M=0.594, 
SD=0.029, t18=5.93, p-value<0.001). In addition, the accuracy 
of both the individual model (t19=9.87, p-value<0.001) and task 
model (t19=10.25, p-value<0.001) were statistically 
significantly greater than random chance. The results also 
indicate that there was no significant difference between the 
average accuracy of the task model and the individual model 
(t18=1.32, p-value=0.102). However, the task model achieved 
accuracy greater than random change by using only task 

information (i.e., task complexity). The results of the Kendall 
correlation test (τ= -0.53, p-value<0.001) reveal that task 
complexity was negatively correlated with participants’ 
performance.  

 
Note: p-value<0.001*** 
Fig. 8. Benchmark results of the 10-fold cross-validation analysis. 
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Moreover, Fig. 9 shows a plot of the weights of the SVM 
features used in the model. As the previous correlation results 
indicate, task complexity is an important feature for predicting 
individuals’ performance on a gamified task. The results of this 
work indicate that on average, participants successfully perform 
the less complex tasks than, the more complex ones.  These 
findings are in line with previous studies and the Fogg 
Behavioral Model [25], [27], indicating that task complexity is 
significantly correlated to participants performance. 
Nonetheless, while the task model results revealed that task 
complexity is a good indicator of individuals’ performance, the 
benchmark results also indicated that individuals’ facial 
keypoint data provide additional and valuable discriminatory 
power for predicting the performance of individuals in gamified 
tasks.  

 
To address the RQ2, the adaptive-individual-task model was 

validated with an iterative cross-validation approach that 
simulates scenarios in which new data of an individual is 
acquired, as presented in section IV.C. Since the testing sets 
consisted of 4 randomly selected gamified tasks per individual, 
a total of 272 tuples are used for testing (i.e., 68*4=272). Table 
V shows the confusion matrix for the 1st validation iteration. 
That is, the one in which the training and testing sets were 
person independent, which generated a general model. While, 
Table VI shows the confusion matrix for the 9th validation 
iteration, the one in which the training set contained 8 tuples 
from the individuals of interest. The results show that the 
general model (i.e., 1st validation iteration) was able to classify 
participants’ performance with an accuracy of 0.654 (SD=0.24) 
and with an F1-score of 0.435. While in the 9th iteration, the 
accuracy of the adaptive-individual-task model increased to 
0.768 (SD=0.213) and an F1-score of 0.909. The independent t-
test indicated that this accuracy was significantly greater than 
the general model’s accuracy (t134=2.92, p-value=0.002). These 
results reveal that the performance of the proposed model 
improves as new data of an individual is acquired and the model 
is re-trained.  

 
 

TABLE V 
CONFUSION MATRIX 1ST ITERATION (GENERAL MODEL) 

 Ground truth 

 Y=1 (Pass) Y=0 (Fail) 

Predicted    Y=1 (Pass) 30 9 
               Y=0 (Fail) 85 148 

Total 115 157 
 

TABLE VI 
CONFUSION MATRIX 9TH ITERATION (ADAPTIVE-INDIVIDUAL-TASK MODELS) 

 

 Ground truth 

 Y=1 (Pass) Y=0 (Fail) 
Predicted    Y=1 (Pass) 79 27 

               Y=0 (Fail) 36 130 
Total 115 157 

 
Figure 10 shows a plot of the model’s accuracy vs. the 

validation iterations. The plot shows that in certain validation 
iterations (i.e., iteration 4, 7, and 8) the model accuracy does 
not improve or even worsens, in comparison to the previous 
iteration. These results can be attributed to the randomness of 
the validation procedure in which the data tuples are randomly 
partitioned and assigned to the training and testing sets. The 
plot indicates that, on average, the adaptive-individual-task 
model’s accuracy increases as more data of an individual of 
interest is acquired and used to re-train the model. A linear 
regression model was fitted to test the significance of this 
relationship. The model accuracy was used as the response 
variable and the validation iterations as predictor variables. The 
participant’s identification variable was used as a control 
variable to account for any possible variation between 
participants. Table VII shows a summary of the regression 
model fitted. The results indicate that the regression equation 
was significant (F68,543=28.34, p-value<0.001), with an R2 of 
0.78. The results reveal that the coefficient of the Intercept and 
the Validation Iteration variable were statistically significantly 
different than zero (p-value<0.001). These results support 
Fig.10 since they indicate that as the number of validation 
iterations increase (i.e., model is re-trained with more data from 
the individual of interest) the accuracy of the adaptive-

individual-task model increases. These findings address RQ2, 
and reveal that the performance of the proposed method 
improves as new data of an individual is acquired and the model 
is re-trained.  

 

 
Note: µx and σx indicate the average and standard deviation of facial 
keypoint measured between (x-1)sec and (x)sec, respectively. 
 

Fig. 9. SVM features weight for the adaptive-individual-task model. 

 
Fig. 10. Model Accuracy vs. Validation Iterations. 
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TABLE VII 
SUMMARY OF LINEAR REGRESSION MODEL FOR ACCURACY 

 Estimates t-value 
Intercept 0.83 4.85*** 

Validation Iteration 0.04 6.15*** 
Note: p-value<0.001*** 
 

In addition, Tables V and VI show that the model tended to 
correctly classify the instances where the participants did not 
successfully perform the gamified task more frequently than the 
instances where they did. In other words, if Y=1 (i.e., 
successfully performed the gamified task) is considered as the 
positive condition, the specificity or true negative rate of the 
models (general model: 0.943, adaptive-individual-task model: 
0.828) was greater than their sensitivity or the true positive rate 
(general model: 0.261, adaptive-individual-task model: 0.687). 
In the context of gamification, where designers intend to 
motivate individuals to successfully perform a task, the results 
indicate that it is harder to predict if an individual will 
successfully perform a gamified task than to predict if he/she 
will not successfully perform it. This difference was more 
substantial in the general model, which training and testing sets 
were person independent. These results reveal that the adaptive-
individual-task model can still be improved. Nonetheless, the 
model still provides good prediction accuracy with data 
collected prior the start of the task and not after a participant 
either fails or succeeds in performing the task, as in previous 
studies (see section II).  

The previous results support the benefits of systematically 
updating the training set of the adaptive-individual-task model 
as new data of an individual is acquired. This approach allows 
the model to adapt (i.e., learn) to an individual’s unique facial 
expression characteristics. Nonetheless, if the adaptive-
individual-task model is re-trained every time new data of an 
individual is acquired, the computational resources and the time 
needed to re-train it need to be explored. Hence, the effects that 
parallelization and the clock speed of CPUs (cores) used has on 
the time needed to re-train the adaptive-individual-task model 

is explored. While other machine learning algorithms have 
faster training speeds than SVM (e.g., Logistic Regression, 
Decision trees) [60], the SVM algorithm is used as a benchmark 
since the results of this work indicate that out of the top 
performing algorithms, the SVM reached the greatest accuracy 
and required the least computational resources (see Fig. 8). For 

this analysis, a (i) 4 Core i5 2.3 GHz IntelTM computer with 6 
GB of RAM and MicrosoftTM Windows 10, a (ii) 4 Core i5 3.5 
GHz IntelTM computer with 8 GB of RAM and MicrosoftTM 
Windows 10, and a (iii) 12 Core i7 3.4 GHz IntelTM computer with 
62.8 GB of RAM and Ubuntu 16.04 LTS was used.  

Figure 11 shows the time required to train the model using 
an SVM algorithm, given the number of cores used and the 
clock speed of the cores in GHz. A second order polynomial 
model with training time as the dependent variable, and the 
number of cores and clock speed as the independent variables, 
was fitted to the data. Table VII shows the summary statistics 
of the linear regression model. The results indicate that the 
regression equation was significant (F4,15=57.35, p-
value<0.001), with an R2 of 0.939. The results reveal that with 
4 cores running at a speed of 3.5 GHz, the adaptive-individual-
task model was trained in 8.67 seconds, which given the 
conditions of the gamified applications used in this work, is 
insufficient to provide real-time prediction. However, the 
regression analysis indicates that with 6 cores running at a 
speed of 3.6 GHz (e.g., Intel Core i7-7820X, www.intel.com) 
the adaptive-individual-task model can be trained in less than a 
second, enough to provide real-time predictions if data is 
collected every 6 seconds as in the case study.  

 

Table VIII 
SUMMARY OF LINEAR REGRESSION MODEL FOR TRAINING TIME 

 Estimates t-value 
Intercept -224.59 -3.93** 

Number of Cores -3.39 -9.23*** 
(Number of Cores)2 0.20 7.39*** 

Clock Speed 184.69 4.45*** 
(Clock Speed)2 -32.97 -4.57*** 

Note: p-value<0.001***; p-value<0.01** 

VII. CONCLUSIONS AND FUTURE WORKS 

Even though researchers are working towards personalized 
adaptive gamified applications, current methods are not capable 
of predicting an individual’s performance prior to completing a 
gamified task.  This information could be helpful in adapting 
the game features and task difficulty of gamified applications. 
Furthermore, current methods are not capable of dynamically 
capturing an individual’s data as he/she interacts with a 
gamified application. This could limit the degree of 
personalization and adaptation that current methods can 
provide. Therefore, due to existing limitations, this work 
presented an adaptive-individual-task machine learning model 
that uses task information and individuals’ facial keypoint data 
to predict their performance on a gamified task. In this work, 
individuals’ facial keypoint data is captured before completing 
the task with a sensor that does not affect their immersion or 
ability to interact with an application. Furthermore, the training 
data used to generate the machine learning model is updated 
every time new data of an individual is acquired; hereby, 
making the model adaptive in nature. A case study involving 
68 participants interacting with a set of gamified applications 
in a virtual environment was presented. 

The result of this work provides valuable information about 
the relationships between individuals’ facial keypoint data, as 
well as their performance and the complexity of gamified tasks. 

 
Fig. 11. SVM model training time. 
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The results indicate that the adaptive-individual-task machine 
learning model was capable of predicting an individual’s 
performance, with accuracies up to 0.768. While previous 
studies have focused on developing machine learning models to 
predict individuals’ affective state [44], student type [33], or 
time spent in performing a vertical menu selection task [31], the 
performance of the adaptive-individual-task model 
outperformed or closely matches the performance of these 
existing models. For example, Barata et al. [33] were only able 
to predict the students type with an accuracy of 0.47, even after 
collecting students’ data for a five-week period.  

Moreover, the results reveal that the performance of the 
adaptive-individual-task model improves as it is re-trained 
when more data of an individual is acquired. These results 
reveal that the model is learning the unique individuals’ 
characteristics and improving its accuracy. Furthermore, the 
findings presented in this work are in line with previous studies 
that suggested that the task complexity is of great importance 
when predicting the performance of individuals.  

  This work provides quantitative evidence of the feasibility 
and performance of the adaptive-individual-task machine 
learning models that implement task and facial keypoint data. 
However, there are several areas for future improvements. For 
example, the task complexity metric used in this work only 
consider task characteristics and do not take into account 
individual’s psychological state or their differences.  
Furthermore, even though a low-cost sensor capable of 
capturing data in real-time without affecting participants’ 
immersion was implemented in the case study, as in previous 
works [39], [64], the effect of the applications’ tasks on the 
sensitivity of the sensor was not explored. Nonetheless, the 
method proposed in this work is not constrained to the sensors 
implemented in the case study. Current advancements in facial 
recognition algorithms are allowing researchers to capture 
facial keypoint data with the use of more widely available 
sensors (i.e., RGB sensors or webcams) and still maintain high 
levels of accuracy [71]. Likewise, researchers are currently 
working on methods to capture body movement and biometrics 
data with RGB sensors that do not affect an individual’s 
interaction with an application [72], [73]. This type of data 
should be considered as input for the adaptive-individual-task 
model in future works, as the results of previous studies indicate 
that this could improve the model’s accuracy [39]. Similarly, 
individuals’ in-game behavioral data (e.g., number of coins 
collected) should be explored since it might provide a better 
understanding of individuals’ attitude towards the gamified 
application.  

Finally, future works should focus on implementing this 
method with other gamified applications in different 
environments and tasks (e.g., educational with cognitive tasks), 
and using this knowledge to tailor the game features and task. 
This could be an area for future research that will help to test 
the generalizability of the model and its potential capability to 
transfer the learning gained from this application to other types 
of applications. Nevertheless, this work presents initial 
groundwork towards implementing adaptive-individuals-task 
machine learning models that take advantage of task 
information and individuals’ facial keypoint data to predict 
their performance in gamified tasks. 
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